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Fluctuations and critical temperature reduction in cuprate superconductors
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We show theoretically that phase and amplitude fluctuations set in simultaneously in the cuprates. We then
analyze fluctuations about Tc in the specific heat of (Y,Ca)Ba2Cu3O7−δ , YBa2Cu4O8, and Bi2Sr2CaCu2O8+δ .
The mean-field transition temperature, T mf

c , in the absence of fluctuations lies well above Tc and at low doping
reaches as high as 150 K. T mf

c is found to be unrelated to the pseudogap temperature T ∗, but scales with the gap
�0, such that 2�0/kBT mf

c is comparable to the BCS weak-coupling value 4.3, for d-wave superconductivity.
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Many authors have suggested that pairing in the cuprates
begins well above Tc. Emery and Kivelsen argued that the
low superfluid density ns in the cuprates leads to phase
fluctuations below the mean-field (MF) transition temperature,
T mf

c , resulting in a phase-incoherent state with a finite pairing
amplitude.1 Phase coherence is then established at a lower
temperature, the observed Tc. Support for this picture may be
found in the high-frequency optical studies by Corson et al.2

Additionally, the underdoped normal state (NS) exhibits a
depletion of the density of states (DOS) near the Brillouin zone
boundary due to the presence of a pseudogap which seems to
close abruptly at pcrit = 0.19 holes/Cu.3 It is often proposed
that the pseudogap corresponds to the phase-incoherent pairing
state between Tc and T mf

c .4,5 The pseudogap T ∗ line (below
which pseudogap effects are observed) would then correspond
to T mf

c (p).
Here we analyze the superconducting (SC) fluctuations in

the electronic specific heat for several cuprates, from which
we calculate T mf

c and the MF jump �γ mf in the electronic
specific heat coefficient γ = CP /T . We find that at all doping
levels T mf

c lies well above the observed Tc, reaching as high
as 113 K for Y, Ca-123 and 150 K for Bi-2212. Our approach
is similar to that of Meingast et al.5 using thermal expansion
data. But, where they identified the pair-fluctuating state with
the pseudogap, we show they are distinct.

Even without such an analysis the idea that the pseudogap
is a phase-incoherent pairing state faces an insurmountable
obstacle. If the pseudogap arises merely from thermal phase
fluctuations then at T = 0 there should be no remnant
pseudogap effects. But, even at T = 0 the pseudogap weakens
the SC ground state, abruptly reducing the condensation energy
and superfluid density6 as doping is reduced below pcrit. The
pseudogap thus coexists with SC at T = 0 and must be distinct
from fluctuation effects above Tc.

We use a high-resolution differential technique7 to directly
measure the difference in the specific heats of each SC sample
and a closely related but non-SC reference sample. Typically
the reference is a Zn-substituted sample. The bulk of the large
phonon term is thereby backed off leaving a residual phonon
term that exhibits a broad peak at 39 K in (Y,Ca)Ba2Cu3O7−δ

(Y,Ca-123)7 and 17 K in Bi2Sr2CaCu2O8+δ (Bi-2212)8 which
scales in magnitude with oxygen content. This is the only
significant T -dependent correction required to determine the
absolute electronic specific heat. The sample is successively

annealed and quenched to alter the oxygen content and,
for each doping state, the differential specific heat is then
differenced against the lowest doping state and scaled by the
change in oxygen content measured by mass change. This
allows the residual phonon term to be determined with an
accuracy better than 0.2 mJ/g.at.K2 at the peak. Differences in
absolute values between doping states are certainly less than
this. And, because the residual is peaked at low temperature,
and broad, uncertainties in this term have little effect on the
following analysis of the SC fluctuations which peak sharply
at Tc.

We start by arguing that phase and amplitude fluctuations
set in simultaneously. Emery and Kivelsen1 deduced that phase
fluctuations become important when T > Tθ where kBTθ ∼
AV0, A ∼ 1, and V0 is the phase stiffness, V0 = ah̄2ns(0)/4m∗.
The length scale a was defined as a = √

πξ for isotropic
three-dimensional (3D) behavior and a = max(d,

√
πξ⊥) for

two-dimensional (2D) where d is the mean interlayer spacing.
V0 is related to the penetration depth λab, viz.

