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Dyadic Green’s functions of thin films: Applications within plasmonic solar cells
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Optimization and design of silicon solar cells by exploiting light scattering from metal nanoparticles to increase
the efficiency is addressed in the small particle limit from a fundamental point of view via the dyadic Green’s
function formulation. Based on the dyadic Green’s function (Green’s tensor) of a three-layer geometry, light
scattering from electric point dipoles (representing small metal scatterers) located within a thin layer sandwiched
between a substrate and a superstrate is analyzed. Starting from the full dyadic Green’s function we derive
analytical near- and far-field approximations. The far-field approximations enable efficient, exact, and separate
evaluation of light scattering into waves that propagate in the substrate or the superstrate. Based on the near-field
approximation we present a semianalytical expression for the total near-field absorption in the substrate. The
theoretical approach is used to analyze realistic configurations for plasmon-assisted silicon solar cells. We show
that by embedding metal nanoscatterers in a thin film with a high refractive index (rutile TiO2 with n ≈ 2.5) on
top of the silicon, the fraction of scattered light that couples into the solar cell can become larger than 96%, and
an optical path length enhancement of more than 100 can be achieved.
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I. INTRODUCTION

Collective excitations of the free conduction electrons in
metal nanoparticles can be resonantly excited with light.1–4

Such excitations are termed particle plasmons or localized
surface plasmons and have recently shown promise in the
development of thin-film silicon solar cells.5 At a plasmon
resonance frequency a metal nanoparticle can become a strong
scatterer of light, displaying a scattering cross section that
even exceeds its geometrical cross section. This is utilized
in plasmon-assisted silicon solar cells, where the strong
scattering capabilities of nearby metal nanoparticles are used
to scatter the incident solar radiation in order to increase the
optical path length and hence the absorption of light within
the silicon layer.6,7 Efficient thin-film solar cells are crucial
for the commercial success of silicon-based photovoltaics as
the material cost of the thick silicon layer required in order
to absorb the long-wavelength part of the Sun’s spectrum is
a serious obstacle for present day silicon solar cells when
compared to other energy technologies.

Light trapping via particle plasmons of metal nanoparticles
was sparked by Stuart and Hall in 1996, when they measured
absorption enhancement in silicon-on-insulator waveguides
using metal island films,8 and later in 1998, when they
studied metal nanoparticle size effects in plasmon-enhanced
photodetectors.9 Following their pioneering work there have
recently been several experimental demonstrations of en-
hanced optical absorption in semiconductors using metal
nanoparticles; see, for example, Refs. 10–13. Theoretically,
however, the subject has not been much studied, but it is
well known that if a metal nanoparticle is small compared
to the wavelength, the scattered radiation is dipole-like. Thus,
in a homogenous surrounding the radiation pattern is highly
symmetric.14 However, if the metal nanoparticle is placed
within close proximity of an interface, the situation changes
and a strong directional scattering into the material with the
highest refractive index can be observed.15 In Refs. 6 and 7, the

influence of size and shape of metal nanoparticles close to a
silicon surface on scattering cross section, coupling efficiency,
and path length enhancement has been studied using brute
force finite-difference time-domain (FDTD)16 calculations. In
general, FDTD approaches are not practical in open infinite-
scattering problems involving metal nanoparticles because the
entire computational domain must be discretized and a detailed
mesh near metal edges is necessary. Furthermore, a finite-size
computational window must be introduced. As a consequence,
FDTD calculations often become tedious and time-consuming,
in particular when different parameters of the configuration
must be swept in the analysis.

To gain physical insight into directional scattering from
metal nanoparticles in layered geometries we wish to analyze
the problem, in the small particle limit, from a fundamental
theoretical point of view. Our starting point is the Green’s
dyadic formulation for stratified media,17–25 where we, in
particular, are interested in the configuration where the metal
scatterer is located within a thin film sandwiched between
one substrate and one superstrate medium. In the previous
work of Refs. 6 and 7 the scattering analysis was performed
for nanoparticles placed on top of the silicon surface. Here
we suggest a configuration where the metal scatterer is
embedded in a high refractive index film on top of the silicon.
Beside being more practical in a realistic solar cell design,
this approach has two important advantages. First, the high
refractive index of the film will shift the particle plasmon
resonances toward near-infrared wavelengths where silicon is
a poor light absorber. Second, by lowering the index contrast
at the silicon interface, scattered light will be able to couple
into the silicon under larger angles and the maximum allowed
angle will increase. This is important because larger refraction
angles are directly related to larger optical path lengths within
the silicon layer.

