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Two-dimensional and three-dimensional simulation of magnetic relaxation in frustrated
spin-chain systems: Ca3Co2O6
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A response of a triangular spin-chain system to a step variation of an external magnetic field is investigated
in the framework of the 2D and 3D Glauber dynamics. It is shown that an unusual relaxation process observed
experimentally at intermediate magnetic fields in Ca3Co2O6 is related to the growth of a domain size and the
transition to a monodomain magnetic structure. Two different types of the domain walls give rise to the opposite
signs of the relaxation. Slow domain wall motion at low temperatures also causes the second relaxation time
revealed earlier in a magnetic alternating current (AC) response. A general picture of the magnetic dynamics in
Ca3Co2O6 comprising of the magnetization curve, response to the AC, and step magnetic fields is discussed.
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An isolated Ising chain demonstrates specific stochastic
magnetization dynamics that originate from an interaction of
the chain with an external thermal reservoir.1,2 While Ising
chains are packed into a non-bipartite two-dimensional (2D)
lattice a weak antiferromagnetic (AFM) interchain interaction
causes, in addition, a frustration effect. The low dimensionality
and frustration lead to a complex magnetic behavior in the
spin-chain systems. Presently, few groups of compounds are
known in which Ising chains form the frustrated triangular
lattice: (i) CsCoCl3 and CsCoBr3,3 (ii) Ca3Co2O6 and related
systems,4,5 and (iii) Sr5Rh4O12 discovered recently.6,7 A high-
temperature phase in all these compounds is unique, namely, it
is the partially disordered antiferromagnetic (PDAFM) order
or the honeycomb magnetic structure. At low temperatures
these systems demonstrate various behavior which appears
from weak interactions between next-to-nearest chains.7,8

During the last decade most experimental and theoretical
efforts on spin-chain compounds were focused on Ca3Co2O6

due to its unique magnetic features.4,5,8–17

A crystal structure of Ca3Co2O6 consists of Co2O6 chains
running along the c axis. The Ca ions are situated between
them and are not involved in magnetic interactions. The chains
are made up of alternating face-sharing CoO6 trigonal prisms
and CoO6 octahedra. The crystalline electric field causes the
high-spin (S = 2) ground state of the Co3+ ions in the trigonal
positions (Co I) and the low-spin (S = 0) one in the octahedral
environment (Co II). The chains form a triangular lattice in
the ab plane that is perpendicular to the chains. It should be
mentioned that the topology of the magnetic net in Ca3Co2O6

is rather complex since relative shifts of the chains along the c

axis give rise to helical paths.16 An in-chain exchange interac-
tion between high-spin cobalt ions through the octahedra with
low-spin cobalt ions is ferromagnetic (FM). The parameter
of the FM in-chain coupling (J1) was determined from the
magnetic susceptibility at high temperatures,5 specific heat,12

and theoretical calculations.16 These estimations are in a
reasonable agreement with each other (J1 ≈ 25 K). The weak
AFM interchain interaction causes the 2D PDAFM structure
below T1 = 24 K. At T2 ≈ 12 K another magnetic transition
takes place12,15 that separates the high- and low-temperature
phases.

An unusual step-like magnetization curve was found in
Ca3Co2O6 and widely discussed.5,8–16 The number of steps

depends on a sweep rate of the external magnetic field
and temperature.9,11,13 Two steps become apparent in the
temperature range from 12 to 24 K.13 At least four equidistant
steps are clearly visible below 12 K at a moderate magnetic
field sweep rate.9,11 At an extremely low-sweep rate the
magnetization curve becomes close to the two-step shape,
similar to that observed at high temperatures.11

A response to alternating magnetic fields, magnetization
relaxation, and their temperature dependence were investi-
gated carefully in Ref. 10. The experimental results show that
there exist two characteristic time scales of the magnetization
dynamics at low temperatures.