λ−2
ab = μ0e

2[ns(0)/m∗] =
(

4μ0e
2

ah̄2

)
V0. (1)

The condensation energy U0 is given by

U0 = 1

2
μ0H

2
c = 1

4
μ0

(
1

2πμ0

)2 (
φ0

λabξab

)2

, (2)

where the last equality comes from Ginzburg-Landau theory.
Combining these, we find

kBTθ ∼ AV0 = (4A/π ) U0
(0), (3)

where 
(0) = πξ 2
aba is the coherence volume for Cooper pairs.

Following Bulaevskii9 we adopt the criterion for amplitude
fluctuations as

kBTamp ∼ U0
(0), (4)

which leads immediately from Eq. (3) to the relation

kBTθ ∼ AV0 = (4A/π ) U0
(0) ∼ (4A/π ) kBTamp. (5)

As A ≈ 0.9 for 2D1 then the conditions for phase and am-
plitude fluctuations are equally restrictive. For a homogeneous
system they both must set in simultaneously. We thus question
the widely accepted phase-fluctuation model of Emery and
Kivelsen1 and its implementation by Corson et al.2 If Tθ and
Tamp greatly exceed T mf

c then the transition occurs essentially
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at T mf
c . But, if Tθ and Tamp are comparable to or less than T mf

c

(as is the case) then Tc will be suppressed below T mf
c . Between

Tc and T mf
c both amplitude and phase will fluctuate. It is our

aim to determine how large this Tc suppression is.
The fluctuations in CP have been analyzed10,11 by separat-

ing CP into a fluctuation term Cfl
P , which is symmetric about

Tc and an asymmetric MF term C
mf,0
P . In the 3D-XY model

CP near Tc may be approximated by

δCP =
{

A− ln |t | + �C
mf,0
P , [t ≡ (T/Tc − 1) < 0],

A+ ln |t |, (t > 0).
(6)

A− ≈ A+ = 4kB/[9π2
(0)] (Ref. 12) and �C
mf,0
P is the MF

step at Tc. While Eq. (6) is not strictly correct deep in the
critical region it captures all the main physical features of
the more complex crossover from critical to MF behavior.13

For example, it accurately represents the critical behavior of
He4 at the superfluid transition.10 A plot of CP versus ln |t |
gives two parallel lines offset by �C

mf,0
P . In practice, this plot

exhibits negative curvature for sufficiently small |t | due to
minor transition broadening. The effect of the resulting spread
in Tc was modeled14 by replacing t by t∗ = (t2 + �t2)1/2 in
Eq. (6).

For Bi-2212, �C
mf,0
P was found to collapse rapidly with the

opening of the pseudogap at pcrit, falling to zero near optimal
doping p = 0.16 holes/Cu (Ref. 11). Below this, CP (T ) is
dominated by fluctuations alone and is symmetrical about Tc.
This is puzzling because the specific heat jump should remain
finite, consistent with the second-order phase transition. We
resolve this anomaly below.

Figure 1(a) shows γ (T ) reported by Loram et al.15 for
Y0.8Ca0.2Ba2Cu3O7−δ with δ = 0.25 and p = 0.186. The
dashed line is γn(T ), the NS γ (T ). Because the electronic
entropy S = ∫

γ dT there are two entropy balance conditions.
(i) The area abc equals the area cde. This helps to establish
the T dependence of γn below Tc. In this case there is no
pseudogap and γn(T ) is constant. For lower doping where the
pseudogap is present we use a triangular gap which fills with
increasing temperature:3

γn(T ) = γn(∞)[1 − ϑ−1 tanh(ϑ) ln (cosh(ϑ))], (7)

where ϑ = Eg/2kBT . The second entropy balance condition
concerns the fluctuation term which reduces Tc below T mf

c .
Thus, (ii) the entropy equal to the forward cross-hatched area
between Tc and T mf

c equals the fluctuation entropy given by
the backward cross-hatched area under the fluctuation term,
γ fl, which includes both critical and Gaussian fluctuations.
That is,