We have previously shown how the induced dipole moment
of a small (with respect to the wavelength) metal nanoparticle
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within a thin film can be obtained by solving an electrostatic
Green’s function surface integral equation for the surface po-
larization charge density.26,27 In this work we study the dyadic
Green’s function (including all retardation effects) and its near-
and far-field approximations for such a dipole emitter. We show
inter alia how the far-field approximations can be used for
efficient and exact semianalytical evaluation of light scattering
both into the substrate and the superstrate. As we show in the
following section, when the induced dipole moment of a small
metal particle is known the scattered radiation can be obtained
via the dyadic Green’s function of the reference structure.
Radiation from an electric dipole within a layered geometry
has to some extent been studied before using the Hertz vector
formalism,28,29 however, not in the context of plasmonic solar
cells. It should be noted that the dyadic Green’s function of the
present work can directly be utilized in conjunction with well-
known Green’s function volume, or surface, integral equation
methods (see, for example, Refs. 30–35), for example, in an
electrodynamical scattering analysis of an arbitrarily shaped
metal nanoparticle within a layered geometry. Exact scattering
analysis of such a configuration could be very important for
the development of plasmon-assisted solar cells.

The paper is organized as follows. In Sec. II we present
the theoretical foundation of our scattering analysis. Starting
from the dyadic Green’s function we derive its far-field ap-
proximations and we present scattering cross sections for light
scattered into the substrate and into the superstrate. Thereafter
near-field approximations and absorption in the substrate is
presented. In Sec. III we utilize the derived theory to analyze
directional light scattering for a dipole emitter within a thin
layer in the context of plasmon-assisted silicon solar cells. In
Sec. IV we present our conclusions and in the appendixes,
additional calculations supporting Sec. II can be found.

II. THEORY

In the scattering analysis we start by assuming that the
metal scatterer embedded within the film is small compared to
the wavelength. In the small particle limit it is widely known
that a metal particle scatters light like an electric point dipole
radiates. Thus, it can easily be shown that the scattered electric
field from the particle can be calculated as21

Es(r) = ω2μ0G(r,r0) · p0, (1)

where p0 is the induced dipole moment at the position r0,
ω is the angular frequency where we have assumed time
harmonic fields as E ∝ exp(−iωt), μ0 is the magnetic vacuum
permeability, and G(r,r′) is the dyadic Green’s function
defined by

∇ × ∇ × G(r,r′) − k2
0εref(r)G(r,r′) = Uδ(r − r′), (2)
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FIG. 1. (Color online) (a) Dipole emitter between a substrate
(medium 3) and a superstrate (medium 2). The dielectric constants of
the substrate, the film, and the superstrate are all assumed frequency
independent and are given by ε3, ε1, and ε2, respectively. (b)
Coordinate system defining the cylindrical unit vectors ẑ, ρ̂, and ϕ̂.

with U the unit dyadic, k0 the vacuum wave number, and
where it is required that G(r,r′) fulfills the radiation boundary
condition. Thus if the induced dipole moment is known
the scattered (or radiated) electric field Es(r) can easily be
calculated via the dyadic Green’s function.

We start our analysis by choosing the center of the scatterer
as r′ = r0 = z0ẑ, a coordinate system such that the two
interfaces are in the xy plane at z = 0 and z = d, and z0

such that 0 < z0 < d (Fig. 1). To calculate the scattered
part of the electric field in the super- and substrate we
used the dyadic Green’s functions G2(r,r′) and G3(r,r′) for
r > d and r < 0, respectively. These can be constructed by
following the procedure described in Refs. 17, 18, 20, 22,
and 23. Note, however, as pointed out in Ref. 22, that
the formulation in the review article of Ref. 18 from 1978
is incorrect as the wave vector eigenfunctions used are
incomplete. In the following three sections we present the
dyadic Green’s functions G2(r,r′) and G3(r,r′), we derive
their far-field approximations, and we present the scattering
cross sections for light scattered into the substrate and into the
superstrate. We have derived the far-field approximations of
the dyadic Green’s functions from two different approaches. In
the first approach we start from the foundation of Ref. 22, and
in the second approach, which we present in Appendix B, we
start out with the dyadic Green’s function of a homogenous
medium and construct G2(r,r′) and G3(r,r′) by taking into
account all the multiple reflections within the three-layer
reference structure.

