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Optimal energy quanta to current conversion
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We present a microscopic discussion of a nano-sized structure which uses the quantization of energy levels
and the physics of single charge Coulomb interaction to achieve an optimal conversion of heat flow to directed
current. In our structure the quantization of energy levels and the Coulomb blockade lead to the transfer of
quantized packets of energy from a hot source into an electric conductor to which it is capacitively coupled. The
fluctuation-generated transfer of a single energy quantum translates into the directed motion of a single electron.
Thus in our structure the ratio of the charge current to the heat current is determined by the ratio of the charge
quantum to the energy quantum. An important novel aspect of our approach is that the direction of energy flow
and the direction of electron motion are decoupled.
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I. INTRODUCTION

Recently thermal and thermoelectric transport phenomena
have found increasing attention in the scientific community. A
particularly interesting task is the harvesting of energy from
fluctuating environments to gain power for devices which are
not permanently coupled to power sources. Our interest is in
small mesoscopic structures which are well controlled and can
be used to investigate basic aspects of thermoelectric transport
phenomena. In small-scale systems fluctuations are always
present and significant compared to the average behavior.
Channeling environmental fluctuations in a controlled way
allows for instance to generate an electric current by converting
environmental energy into directed motion.

When the components of circuits are reduced to the
nanoscale, quantum physics becomes important. For instance,
energy is discrete in quantum dots so transport spectroscopy
shows narrow resonances. In the mesoscopic regime, a set
of pioneering thermoelectric experiments came with the
work of Molenkamp et al.1–3 There, the transport response
to temperature gradients created through a quantum point
contact1,2 and quantum dot3 is measured. Recently circuit
elements that manipulate heat flows rather than electric
currents have been proposed or demonstrated in systems of
reduced dimensionality,4 including rectifiers,5–7 pumps,8–10 or
refrigerators11,12 that can approach the quantum limit.13,14

We consider a conceptually simple system which however
turns out to be a laboratory for many (even counter intuitive)
thermoelectric effects depending only on how different param-
eters are chosen. Importantly among them, our device allows
energy to work conversion at the highest efficiency. A quantum
dot is coupled to two reservoirs via two tunnel contacts which
permit carrier exchange and is coupled capacitively to a gate
such that there is only energy exchange between the conductor
and the gate but remarkably no particle exchange. The gate
is itself structured into a quantum dot that permits carrier
exchange with its reservoir. Thus there are two islands (dots)
which interact only through the long-range Coulomb force
(see Fig. 1). To be specific, here we take the transmission
through the tunnel barriers to be sufficiently small such that
transport is defined by sequential tunneling of single electrons.
Then, the dynamics of the system can be described by a
master equation.15,16 If intradot Coulomb repulsion is strong
enough, the number of extra electrons in each quantum dot

fluctuates between zero and one. The probability to find two
extra electrons in one quantum dot is negligible. In such a
configuration, the spin of the electron can be ignored.

Quantum dots with the required properties17 have been
explored in metallic grains, semiconductor two-dimensional
electron gases and recently in nanowire heterostructures where
the charging energy and the level spacing can be controlled.18

These two energy scales constitute an upper bound to the
temperature range for other thermoelectric quantum dot
devices where heat is transported together with charge.11 Our
mechanism depends on the charge occupation of the quantum
dots, so only charging energy is a relevant scale. Semiconduc-
tor quantum dots have typically charging energies which are
an order of magnitude larger than the level spacing. Larger
charging energies can be obtained in molecular structures.

If the two dots are far from each other, they can be bridged
to nevertheless obtain a strong coupling19,20 at the same time
ensuring good thermal isolation between the system and gate
reservoirs. Effectively we have a three-lead system with three
independent reservoirs. The case of a four-terminal structure in
which each dot is coupled to two reservoirs has been the subject
of a separate work by the two authors in collaboration with
R. López and D. Sánchez.21 Such a four-terminal configuration
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FIG. 1. (Color online) Energy to current converter. The con-
ductor, a quantum dot open to transport between two fermionic
reservoirs at voltages V1 and V2 and temperatures T1 and T2, is coupled
capacitively to a second dot which acts as a fluctuating gate coupled
to a reservoir at voltage Vg and temperature Tg . Here we discuss the
case T1 = T2 = Ts .