Sfl =
∫ ∞

0
γ fldT =

∫ T mf
c

Tc

(
γ mf

s − γn

)
dT . (8)

This construction enables T mf
c to be estimated. Furthermore,

the apparent MF step �γ mf,0 at Tc is also smaller than the
“true” MF step �γ mf that would occur at T mf

c in the absence of
fluctuations. These jumps are defined in the figure. (The same
superscript notation is used for �C tot

P , �C
mf,0
P , and �Cmf

P ).
We proceed as follows. We combine the first entropy

condition with Eq. (7) to establish γn(T ). We then plot CP

above and below Tc using Eq. (6) to determine �C
mf,0
P and
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FIG. 1. (Color online) (a) Analysis of γ (T ) for
Y0.8Ca0.2Ba2Cu3O6.75 showing the deduced MF component
γ mf

s and NS value γn. Dashed (magenta) curve is the BCS γ mf
s for

2�0/kBT mf
c = 5. (b) A similar analysis for YBa2Cu4O8 showing

γ mf
s (blue dash-dot curve) and the pseudogapped γn(T ) (red dashed

curve). The γ (T ) curves for 2% Zn (cyan solid line) and 4%
Zn (green solid line) coincide with γn(T ) and thus confirm our
pseudogap model. Upturns at low T are due to impurities.

hence �γ mf,0.11 We then construct a power-law fit to γs(T )
at low T that reproduces this value of �γ mf,0. This is γ mf

s (T )
which is slightly superlinear, consistent with the predominant
d-wave gap structure. Finally, we impose the second entropy
condition [Eq. (8)] to deduce T mf

c and �γ mf. There are errors
inherent in such a construction, but while they grow with
underdoping, as shown, they do not impact on any of our
conclusions.

In the example shown in Fig. 1 Tc = (82.27 ± 0.3) K,
T mf

c = (97.72 ± 3.0) K, �γ mf = (2.32 ± 0.08) mJ/g.at.K2,
�γ mf,0 = (1.51 ± 0.04) mJ/g.at.K2, and �γ tot = (3.00 ±
0.04) mJ/g.at.K2. For comparison, the dashed magenta curve
shows the theoretical d wave γ mf

s (T ) for 2�0/kBT mf
c = 5.

The agreement is excellent. The analysis was carried out for
ten different doping states. Values of Tc and T mf

c are plotted
versus p in Fig. 2(a) along with values of �γ mf and �γ mf,0 in
Fig. 2(b). A similar analysis was done for Bi-2212 (Ref. 15).
Here, instead of using Eq. (7), the full bilayer ARPES
dispersion was used,16 thus incorporating the van Hove sin-
gularity and pseudogap. The pseudogap was implemented as
before16 using a finite-Fermi-arc model. The results are plotted
in Figs. 2(c) and (d). Several key conclusions can be made.

(i) Like Meingast et al.5 we find T mf
c (p) continues to rise

with decreasing doping and only falls at the lowest doping
levels. Underdoped samples show a reduction in Tc below T mf

c

as large as 35–40 K for (Y,Ca)-123 and 60 K for Bi-2212,
reflecting the larger anisotropy in the latter compound. The
shift is also large for pure YBa2Cu3O6.97 with Tc = (92.9 ±
0.05) K and T mf

c = (112.3 ± 0.9) K [see arrowed green data
points Fig. 2(a)].

092502-2



BRIEF REPORTS PHYSICAL REVIEW B 83, 092502 (2011)

0

50

100

0.10 0.15 0.20 0.25
0.0

0.5

1.0

1.5

2.0

2.5

(a)

E
g
/2.5

Δ
0
/2.5

Y-123

T
c

T
c

mf

T
c a

nd
 T

cm
f   (

K
)

(b)

Δγ
  (

m
J/

g.
at

.K
2 )

Δγmf,0 (Y,Ca)-123

Δγmf

hole concentration, p

0

50

100

150

0.10 0.15 0.20 0.25
0

50

100

150

Δ
0
/2.5

(c)