A. The dyadic Green’s functions

Following Ref. 22, G2(r,r′) and G3(r,r′) may be expressed
as

G2(r,r′) = i

4π

∫ ∞
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Here, d is the thickness of the film, η = e2iκz1 d , ki = √
εik0, κzi

= √
k2
i − κ2

ρ , gn = 2 − δn0, N± = Njnκρ
(±κz1 ), M± =

Mjnκρ
(±κz1 ), where k0 = 2π/λ, δn0 is the Kronecker delta, and the cylindrical vector harmonics Njnκρ

(κzi
) and Mjnκρ

(κz1 )
are given as

Njnκρ
(κzi

) = eiκzi
z

ki

[
iκzi

∂Jn(κρρ)

∂ρ
cos

(
j
π

2
− nϕ

)
ρ̂ + iκzi

nJn(κρρ)

ρ
sin

(
j
π

2
− nϕ

)
ϕ̂ + κ2

ρJn(κρρ) cos

(
j
π

2
− nϕ

)
ẑ

]
,

(4)

Mjnκρ
(κzi

) = eiκzi
z

[
nJn(κρρ)

ρ
sin

(
j
π

2
− nϕ

)
ρ̂ − ∂Jn(κρρ)

∂ρ
cos

(
j
π

2
− nϕ

)
ϕ̂

]
,

where Jn is the nth-order Bessel function of the first kind. In
Eq. (3) the prime on the vector harmonics is used to indicate
that they are expressed in terms of the coordinates (ρ ′,ϕ′,z′),
and r

(s)
1i and r

(p)
1i are the Fresnel reflection coefficients for s and

p polarization given as

r
(s)
1i = κz1 − κzi

κz1 + κzi

,

(5)

r
(p)
1i = εiκz1 − ε1κzi

εiκz1 + ε1κzi

,

such that the transmission coefficients become t
(s)
1i = 1 + r

(s)
1i

and t
(p)
1i = 1 + r

(p)
1i .

In the case of Fig. 1, where r′ = r0 = z0ẑ, we have ρ ′ = 0
and z′ = z0. Hence, it is easy to show that the only surviving

primed cylindrical vector harmonics are

M′
01κρ

(κz1 ) = −κρ

2
eiκz1 z0 [sin ϕ′ρ̂ ′ + cos ϕ′ϕ̂′],

M′
11κρ

(κz1 ) = κρ

2
eiκz1 z0 [cos ϕ′ρ̂ ′ − sin ϕ′ϕ̂′],

N′
00κρ

(κz1 ) = κ2
ρ

k1
eiκz1 z0 ẑ′, (6)

N′
01κρ

(κz1 ) = i
κρκz1

2k1
eiκz1 z0 [cos ϕ′ρ̂ ′ − sin ϕ′ϕ̂′],

N′
11κρ

(κz1 ) = i
κρκz1

2k1
eiκz1 z0 [sin ϕ′ρ̂ ′ + cos ϕ′ϕ̂′].

By using Eq. (6) in Eq. (3) and by splitting the dyadic Green’s
function into s- and p-polarized contributions as Gi(r,r′) =
Gi

(s)(r,r′) + Gi
(p)(r,r′) we obtain after some algebra,

Gi
(s)(r,r0) = −i

4π
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]

+ ξ
(p)
−,i(κρ,z0,d)

[
−κzi

κρJ
′′
0 (κρρ)ρ̂ρ̂ − κzi

J ′
0(κρρ)

ρ
ϕ̂ϕ̂ ± iκ2

ρJ ′
0(κρρ)ẑρ̂
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, (7b)

where the primes on the Bessel functions mean derivative with
respect to the argument, the subscript i is 2 and + is used if r is
in the superstrate, and the subscript is 3 and − is used if r is in
the substrate. In addition, the factors ξ