085428-11098-0121/2011/83(8)/085428(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.085428
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permits in particular to investigate the effect of nonequilibrium
noise due to current flow through one dot on the other dot with
voltages maintained at equilibrium. Here we are concerned
only with thermal equilibrium noise albeit with different
temperatures at the reservoirs of the two dots. For this reason
it is sufficient to consider a dot connected to its reservoir only
with one lead. The dot connected to one lead then plays the role
of a gate that is either hot or cold compared to the quantum dot
with two leads, which we will call the conductor. The system
is in an equilibrium state if there are no electrical or thermal
current flows. In general, this requires that voltages V1 and
V2 are equal and importantly requires that the temperatures
of all three reservoirs are the same. However, as we show
below, special configurations allow to balance the presence of
temperature gradients by applying finite voltages.22

The Coulomb coupling considered here is important also
because it sets a limit on the close packing of electrical
circuits. The denser circuits are packed, the more important
are the effects of charge fluctuations. Fluctuations of charge
in one component can change such fundamental properties
as detailed balance in another component of the circuit.21

Exchange of particles is not required. It is sufficient that
nearby systems exchange energy through interaction. Breaking
of detailed balance can lead to directed motion as soon as a
spatial symmetry is broken of either the system23 or in the
fluctuation-generating component.24–29 We emphasize that a
structured bath (a quantum dot with discrete energy levels) is
not needed to drive current through an unbiased dot. Even a hot
phonon bath can lead to current in an unbiased dot.30 However,
the structured bath, the gate with a quantum dot quantizes the
energy transfer.

Our manuscript is organized as follows. In Sec. II we
describe the details of our system and introduce the theoretical
tools needed for the analytical solution. The fluctuation-
generated current mechanism is presented in Sec. III and the
efficiency of the heat to charge conversion, in Sec. IV. A
discussion is given in Sec. V. Technical aspects and a detailed
derivation of the main results are given in the Appendix.

II. MODEL

We are interested in nonequilibrium states and investigate
the relation between the charge current flowing through the
two terminals of the conductor, I = I2 = −I1, and the heat
current Jg flowing through the gate terminal at temperature
Tg . The currents are defined as positive when flowing into
the reservoirs. The dynamical evolution of such a system is
characterized by four states |nsng〉, where nα = {0,1} is the
occupation number of each quantum dot, as sketched in Fig. 2.
With the subindices s and g we denote the conductor and
gate systems, respectively. The tunneling events are in general
energy dependent. Due to the Coulomb interaction, tunneling
rates �ln through terminal l in one quantum dot are sensitive
to the charge occupation n of the other quantum dot. Often
the energy dependence of the tunneling rates is discussed
only in terms of the energy dependence of the occupation
functions (Fermi-Dirac functions). However, here, in addition
we require that either the density of states in the leads or the
transmission through a tunnel junction depend on energy. This
is natural since transmission probabilities depend typically
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FIG. 2. (Color online) Schematic representation of the four
occupation states relevant for our system. The electron tunneling
processes introducing or extracting an electron in the quantum dot
system are described by the rates �±

ln through each barrier l, which
depend on the charge occupation of the other quantum dot, n = {0,1}.
Every time a clockwise (anticlockwise) cycle C+ (C−) is completed, a
quantum of energy EC is transferred from the gate into the conductor
(and viceversa).

in an exponential manner on the energy difference between
the state out of which tunneling occurs and the barrier top.
For our converter, the energy dependence of the transmission
probabilities is absolutely essential. We will see that this
energy dependence introduces the necessary asymmetry to get
a directed current through the unbiased upper quantum dot.