ΔC
P

tot

ΔC
P

mf,0

T
c

mf

T
c

E
g
/k

B

ΔC
P

mf

T
c  

(K
)

Bi-2212

(d)

 hole concentration, p

ΔC
P
  (

m
J/

g.
at

.K
)

0.10 0.15 0.20 0.25
0

50

100

150

200

250

(Y,Ca)-123

(e)
T*

T
c

mf

T
c

 hole concentration, p

te
m

pe
ra

tu
re

  (
K

)

FIG. 2. (Color online) The doping dependence of evaluated parameters. Panels (a) and (b) show Tc, T mf
c , �γ mf, and �γ mf,0 for

Y0.8Ca0.2Ba2Cu3O7−δ; (c) and (d) show the same for Bi2Sr2CaCu2O8+δ . In (a) values are also shown for YBa2Cu3O7−δ (arrows). The SC
gap, �0 (red open triangles), and pseudogap Eg (blue crosses) from Ref. 15 are also plotted, scaled by the factor (1/2.5kB ). Panel (c) also
shows �0 values for Bi-2212 from B1g Raman (red open triangles). Panel (e) shows Tc, T mf

c , and T ∗.23

(ii) While �γ mf,0 ≈ 0 at lower doping (and the specific heat
anomaly then becomes a pure symmetric fluctuation term)
�γ mf remains finite in the absence of fluctuations and may
only reach zero near the onset of SC at p ≈ 0.05. This removes
the puzzle of the seemingly zero MF step.

(iii) Figs. 2(a) and (c) show the pseudogap energy Eg , as
previously reported.15,16 Coincident with the abrupt opening
of the pseudogap at p ≈ 0.19 there is an abrupt reduction in
all values of �γ showing that, even after removing fluctuation
effects, the pseudogap still plays a decisive role in weakening
the condensate.

(iv) We compare T mf
c with the SC gap, �0, at T = 0 for

the two systems in Figs. 2(a) and (c). For (Y,Ca)-123 values
of �0 are from the specific heat15 and for Bi-2212 from the
Raman B1g gap.17 In both cases 2�0/kBT mf

c ≈ 5 across the
entire overdoped region, little more than the d-wave MF BCS
value of 4.3. The old puzzle that 2�0/kBTc increases steadily
with decreasing doping17 is now resolved by referencing
to T mf

c rather than Tc. Eventually, at low doping T mf
c falls

below �0/2.5kB due to the pseudogap progressively removing
spectral weight. If it were not for the pseudogap T mf

c would
probably track �0/2.5kB across the entire SC domain. Thus
Tc is reduced both by fluctuations and by the pseudogap and
is not the fundamental energy scale. It is the T = 0 d-wave
gap �0, which is the truly fundamental quantity and in a BCS
scenario T mf

c will scale with �0 until the pseudogap opens, as
observed.

(v) Using �0 values for (Y,Ca)-123 from infrared c-axis
conductivity18 we obtain 2�0/kBT mf

c ≈ 4.2–4.4 in even better
agreement with the BCS ratio. In fact, gap values are
probably not known sufficiently accurately to discount precise
agreement with the weak-coupling value.

(vi) The presence of strong fluctuations, in both amplitude
and phase, well above Tc implies the persistence of the SC
gap above Tc, as has been observed.19 Indeed, the maximum
temperature at which the gap is seen coincides with our

deduced T mf
c . It also probably explains the anomalous Nernst

effect observed well above Tc (but below T mf
c ) in both

underdoped and overdoped samples.4 The anomalous Nernst
effect can then be seen to be unrelated to the pseudogap.

Figure 1(b) shows a similar fluctuation analysis on new
γ (T ) data for YBa2(Cu,Zn)4O8 with 0% , 2%, and 4% Zn
on the planar Cu sites. This shows the rapid suppression of
both Tc and �γ tot due to impurity scattering. The high rate
of suppression dTc/dx = 13 K/%Zn is typical of underdoped
cuprates and reflects the presence of the pseudogap.20 We use
Eq. (7) to fit the pseudogapped γn(T ) (shown by the dashed
red curve) and the fit is confirmed by the 2% and 4% curves
for γ (T ) in Fig. 1(b) for which the NS values coincide with
the dashed red curve. The upturns in γ (T ) at low T are due to
a small fraction of impurity and need not concern us.