(x)
±,i(κρ,z0,d) are given as

ξ
(x)
±,2(κρ,z0,d) = t

(x)
12

[
eiκz1 (d−z0) ± r

(x)
13 eiκz1 (d+z0)

]
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(8)

ξ
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±,3(κρ,z0,d) = t
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12 eiκz1 (2d−z0)

]
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12 r

(x)
13 e2iκz1 d

,

where the superscript (x) is either (s) or (p) depending on the
polarization. Equations (7) and (8) represent the full dyadic
Green’s functions with r in medium 2 and 3 for a dipole
emitter located at r′ = r0 = z0ẑ in medium 1.

B. Far-field approximations

The propagators above include near-field contributions
and in principle allow for lossy materials characterized by

complex dielectric constants. In the present work, however,
the materials can be considered lossless except for the silicon
substrate. In fact, even in silicon the penetration depth is
much greater than the wavelength in the range λ > 700 nm,
which is the important one for plasmonic solar cells (see
Sec. III) as shorter wavelength light typically is absorbed
without assistance of plasmonic scatterers. Hence, in order
to calculate the total intensity radiated into the substrate we
utilize the usual far-field approach, where we neglect the small
losses in the silicon. Eventually it is, of course, the losses
in the silicon that are responsible for the absorption of light.
However, given the fraction of light that radiates into the silicon
substrate and the radiation pattern it is possible to estimate an
optical path length enhancement factor Lmax, which specifies
how much the optical path length within the silicon layer is
enhanced due to the presence of metal nanoscatterers. Given
Lmax the maximum optical path length within a thin silicon
film of a plasmon-assisted solar cell can be compared to the
penetration depth of light in silicon. This analysis is made in
the Results section (Sec. III). However, in order to estimate the
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fraction of light that is scattered into the silicon the far-field
approximations of the propagators and the scattering cross
sections must be derived first.

In the far field, where ρ and z are large, we may approximate
the cylindrical vector harmonics by making an asymptotic
expansion of the Bessel functions as

Mjnκρ
(κzi

) ≈ eiκzi
z

√
2κρ

πρ
sin

(
κρρ − n

π
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− π

4

)

× cos

(
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)
ϕ̂, (9)
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z
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[
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(
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π

2
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4

)
ẑ

− iκzi
sin

(
κρρ − n

π

2
− π

4

)
ρ̂

]
cos

(
j
π

2
− nϕ

)
,

and the κρ integration limit can be taken as ki because only
the propagating waves are important. This allows us to set
κρ = ki sin α which yields κzi

= ki cos α and dκρ = κzi
dα.

Furthermore we may introduce the refraction angle for the
two interfaces 1-2 and 1-3 via ki sin α = k1 sin α′ which yields
κz1 = k1 cos α′. If we also introduce the angle θ (see Fig. 2)
we get z = −r cos θ and ρ = r sin θ in the substrate and
z = r cos θ and ρ = r sin θ in the superstrate. Using this
together with Eqs. (6) and (9) in Eq. (3) is it easy to see
that the integrand will contain exponentials such as

exp
(
iκzi

|z| ± iκρρ
) = exp[ikir cos(α ∓ θ )]. (10)
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FIG. 2. zρ plane defining θ and θ̂ (a) for r in the substrate, and
(b) for r in the superstrate.

Hence we need to evaluate integrals like∫ π/2

0
dαf (α) exp[ikir cos(α ∓ θ )], (11)

where f (α) is a complicated function of the angle α. In the
far-field limit the integral with cos(α + θ ) vanishes and the
other yields (see Appendix A)

f (θ )

√
2π

ikir
eiki r . (12)

Using this, the far-field approximations of the full dyadic
Green’s functions in Eq. (7) can be obtained after some
algebra. For the superstrate we obtain the following far-field
approximation, where κρ now is a function of θ :

G(ff)
2 (r,r0) = eik2r

4πr

[
κz2

κz1

ξ
(s)
+,2(θ,z0,d)ϕ̂ϕ̂ − sin θ

κz2

κz1

ξ
(p)
+,2(θ,z0,d)θ̂ ẑ + cos θξ

(p)
−,2(θ,z0,d)θ̂ ρ̂

]
, (13)

where θ̂ = − sin θ ẑ + cos θρ̂ [see Fig. 2(b)], and it is understood that now κz2 = k2 cos θ , κz1 = k1