The capacitances associated with each tunnel junction
(see Fig. 1) define the charging energies Uα,n(V1,V2,Vg) of
each quantum dot α, depending on whether the other dot
is empty (n = 0) or occupied (n = 1). They are calculated
self-consistently in Appendix A. When an electron tunnels
into the empty system but leaves it only after a second electron
has occupied the other quantum dot, a well-defined energy

EC = Uα,1 − Uα,0 = 2q2

C̃
(1)

is exchanged between the two systems. Here, we have defined
the total capacitance of each quantum dot C�s = C1 + C2 +
C and C�g = Cg + C, and the effective capacitance C̃ =
(C�sC�g − C2)/C. The quantum of transferred energy EC

depends only on the capacitance of the system and determines
the heat flowing from one system to the other, as shown below.
We emphasize that heat is transferred between the two systems
due to electron-electron interaction.

A. Master equation

We write a master equation for the density matrix ρ that
represents the states of the quantum dot system. In the regime
where transport is sequential, with kT � h̄� so broadening of
the energy levels can be neglected, only the four diagonal
terms describing the charge occupation probability of the
system have to be taken into account.15,16 In matricial form,
the density matrix is a vector, ρ = (ρ00,ρ10,ρ01,ρ11), so the
master equation can be written as ρ̇ = Mρ, with

M=

⎛
⎜⎜⎜⎜⎝

−�−
s0 − �−

g0 �+
s0 �+

g0 0
�−

s0 −�+
s0 − �−

g1 0 �+
g1

�−
g0 0 −�−

s1 − �+
g0 �+

s1

0 �−
g1 �−

s1 −�+
s1 − �+

g1

⎞
⎟⎟⎟⎟⎠

(2)
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and �±
sn = �±

1n + �±
2n. The rates �±

ln describe tunneling events
that take an electron out (+) or into (−) the quantum dot system
through junction l when the other quantum dot contains n =
{0,1} electrons: �−

ln = �lnf [(Eαn − qVl)/(kTl)], �+
ln = �ln −

�−
ln , with Eαn = εα + Uαn, f (x) = (1 + ex)−1 being the Fermi

function. εα is the bare energy of the discrete level in quantum
dot α.

We are interested in the dc transport, which is given by the
stationary solution of the master equation, Mρ̄ = 0. We can
write it as

ρ̄00 = γ −3
∑

α=s,g

∑
i=±1

∑
n=0,1

�+
α0�

i
α1�

+
l̄n
δ|1−i|,2n,

ρ̄10 = γ −3
∑
i=±1

∑
n=0,1

(
�−

s0�
i
s1�

+
gn + �i

g0�
+
g1�

−
sn

)
δ|1−i|,2n,

(3)
ρ̄01 = γ −3

∑
i=±1

∑
n=0,1

(
�i

s0�
+
s1�

−
gn + �−

g0�
i
g1�

+
sn

)
δ|1−i|,2n,

ρ̄11 = γ −3
∑

α=s,g

∑
i=±1

∑
n=0,1

�i
α0�

−
α1�

−
ᾱnδ|1−i|,2n,

with γ 3 = ∑
αin �i

αn(�ī
αn̄�

ī
ᾱn + �i

ᾱn

∑
j �

j
ᾱnδ|1−i|,2n) satisfy-

ing the normalization condition
∑

i ρ̄ii = 1. The indices with
a bar on top denote an opposite value; for example, s̄ = g,
0̄ = 1.

The charge current through the conductor reads

Il = q
∑

n

(�+
lnρ̄1n − �−

lnρ̄0n), (4)

while the heat currents are

Jl =
∑

n

(Esn − qVl)(�
+
lnρ̄1n − �−

lnρ̄0n), (5)

for terminals l = 1,2 in the conductor, and

Jg =
∑

n

(Egn − qVg)(�+
gnρ̄n1 − �−

gnρ̄n0), (6)

for the gate. We can also write the energy currents as a
combination of charge and heat currents: Wl = Jl + VlIl .
Note that while charge and energy currents are conserved, so∑

l Il = ∑
l Wl = 0, that is not the case for heat currents due

to the production of Joule heat in the presence of an external
voltage. A finite heat is dissipated which we can write as∑

l

Jl =
∑

l

(Vi − Vl)Il, (7)

where, for simplicity, the voltage in terminal i is considered
as a reference.