The shape and temperature dependence of the magneti-
zation curve in Ca3Co2O6 was qualitatively explained in the
framework of the rigid-chain model proposed in Ref. 14. It
is based on two main assumptions. (i) The chains are in two
ordered states (spin-up or spin-down) at low temperatures.
This reduces the problem to the 2D AFM Ising model on the
triangular lattice with an AFM nearest–neighbor interaction.18

(ii) The system is out of equilibrium, that is, it is in a metastable
state rather than in the ground one even at a very low-magnetic
field sweep rate.14 The strong dependence of magnetization
curve on the magnetic field sweep rate and large hysteresis
loop favor this point.9,11 At higher temperatures an in-chain
disorder is significant and the rigid chain model is no longer
valid. In this case, the phase diagram can be discussed in terms
of a mean-field model.8

To investigate dynamic properties of the spin-chain system
the rigid-chain model was supplemented by a single-chain flip
rate in the Glauber form,17,19 that is, the chains were assumed
to interact with a heat reservoir in addition to the nearest-
neighbor interaction. Numerical 2D simulation magnetization
dynamics has revealed the origin of the second characteristic
time scale:17 a domain structure appears with the magnetic
field increase due to the fact that the ferrimagnetic structure on
the triangular lattice is threefold degenerate.17 Slow creep of
the domain wall gives rise to a very slow relaxation process.
A recent 3D simulation of the Glauber dynamics in Ca3Co2O6

has led to the same conclusion.20

The equilibrium magnetization curve was studied by means
of the Monte Carlo technique.21,22 It was shown that the
conventional Metropolis algorithm fails to correctly relax a
trial state into the equilibrium state on the AFM triangular
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FIG. 1. The response to the step magnetic field (the 2D Glauber
model) at different temperatures (the left and right panels) and heights
of the step (shown in the figures).

Ising model and the Wang-Landau algorithm (WLA) should
be applied instead.22 The WLA gave a two-step magne-
tization curve on the perfect triangular lattice. In contrast
to the Metropolis algorithm, the disorder in a form of an
random-exchange term did not change the two-step shape
of the magnetization curve. A substitution disorder gave
multiple magnetization steps but they were quite different
from the four-step curve.23 These results have led authors
of Ref. 22 to the conclusion that the two additional steps
in Ca3Co2O6 magnetization curve arise from nonequilibrium
magnetization dynamics in agreement with the Glauber
dynamics.

The purpose of the present paper is an investigation of
an unusual response of Ca3Co2O6 on a step magnetic field
observed in Ref. 11. The following relaxation is very slow and
nonexponential. In addition, the sign of the relaxation changes
with the step height. If it is below B = 2.0 T the magnetization
increases during the relaxation, and for the fields above B =
2.3 T the magnetization becomes decaying.

The 2D simulation of the response to the step magnetic
field was performed on the rhombic 96 × 96 supercell with the

periodic boundary condition and the same model parameters
as we had used previously,17 An initial ramdomized state
was relaxed at the zero magnetic field. After that the steady
magnetic field was switched on. Different simulation runs
starting with different random states coincide within the
noise. The time dependence of the magnetization at different
values of the magnetic field and temperature is shown in
Fig. 1. One can see the increasing and decaying branches
of the magnetization relaxation. To illustrate their nature we
present evolution of the magnetic structure at B = 1.2 T and
B = 2.4 T in Fig. 2. The patterns, which appear just after
the field switching on [Figs. 2(a) and 2(c)], are filled with
small domains. During the relaxation the patterns rarefies and
a characteristic domain size increases [Figs. 2(b) and 2(d)].
Assuming the scaling hypothesis is valid, the divergence
of the magnetization �m from the value corresponding to
the monodomain ferrimagnetic structure (m = 1

3 ) can be
estimated at large time as �m ∝ L ∝ a−1 where L is the
boundary length per unit area and a is the characteristic
domain size. Thus, it is possible to plot the correlation length
[∝(�m)−1] versus the characteristic time and discuss the
problem as a dynamic critical phenomenon.24

As it has been established earlier17 there are two types of
the domain boundaries. At the low-magnetic field there appear
boundaries with the magnetization deficiency [Figs. 2(a)
and 2(b)]. While the magnetic field exceeds B � 2.2 T the
boundaries transform to other type with the excess magneti-
zation as one can see in Figs. 2(c) and 2(d). This leads to the
change of the sign of relaxation which has been observed in the
experimental data of Ref. 11. There is a region in the vicinity
B = 2 T where the domain boundaries of both types coexist
[see Fig. 1(c) of Ref. 17]. The two relaxation processes with
the opposite signs lead to an almost constant magnetization.