√
1 − sin2 θε2/ε1, and κz3 =

k3

√
1 − sin2 θε2/ε3. For the substrate we obtain

G(ff)
3 (r,r0) = eik3r

4πr

[
κz3

κz1

ξ
(s)
+,3(θ,z0,d)ϕ̂ϕ̂ + sin θ

κz3

κz1

ξ
(p)
+,3(θ,z0,d)θ̂ ẑ + cos θξ

(p)
−,3(θ,z0,d)θ̂ ρ̂

]
, (14)

where now θ̂ = sin θ ẑ + cos θρ̂ [see Fig. 2(a)], κz3 = k3 cos θ ,
κz1 = k1

√
1 − sin2 θε3/ε1, and κz2 = k2

√
1 − sin2 θε3/ε2.

C. Scattering cross sections

To evaluate light scattering (or dipole radiation) into the
substrate and the superstrate separately two scattering cross
sections are defined: one where we integrate the flux of the
radiation over a semisphere of infinite radius in the superstrate
σ2(ω), and a second where we integrate the flux over a
corresponding semisphere in the substrate σ3(ω). Note that
because we consider radiation from a point dipole, with no
physical size, which really acts as a radiator and not a scatterer,
the term “scattering cross section” can seem a bit strange.
However, because the point dipole here is used to model a small
metal scatterer we choose the term scattering cross section for

the integrated flux of the radiation from the point dipole. The
flux of the radiation corresponds to the time-averaged Poynting
vector 〈Ss〉. To obtain scattering cross sections similar to what
is else found in the literature we normalize the integrated
time-averaged Poynting vector with the magnitude of the
Poynting vector |S0| of a plane wave in medium 1. However, in
what follows it is not important how the scattering cross section
is normalized because we are interested in the ratio between
light scattered into the substrate and into the superstrate. The
scattering cross section is calculated as

σi(ω) =
∫ 2π

0

∫ π
2

0 sin θdθdϕ〈Ss〉 · r̂r2

|S0| (15)

with 〈Ss〉 = 1
2 Re{Es × H∗

s } and |S0| = 1
2ε0c

√
ε1|E0|2, where

we have assumed that ε1 is real. If we consider scattering into
the substrate the subscript i is 3 and the θ angle is defined
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as shown in Fig. 2(a), whereas if we consider scattering
into the superstrate i = 2 and θ is defined by Fig. 2(b). To
calculate the time-averaged Poynting vector both the scattered
electric and magnetic field must be calculated. We calculate
the scattered electric field from Eq. (1) using the far-field
approximations of the dyadic Green’s functions in Eqs. (13)
and (14). The scattered magnetic field is then afterwards
found using the Maxwell equation ∇ × E = − ∂

∂t
B which

yields

Hs = −i

ωμ0
∇ × Es ≈ ki

ωμ0
r̂ × Es , (16)

where we have used the far-field approximation that
∇( exp(iki r)

r
)× ≈ iki

exp(iki r)
r

r̂×. Using this the scattering cross
sections from a vertical dipole emitter p0 = p0ẑ in the sub- and
superstrate (subscript i is either 2 or 3, respectively) becomes

σ
(v)
i (ω,z0,d) = k4

0 |p0|2
16π2ε2

0 |E0|2
√

εi

ε1

∫ 2π

0

∫ π
2

0
sin θdθdϕ

∣∣∣∣ κzi

κz1

ξ
(p)
+,i(θ,z0,d)

∣∣∣∣
2

sin2 θ, (17)

where the superscript v is used for vertical dipoles. Note that the ϕ integration simply yields 2π . For a horizontal dipole, for
example, p0 = p0x̂ the scattering cross section becomes

σ
(h)
i (ω,z0,d) = k4

0 |p0|2
16π2ε2

0 |E0|2
√

εi

ε1

∫ 2π

0

∫ π
2

0
sin θdθdϕ

{∣∣∣∣ κzi

κz1

ξ
(s)
+,i(θ,z0,d)

∣∣∣∣
2

sin2 ϕ + ∣∣ξ (p)
−,i(θ,z0,d)

∣∣2
cos2 ϕ cos2 θ

}
, (18)

where the superscript h is used for horizontal dipoles and the
integration over ϕ yields a factor of π .