B. Quantum of transferred energy

The relevant quantity is the heat exchanged between the
two systems, Jg . From Eq. (3) we can easily see that the terms
in (6) are related:

�+
g0ρ̄01 − �−

g0ρ̄00 = −(�+
g1ρ̄11 − �−

g1ρ̄10). (8)

Since Eg1 = Eg0 + EC , we can write the heat current through
the gate as:

Jg = −ECγ −3(�−
g0�

−
s1�

+
s0�

+
g1 − �−

s0�
−
g1�

+
s1�

+
g0). (9)

Note that only the terms of a collision form survive in the
expression for the heat exchange between the systems and,
more importantly, that it is proportional to EC , meaning that
the energy transferred between the two systems is quantized.
In every cycle C± (as defined in Fig. 2), an energy ±EC is
transferred from the gate into the conductor. The two terms on
the right-hand side of Eq. (9) are proportional to the probability
of having one or the other of these cycles.

Interestingly, the quantum of transferred energy EC can be
estimated from transport spectroscopy measurements, as we
show in Appendix B.

III. CURRENT FROM HOT SPOTS

If the two terminals in the transport system are at the
same voltage, V1 = V2, and temperature, T1 = T2 = Ts , only
sequences that correlate the tunneling of an electron between
different leads in the conductor with a charge fluctuation in
the gate quantum dot (completing cycles C± as shown in
Fig. 2) contribute to break detailed balance. In the process,
the transferred electron gains (+) or loses (−) an energy EC

from or into the gate, respectively. The entropy produced in
the system by such cycles is

	S± = ±EC

(
1

Ts

− 1

Tg

)
. (10)

Processes that reduce entropy are exponentially suppressed.
If, for instance, Ts < Tg , only processes where the electron
increases its energy when traversing the quantum dot will
contribute effectively to the current, and vice versa, as sketched
in Fig. 3. Quite intuitively, heat will flow from the hottest
to the coldest system. The probability to transfer a particle
from the left to the right leads by absorbing an energy EC

is proportional to the product of the involved tunneling rates
�10�21, while for the reversed process (from right to left) one
finds �11�20. The relevant sequences are sketched in Fig. 3.
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FIG. 3. (Color online) (a) Energy diagram of the energy converter
(when V1 = V2 and Tg > Ts) showing the tunneling sequences that
contribute to charge transport in the unbiased conductor. (b) If the
temperature gradient is reversed (Tg < Ts), the fluctuation-generated
current will flow in the opposite direction. The colored areas represent
the Fermi-Dirac distribution function of each reservoir. To each
process that is represented exists a process in the opposite direction
that is, however, exponentially suppressed since it decreases the
entropy. Tunneling events in each system differ by a charging energy
EC when the other quantum dot either is empty or occupied. Thus,
sequences involving the empty state and the simultaneous occupation
of the two dots lead to the transfer of the energy EC and to directed
electron motion in the conductor.
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FIG. 4. (Color online) Charge and heat currents as functions of
temperature and voltage differences. (a) The direction of the currents
can be tuned by changing the sign of the temperature gradient (left
panel) or the applied bias voltage (right panel). At the points marked
with ∗ and ∗∗, the conditions Es0 = qV2 and Es0 = qV1 are satisfied.
Between them, heat flows in opposite directions in the two terminals
of the conductor, so one of its reservoirs is cooled down. Beyond
them, Joule heat becomes dominant in the conductor. (b) Driving
the conductor far enough from equilibrium, heat will flow from the
coldest to the hottest system. In the delimited regions, heat flows into
the gate (Jg > 0) being Tg > Ts , and viceversa. Parameters: �ln =
�, except �11 = 0.1�, kT1 = kT2 = 5h̄�, q2/Ci = 20h̄�, q2/C =
50h̄�, εu = εd = 0, Vg = V1.