Next, the values of γ mf
s (T ) (blue dash-dot curve) are

determined by fitting a power law to γs(T ). The complication
of the upturn in the experimental data at low T is averted
by insisting on entropy balance such that the area between
the dashed (red) curve and dash-dot (blue) curve below the
crossing temperature Tcross = 61.2 K equals the area between
the black and dashed (red) curves above Tcross. We thus
obtain T mf

c = (91.92 ± 0.75) K from Tc = (81.00 ± 0.09) K;
while �γ tot = (1.11 ± 0.008), �γ mf = (0.90 ± 0.029), and
�γ mf,0 = (0.52 ± 0.005) mJ/g.at.K2. The depression in Tc

due to fluctuations is �Tc = (10.92 ± 0.75) K, rather less than
the value �Tc = 33.5 K obtained for Y0.8Ca0.2Ba2Cu3O7−δ

at the same doping state. This is probably due to the large
superfluid density in YBa2Cu4O8 (Ref. 21) which, according
to Eq. (3), will suppress fluctuations. This implies that the
gap magnitude is less in the latter compound, perhaps due to
the proximity effect between Cu2O2 chains and CuO2 planes
which will lower the SC gap magnitude.

There are little data available for �0 in YBa2Cu4O8 but
Jánossy et al.22 have carried out precise measurements of the
T dependence of the spin susceptibility below Tc using Gd
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electron spin resonance. They find an excellent MF d-wave fit
with �0 = 190 K, giving 2�0/kBTc = 4.75. By referencing
to T mf

c we obtain 2�0/kBT mf
c = 4.14, now very close to the

weak-coupling ratio.
Finally, Fig. 2(e) compares the various relevant temper-

ature scales, Tc(p), T mf
c (p), and the pseudogap line T ∗(p)

for Y,Ca-123. Values of T ∗ are from an extensive study23

of the resistivity of high-quality epitaxial thin films of
(Y,Ca)Ba2(Cu,Zn)3O7−δ . The combination of Zn substitution
and high magnetic fields allowed Tc to be suppressed so
as to expose the evolution of T ∗ below Tc. Importantly,
Zn substitution and moderate magnetic fields do not mod-
ify T ∗ (Ref. 23) while they do suppress Tc. In this way
it is straightforward to distinguish between pseudogap ef-
fects and SC fluctuation effects in the transport properties.
Figure 2(e) reproduces these values of T ∗(p) (blue data points;
solid = films; open = sintered). They extend below the
unperturbed Tc value, descending toward zero at p ≈ 0.19.
The solid (blue) curve is a power-law fit consistent with
a terminating quantum critical point.24 We conclude that,

contrary to some authors,25 the pseudogap line T ∗(p) does
not merge on the overdoped side with Tc(p), still less with the
more fundamental quantity T mf

c (p). The temperature scales
shown in Fig. 2(e) are all of comparable magnitude so it is not
surprising that they have been confused in the past.

In summary, we have carried out a fluctuation analysis of
specific heat data to determine the MF transition temperature
T mf

c and the MF jump in specific heat coefficient, �γ mf. T mf
c

rises rapidly above Tc with decreasing doping, reaching 110 K
for YBa2Cu3O7−δ and Y0.8Ca0.2Ba2Cu3O7−δ , and as high as
150 K for Bi2Sr2CaCu2O8+δ . This exposes the fundamental
importance of fluctuations in the cuprates. �γ mf remains
nonzero across the phase diagram, as it must for a second-order
phase transition. The long-standing puzzle that 2�0/kBTc

grows with reducing doping is resolved by replacing Tc by T mf
c .

Across much of the SC phase diagram 2�0/kBT mf
c remains

close to the weak coupling BCS value. T ∗ is shown to be
distinct from T mf

c .
Since submitting this work a similar entropy analysis has

been reported for Bi2Sr2−xLaxCuO6+δ (Ref. 26).
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