D. Near-field approximation and absorption in the substrate

In this section we utilize the dyadic Green’s function
formalism to study in detail near-field absorption in the
substrate. We are interested in the absorption in the silicon
substrate in the volume schematically illustrated by the gray
shading in Fig. 3. The analysis is performed by making
a near-field approximation of the dyadic Green’s function
G3(r,r0). Given the near-field dyadic Green’s function both
the near field and its absorption can be evaluated.

In the near field we disregard all retardation effects, hence
we take the limit where the speed of light approaches infinity,

c → ∞. Thus κzi
=

√
k2
i − κ2

ρ → iκρ and

rs
1i = κz1 − κzi

κz1 + κzi

→ 0,

(19)

r
p

1i = εiκz1 − ε1κzi

εiκz1 + ε1κzi

→ εi − ε1

εi + ε1
≡ −βi,

where βi is the “electrostatic” reflection coefficient intro-
duced previously in the image charge description of plasmon

d
z
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ε
1

ε
2

ε
3

z

FIG. 3. (Color online) Dipole emitter embedded in a film of
thickness d . The distance from the substrate to the emitter is z0. The
gray shading illustrates where the near-field radiation of the dipole
emitter primarily will be absorbed.

resonances.26 Utilizing this the near-field approximation of the
dyadic Green’s function G3(r,r0) becomes

Gnf
3 (r,r0)

= 1

4πk2
3

∫ ∞

0
dκρκ

2
ρeκρz

{
ξ

(p)
+,3[J0(κρρ)ẑẑ + J ′

0(κρρ)ρ̂ẑ]

+ ξ
(p)
−,3

[
J ′′

0 (κρρ)ρ̂ρ̂ + J ′
0(κρρ)

κρρ
ϕ̂ϕ̂ + J ′

0(κρρ)ẑρ̂

]}
(20)

with

ξ
(p)
±,3 = (1 − β3)

e−κρz0 ∓ β2e
−κρ (2d−z0)

1 − β2β3e
−2κρd

= (1 − β3)(e−κρz0 ∓ β2e
−κρ (2d−z0))

∞∑
n=0

(β2β3)ne−2κρnd ,

(21)

where the geometrical series for all the multiple reflections
in ξ

(p)
±,3 has been unfolded. By doing this, the κρ integral

in Eq. (20) can be performed analytically. Note that the
near-field dyadic Green’s function only contains p-polarized
contributions. In fact, an s-polarized contribution to the dyadic
Green’s function also exists for c → ∞; however, this part
is disregarded, as it is not a true near-field term because it
only decays as 1/r and not 1/r3. Furthermore there is no
s-polarized contribution to the near-field obtained after using
Eq. (1) if c → ∞. By introducing the four integrals

�1(ρ,z) =
∫ ∞

0
dκρκ

2
ρe−κρzJ0(κρρ) = 2z2 − ρ2

(z2 + ρ2)5/2
,

�2(ρ,z) =
∫ ∞

0
dκρκ

2
ρe−κρzJ ′

0(κρρ) = −3zρ

(z2 + ρ2)5/2
,

�3(ρ,z) =
∫ ∞

0
dκρκ

2
ρe−κρzJ ′′

0 (κρρ) = 2ρ2 − z2

(z2 + ρ2)5/2
, (22)

�4(ρ,z) =
∫ ∞

0
dκρκ

2
ρe−κρz J ′

0(κρρ)

κρρ
= − 1

(z2 + ρ2)3/2
,
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and the coordinates z
(n)
+ = 2nd + z0 − z and z