When these two products are different, a stationary current
will flow in the unbiased conductor in a direction determined
by the asymmetry of the tunneling rates:

I = q
�11�20 − �10�21

(�10 + �20) (�11 + �21)

Jg

EC

. (11)

A detailed derivation of this result can be found in Appendix C.
The charge current I is proportional to the heat flux Jg through
the gate. Here q is the charge of the electron and EC plays the
role of the energy quantum. The close relation between these
two currents in the absence of a voltage bias can be appreciated
in the left panel of Fig. 4(a). Interestingly, in (11) the properties
of the gate system are only contained in the heat current, Jg .

In this situation (when the conductor is unbiased and
the gate is at a different temperature) energy conservation
also requires that heat currents are conserved. In contrast,
when applying a finite voltage, the sum of heat currents
is nonvanishing due to dissipation of Joule heat, as seen

in the right panel of Fig. 4(a). In the linear regime, the
charge response to temperature differences is related to the
heat currents driven by voltage through Onsager relations.31

Then, the direction of the electronic motion in the conductor
changes its sign with the reversal of the temperature gradient
or, correspondingly, the extraction or injection of heat from the
conductor is determined by the sign of the generated current.
This behavior has been discussed for refrigeration by Brownian
motors.23 Remarkably, the non-equilibrium state induced by
the applied voltage allows to find regions where the flow of heat
between the two systems is reversed, so, counter intuitively, it
flows from the coldest to the hottest system, as seen in Fig. 4(b).

IV. EFFICIENCY

As discussed above, our system can be used to transform
heat flowing from a hot environment into electric current at
zero power. In order to be transformed into useful work, a load
system is needed. In other words, the current has to flow against
a finite potential 	V . Then, we can define the efficiency of the
heat to current conversion, η, as the ratio of the obtained power
P = I	V to the absorbed heat Jg . In what follows, we will
consider that the gate system is at a higher temperature than
the conductor, Tg > Ts . In our case, the heat absorbed from
the gate system can contribute to processes that carry electrons
in both directions, thus reducing the current, or to processes
where electrons tunnel back and forth between the quantum
dot and the same reservoir in the conductor. These kind of
processes involve heat transfer into the conductor, but do not
contribute to the charge current in the desired direction, thus
reducing the efficiency. As a result, the efficiency is limited by
the tunneling prefactor appearing in Eq. (11).

The contribution of these undesired processes will be
negligible in the limiting case where �l0,�r1 � �r0,�l1, for
different leads l, r of the conductor. In such an energy-selective
configuration, an electron that tunnels into the conductor
quantum dot from lead l can only be transmitted to lead r after
absorbing an energy EC from the gate, or tunnel back to l

without exchanging energy with the gate. The latter process is
spurious (i.e., it does not contribute to the charge nor the heat
currents), so it does not affect the efficiency. Thus, every time
that an energy EC is absorbed from the gate, a charge q is
transferred in a given direction. Expressed differently, we can
say that the gate system will not lose heat until an electron has
been transferred from one lead to the other in the conductor. If
an electron is transferred in the opposite direction, an energy
EC is returned to the gate. The two currents are then related
only by their quanta,

I

q
= − Jg

EC

. (12)

The proportionality between charge and heat carried by the
same particle flow has been discussed to imply high ther-
moelectric efficiency.32 Remarkably, our device achieves this
property for crossed currents: a charge current flowing along
the conductor and a heat current flowing through the gate.

For our converter, the efficiency reduces to the simple
expression

η(	V ) = q	V

EC

. (13)
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FIG. 5. (Color online) Efficiency. (a) Power (solid lines) of the
heat generated current and efficiency (dashed lines) of the heat to
charge current conversion as a function of voltage for kTs = 5h̄� for
different gate temperatures. The efficiency grows linearly up to the
stopping potential V0, where Carnot efficiency is achieved. In the right
panel, the efficiency at maximum power is plotted and compared with
the Carnot and the Curzon-Ahlborn efficiencies. Same parameters
as in Fig. 4, except �11 = �20 = 0. (b) Triple quantum dot system
proposed to work as an optimal heat to charge current converter. The
side quantum dots act as energy filters.