All the results presented above correspond to the field-
increasing branch, that is, the magnetic field switches from
the zero field to the constant value B. In Ref. 11 the field-
decreasing branch, that is a step from a high-magnetic field
above the saturation down to B, was also studied. In Fig. 3
the field-increasing and field-decreasing branches obtained by
the 2D simulation are compared. There is sizable difference
between the relaxation curve depending on the branch. That
is, the initial state (zero-field or saturated) strongly affects the
domain structure.

An intrachain disorder is beyond the 2D rigid-chain
model. To extend the study to the 3D lattice we ap-
plied a recent 3D generalization of the Glauber dynam-
ics to Ca3Co2O6.20 There is a significant difference in
the relaxation between a finite Ising chain and ring (a
chain with a periodic boundary condition).1,2 That is why
a 96 × 96 × 36 supercell with periodic boundary condi-
tions in the ab plane and open chain ends along the
c axis was used. The supercell had the real structure of
Ca3Co2O6 with the shifts of the chains along the c axis. The
probability of a spin flip of the ith spin in chain per time unit
can be written down in the Glauber form17,20

Wi = α

2

[
1 − σ i tanh

(
J1

kT

∑
〈il〉

σ l + J2

kT

∑
〈〈ij〉〉

σ j + μB

kT

)]
,

(1)
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FIG. 2. The relaxation of the magnetization at B = 1.2 T (a,b) and B = 2.4 T (c,d). The patterns were captured at t = 125 s (a,c) and
t = 1250 s (b,d).

where α is the constant of the interaction of a spin with the
heat reservoir, σ = ±1, and J1 = 20 K and J2 = −1.6 K
are the parameters of in-chain and interchain interactions,

FIG. 3. The field-increasing and field-decreasing branches of the
2D relaxation.

respectively. k is the Boltzmann constant, T is the temperature,
μ is the magnetic moment of the cobalt ion in the high-spin
state, B is the applied magnetic field. 〈· · ·〉 and 〈〈· · ·〉〉 denote
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FIG. 4. The magnetization relaxation within the 3D Glauber
dynamics.
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pairs of the nearest neighbors along the c axis and in the
ab plane, correspondingly. The interchain interaction constant
was determined from the plateau length in the magnetization
curve (�B = 1.2 T for Ca3Co2O6). Since we do not consider
a specific mechanism of the interaction between the reservoir
and the chains, α is a free parameter of the model (α = 20 s−1

for the 3D model). It should be mentioned that the probability
of a chain flip in the 2D model has the same form17 if assumed
J1 = 0, J2 = −20 K, and α = 0.2 s−1. It should be pointed
out that the 2D and 3D calculations in Refs. 17 and 20 and the
present paper were performed with the same set of parameters.

The 3D simulation takes a large computational burden
especially at low temperatures because it should cover two
different time scales. The first one corresponds to a flip of a
single chain and the second to the slow creep of the domain
wall. That is why the number of time points was chosen at
least 2 × 107 per pass. The results of the simulation are shown
in Fig. 4. General trends of these curves are the same as in
Fig. 1, but new features have also appeared. In particular,
the curve B = 2.4 T demonstrates a nonmonotonic relaxation
which was observed experimentally at the same magnetic
field.11 The curve lies in the region where both types of the
domain boundaries coexist and different relaxation rates form
the nonmonotonic shape of the curve.

Within the 3D model a new ingredient to magnetic ordering
comes into play, namely the characteristic length of the chains.
We have compared results of the 3D simulation on 24 × 24 ×
N supercells where N = 18,36,72 (T = 8 K). The relaxation
time demonstrated a very weak dependence on the chain
length N .

In conclusion, the results obtained complete a general
picture of the magnetic dynamics in Ca3Co2O6. A frustrated
spin-chain system has a complex hierarchy of time scales.
The Glauber dynamics reveals two intrinsic times even for a
single spin chain.2 A characteristic time of about 1 s at T =
5 K attributed to the chain flip was found in a previous 2D
simulation of the AC response of Ca3Co2O6.25 The domain
structure arising from the degeneracy of the ferrimagnetic
structure on the triangular lattice brings a new time scale of
about 103–104 s which was investigated in the present work.
Both the characteristic times were observed experimentally in
the AC response.10 A visualization of some of the results can
be found in Ref. 26.
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