(n)
− = 2(n + 1)d − z0 − z the near-field dyadic Green’s function for r ∈ 3 may be

expressed as

Gnf
3 (r,r0) = 1 − β3

4πk2
3

∞∑
n=0

(β2β3)n{[�1(ρ,z
(n)
+ ) − β2�1(ρ,z

(n)
− )]ẑẑ + [�2(ρ,z

(n)
+ ) − β2�2(ρ,z

(n)
− )]ρ̂ẑ

+ [�3(ρ,z
(n)
+ ) + β2�3(ρ,z

(n)
− )]ρ̂ρ̂ + [�4(ρ,z

(n)
+ ) + β2�4(ρ,z

(n)
− )]ϕ̂ϕ̂ + [�2(ρ,z

(n)
+ ) + β2�2(ρ,z

(n)
− )]ẑρ̂}. (23)

The z dependence of the near-field intensity in the substrate
can be investigated as

dP nf
3

dz
=

∫ 2π

0

∫ ∞

0
ρdρdϕ

∣∣Enf
3 (r)

∣∣2
, (24)

where Enf
3 (r) is calculated from Eq. (1) using the near-

field dyadic Green’s function of Eq. (23). The imaginary

part of ε3 is obviously essential for the absorption process.
However, as Imε3 � Reε3 the effect of Imε3 on the near-field
itself is negligible. Hence, Enf

3 (r) can be evaluated under
the assumption that ε3 (β3) is real. Thus by ignoring the
small imaginary part of ε3 we obtain for a vertical dipole
emitter

dP
(v),nf
3

dz
= I0d

4
∞∑

n,m=0

(β2β3)n+m

{
1

(z(n)
+ + z

(m)
+ )4

+ β2
2

(z(n)
− + z

(m)
− )4

− 2β2

(z(n)
+ + z

(m)
− )4

}
, (25)

where I0 = 6|p0|2/(πε2
0|ε1 + ε3|2d4). Similarly, for a horizontal dipole emitter we obtain

dP
(h),nf
3

dz
= 1

2
I0d

4
∞∑

n,m=0

(β2β3)n+m

{
1

(z(n)
+ + z

(m)
+ )4

+ β2
2

(z(n)
− + z

(m)
− )4

+ 2β2

(z(n)
+ + z

(m)
− )4

}
. (26)

The total near-field power absorbed in the silicon substrate can be calculated as

P
(v,h),nf
abs = ε0ω

2
Imε3

∫ 0

−∞
dz

dP
(v,h),nf
3

dz
. (27)

This yields

P
(v,h),nf
abs = 3 ± 1

4

ωImε3|p0|2
16πε0|ε1 + ε3|2

∞∑
n,m=0

(β2β3)n+m

{
1

[d(n + m) + z0]3
+ β2

2

[d(n + m + 2) − z0]3
∓ 2β2

[d(n + m + 1)]3

}
, (28)

where the upper and lower signs are used for vertical and
horizontal dipoles, respectively. Eq. (28) is an expression for
the total near-field absorption in the substrate. In principle
this expression is singular for n = m = 0 if the dipole is
positioned directly at the substrate surface, where z0 = 0.
However, if a small particle is positioned exactly at z0 = 0
the dipole approximation becomes inadequate, as it is only an
infinitesimal part of the particle that would lie at a distance
z0 ≈ 0. In this case one would have to divide the particle
into many pieces with different distances to the surface and
then make a summation. For a small spherical particle this
effectively corresponds to a dipole emitter at a distance z0 ≈ r ,
where r is the radius of the small sphere. Thus Eq. (28) is,
strictly speaking, not valid for dipoles at z0 = 0. Furthermore,
the dipole moment p0 of such a dipole would roughly be
proportional to z3

0, in which case Eq. (28) does not become
singular as z0 approaches 0.

III. RESULTS

Utilizing the dyadic Green’s function approach of Sec. II,
we analyze near- and far-field radiation from an electric point

dipole (which represents a small metal scatterer) embedded
within a high refractive index layer of rutile TiO2 on top of a
silicon surface. We will start by investigating the z dependence
of the near-field intensity in the silicon substrate for a dipole
emitter placed in the middle of the thin rutile film z0 = d/2.
This can be done by evaluating the double sums in Eqs. (25)
and (26) (due to the rapid convergence, numerically the sums
are terminated at n = m = 5). The result is illustrated in Fig. 4
using log scales for both the x and y axes. The figure shows
how the near-field intensity in the silicon substrate decreases
rapidly and approaches a |z|−4 behavior asymptotically when
|z| increases (the two dashed lines have a slope of -4). At a
distance |z| = d from the surface dP nf

3 /dz is below 0.01 in
units of I0 for both polarizations.