Although it depends linearly on voltage, the Carnot efficiency,
ηc = 1 − Ts/Tg , represents an upper limit which cannot be
surpassed.33 By increasing the bias one always arrives at a
point where the transfer of an electron does not produce
entropy. At this point, the reversed processes (an electron
tunnels from r to l by dissipating an energy EC into the
gate) are equally probable and the current vanishes, as
discussed in detail in Appendix D. In our configuration, such
stopping potential corresponds to 	V = V0 = ECηc/q, so
Carnot efficiency is achieved,

η(V0) = ηc, (14)

as shown in the left panel of Fig. 5(a).
However, no power can be extracted from a heat engine

working at Carnot efficiency. Note that, at 	V = V0, no
charge or heat current flows through the system, which is
in equilibrium despite the applied voltage and temperature
gradient.22 Hence it is more useful to discuss the efficiency
at the point of maximum power extraction, ηm.32,34 As can be
seen in Fig. 5(a), it approaches the Curzon-Ahlborn efficiency,
ηca = 1 − √

Ts/Tg , for small temperature differences so ηm =
ηc/2 + O(η2

c ). As the temperature difference increases, ηm

becomes dependent on the configuration, in particular on the
temperature of the conductor: the lower Ts , the closer is ηm

to the Carnot efficiency. In the range of validity of our simple
model, kTs,kTg � h̄�, where k is the Boltzman constant, the
efficiency at maximum power is maintained around ηc/2 far
from the linear regime.

Although the energy selective configuration discussed
above might be difficult to find in a single quantum dot system,
it can be achieved in a triple quantum dot structure, where
the outer quantum dots play the role of zero-dimensional
contacts,35,36 as depicted in Fig. 5(b). If, for instance, the
energy level of the left (right) quantum dot is in resonance
with the energy Es0(1), electrons can only be transferred from
left to right by gaining an energy EC in the central quantum dot,
or in the opposite direction by losing it. In order to avoid heat
leakage from the interaction with the electrons in the outer
quantum dots, it is required that the capacitance associated
with their tunneling barriers is large, CL,CR � C1,C2 (i.e.
their charging energy is negligible).

V. DISCUSSION

We have identified a mechanism to generate directed
electrical motion in a quantum dot system by the electrostatic
coupling to a fluctuating gate at a different temperature. Energy
exchange is quantized and depends only on the geometric
capacitance of the quantum dots. In the optimal configuration,
the ratio of charge to heat current is determined solely by the
ratio of the charge to the energy quanta. Then, our device can
be proposed as a solid state environmental energy to current
converter of high efficiency. Decoupling of the direction of
energy flow and the direction of electron motion permits
structures of multiple pairs of dots transferring heat in parallel
increasing the total available power.

We introduce a mechanism based on well-known phenom-
ena as the quantization of energy levels and the physics of
single charge Coulomb interaction17 in a simple system which
is experimentally available.19,20 Temperature differences can
be generated on mesoscopic scales1–3 and thus our proposal is
within experimental reach even with present day structures.
Exporting these ideas to other mesoscopic systems opens
new possibilities for highly efficient solid state thermoelectric
devices.
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APPENDIX A: ELECTROSTATIC ENERGIES

Considering the capacitance associated with every tunnel-
ing junction, the charge of each quantum dot Qα is given by

Qα =
∑
iα

Ciα

(
φα − Viα

) + C(φα − φβ), (A1)

where φα and φβ are the electrostatic potential in each quantum
dot and Viα is the voltage of the reservoirs iα to which the
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quantum dot is coupled, as sketched in Fig. 2. We denote by
the indices s and g the quantum dot coupled to reservoirs 1
and 2, and the one coupled to the gate reservoir, respectively.
We obtain the electrostatic energy in the quantum dot system
for a given charge distribution:

U (Qs,Qg) =
∑

α

∫ Qα

0
dQ′

αφα. (A2)

The relevant quantity is the change of energy in the quantum
dot system when an electron tunnels through a tunnel junction
thus modifying its charge. This is the charging energy. For
the processes involving the empty system, Us0 = U (1,0) −
U (0,0) and Ug0 = U (0,1) − U (0,0), they read:

Us0 = q

CC̃

(
q

2
C�g + C�g

2∑
i=1

CiVi + CCgVg

)
, (A3)

Ug0 = q

CC̃

(
q

2
C�s + C�sCgVg + C

2∑
i=1

CiVi

)
. (A4)

Additional energy is required when the other dot is already
occupied, so Us1 = U (1,1) − U (0,1) = Us0 + EC and Ug1 =
U (1,1) − U (0,1) = Ug0 + EC , with EC = 2q2/C̃. We recall
here the definitions C�s = C1 + C2 + C, C�g = Cg + C, and
C̃ = (C�sC�g − C2)/C. Note that all the energies Uαn depend
on the voltage of the three reservoirs. Thus, the effect of
each system acting as a gate on the other one is included.
EC determines the quantized energy which can be transferred
from the gate dot to the conductor. If the capacitive coupling of
the two systems is sufficiently strong, EC can be of the order
of the charging energy of the uncoupled quantum dots.

APPENDIX B: DETERMINING THE QUANTUM
OF ENERGY

When the position of the discrete levels crosses the Fermi
energy of the reservoirs to which they are coupled, the average
charge occupation of the quantum dot system changes. In the
regions in between two of these steps, the current presents a
series of plateaus, as can be seen in Fig. 6(a). This is known
as Coulomb blockade. In this regime, transport spectroscopy
shows regions where the charge occupation is well defined
resembling the Coulomb diamonds as a function of gate
voltage and source-drain bias.17 In our case, the interaction
with the gate is mediated by a quantum dot, whose occupation
modifies the stability diagram: Coulomb interaction between
charges in each quantum dot takes the level out of the
conduction window, thus avoiding charge transport when
Eg0 < qVg .

These features are more visible in the differential conduc-
tance, G = ∂I/∂(V1 − V2), as shown in Fig. 6(b). In the region
where V1 > V2 and Eg0 < qVg < Eg1, the gate quantum dot
becomes occupied, thus increasing the energy that electrons
need to be transferred through the conductor. Therefore,
charge current through the conductor is reduced leading to
negative differential conductance. The width of this region is
determined by the quantum of transferred energy EC .

I/qΓ

q(V1 − V2)C2/C̃h̄Γ

q(
V

1
−
V
g
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FIG. 6. (Color online) (a) Charge current when applying finite
voltages to the conductor and to the gate. Dashed lines are plotted
denoting the coincidence of the energies Eαn with the Fermi energies
of the leads. The areas enclosed by them have a well defined charge
occupation. (b) Differential conductance, G = ∂I/∂(V1 − V2). In the
region V1 > V2 and Eg0 < qVg < Eg1, the occupation of the gate
quantum dot induces negative differential conductance. The width of
such a plateau is determined by the quantum of transferred energy, EC .
Here, Cs = C1 + C2. Parameters: �ln = �, except �11 = 0.1�, kTs =
kTg = 5h̄�, q2/Ci = 20h̄�, q2/C = 50h̄�, εs = εg = 0, Vg = V1.

APPENDIX C: FLUCTUATION-GENERATED TRANSPORT

We are interested in the ability to generate a finite current
between two reservoirs that are at the same voltage and
temperature in the presence of fluctuations in a side coupled
system whose temperature is different. In our conductor
system, this correspond to imposing the conditions V1 =
V2 = Vs and T1 = T2 = Ts to the conductor. Then, both
reservoirs share the same distribution function. For simplicity,
let us definef −

αn = f [(Eαn − qVα)/(kTα)] and f +
αn = 1 − f −

αn,
where the index α = {s,g} refers to each system. We can
express the rates as �±

αn = �αnf
±
αn, with �sn = �1n + �2n. If

we consider the terms in Eq. (4) separately, we get

�+
20ρ̄10 − �−

20ρ̄00 = �20�s1�g0�g1

γ 3
(f −

g0f
−
s1f

+
s0f

+
g1

− f −
s0f

−
g1f

+
s1f

+
g0), (C1)

�+
21ρ̄11 − �−

21ρ̄01 = �21�s0�g0�g1

γ 3
(f −

s0f
−
g1f

+
s1f

+
g0

− f −
g0f

−
s1f

+
s0f

+
g1). (C2)

Subtracting these two expressions and introducing the explicit
form of the Fermi-Dirac distribution, we find the charge current
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generated in the conductor by the fluctuations in the gate:

I = q
(�10�21 − �11�20)�g0�g1

8γ 3

× sinh

[
EC

2

(
1

kTg

− 1

kTs

)] ∏
α,n

cosh−1 Eαn − qVα

2kTα

,

for α = {s,g} and n = {0,1}. In the same way, from Eq. (9),
we can write the expression for the heat flow between the two
systems:

Jg = −EC

�s0�s1�g0�g1

8γ 3

× sinh

[
EC

2

(
1

kTg

− 1

kTs

)] ∏
α,n

cosh−1 Eαn − qVα

2kTα

.

We can see that the two currents are proportional to each other,
satisfying Eq. (11). Then, if for instance Tg > Ts , heat will
flow from the gate to the conductor. The energy dependent
tunneling asymmetry �10�21 − �11�20 will determine the
preferred direction for the electron motion that will allow a
net flow of electrons in the conductor.

APPENDIX D: SELECTIVE TUNNELING
CONFIGURATION

If we consider the special case where �11 = �20 = 0, for
any voltage and temperature configuration, the expression for
the heat current (9) can be further simplified:

Jg = −EC

�10�21�g0�g1

γ 3
(f −

10f
−
g1f

+
21f

+
g0 − f −

g0f
−
21f

+
10f

+
g1).

(D1)

In the same way, we find:

J1 = Es0 − qV1

EC

Jg, (D2)

J2 = −Es1 − qV2

EC

Jg, (D3)

for the heat flowing through each terminal in the conductor.
Considering that �i

s0 = �i
10 and �i

s1 = �i
21 in Eqs. (3) and (4),

we can easily rewrite the charge current:

I = q
�10�21�g0�g1

γ 3
(f −

10f
−
g1f

+
21f

+
g0 − f −

g0f
−
21f

+
10f

+
g1). (D4)

By comparing Eqs. (D1) and (D4), we verify that the heat
and charge currents are proportional for any applied voltage,
with a constant of proportionality determined by the ratio of
the energy and charge quanta, as expressed in (12). Note that
the total heat current corresponds to the Joule heat: J1 + J2 +
Jg = (V1 − V2)I .

Making use of the property of the Fermi functions 1 −
f (x) = exf (x), we can rewrite the Fermi factor between
brackets in (D1) and (D4) as

f −
10f

−
g1f

+
21f

+
g0

(
1 − e

Es0−qV1
kT1

− Es0−qV2
kT2 e

EC

(
1

kTg
− 1

kT2

))
. (D5)

From (D5), it is straightforward to see that, when the affinities
of the conductor fulfill the condition

Es0 − qV1

kT1
− Es0 − qV2

kT2
= EC

(
1

kT2
− 1

kTg

)
, (D6)

all the heat and charge currents will vanish, so the system is in
equilibrium in spite of the voltage and temperature differences.

In the case when the two terminals in the conductor are at the
same temperature, T1 = T2 = Ts , we find that the stopping
potential is

qV0 = q(V2 − V1) = EC

(
1 − Ts

Tg

)
. (D7)

In the energy converter configuration, when Tg > Ts , the factor
on the right-hand side of (D7) coincides with the Carnot
efficiency of the system, ηc. In this particular case, the applied
voltage cancels the fluctuation-generated charge current while
Joule heat cancels the heat flow between the two systems.
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