Now we wish to demonstrate numerically how the near- and
far-field approximations of the dyadic Green’s function can be
utilized to approximate the electric field in the two limits and
we wish to study the importance of near-field absorption. In
order to calculate the absorption we use complex refractive
indices for the silicon substrate taken from Ref. 36. As an
example consider a vertical dipole situated at z0 = 10 nm in a
film of thickness d = 20 nm. In Fig. 5 we illustrate the radial
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FIG. 4. (Color online) Distance dependence of the near-field
intensity in the silicon (ε3 = 12) substrate of a dipole emitter placed in
z0 = d/2 in a rutile TiO2 (ε1 = 6.25) film of thickness d . The medium
above the film is air (ε2 = 1). Both a vertical and a horizontal dipole
emitter is considered.

dependence of the z component of the electric field within
the silicon substrate at a fixed propagation angle θ = π/4.
The black curve is calculated using the ẑẑ component of the
full dyadic Green’s function in Eq. (7), where the integral
is calculated numerically using a 5000-point Gauss-Legendre
quadrature that is cut at a value of κρ/k0 of at least 1500.
The other curve is the sum of the z component of the field
calculated using the near- and far-field approximation of the
dyadic Green’s function, Eqs. (14) and (23), respectively. It is
seen that a good correspondence is found both in the near and
the far field, and that a deviation is present in the intermediate
region. Note also that the field is large and rapidly decaying in
the near field (a log scale is used on the y axis). As we intend to
utilize the far-field approach presented in Secs. II B and II C to
study in detail the directionality of the radiation from the dipole
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FIG. 5. (Color online) Radial dependence of the z component of
the electric field within the silicon substrate for a vertical dipole. The
angle θ is fixed at π/4 and the complex refractive index of silicon
is taken from Ref. 36 (nsi = 3.78 + 0.0126i at λ = 700 nm). The
refractive indices of the rutile film and the air superstrate are fixed at
2.5 and 1, respectively. The film thickness is taken to be d = 20 nm
and z0 is d/2.
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FIG. 6. (Color online) z dependence of the intensity within the
silicon substrate. For details of the parameters see the caption to
Fig. 5. (a) Horizontal dipole; (b) vertical dipole.

emitter we first investigate to what extent near-field absorption
in the silicon substrate is important. This is done by integrating
the modulus of the field squared over the entire absorbing
silicon substrate. By doing this using both the total field and
the near-field approximation, the amount of near-field power
absorbed can readily be calculated as P nf

abs/Pabs, where Pabs

is the total power absorbed in the silicon substrate calculated
using the full dyadic Green’s function. The z dependence of the
intensity in the silicon substrate has been calculated using the
full dyadic Green’s function, the near-field approximation, and
the far-field approximation (Fig. 6). Results are presented both
for a horizontal and a vertical dipole emitter. Note again how
the two approximations fit the full calculation in the two limits.
By integrating the different curves in Fig. 6 from z = 0 to −∞
both the total and the near-field absorption can be estimated.
In the far-field analysis we have chosen to fix the wavelength
at 700 nm and to investigate two different configurations in
detail: one where the rutile film thickness is equal to the free
space wavelength d = λ and one where the thickness of the
film is d = λ/10. At a wavelength of 700 nm using nsi =
3.78 + 0.0126i (taken from Ref. 36) we find for d = λ and
d = λ/10 that the amount of absorption that takes place in
the near-field is relatively small, in particular if the dipole
emitter is not very close (within 5 nm) to the silicon surface.
For instance, for z0 = 10 nm and d = 70 nm the near-field
absorption is below 6% for a vertical dipole emitter and below
4% for a horizontal one. In order to get significant near-field
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absorption the most important parameter is z0. If z0 is reduced
to 5 nm the near-field absorption increases substantially. For
a vertical dipole emitter we find that close to 30% of the
power is absorbed in the near field and for a horizontal one we
find 23%. Also the film thickness d and the wavelength λ have
influence on the near-field absorption. If we reduce d to 10 nm,
keeping z0 = 5 nm and λ = 700 nm the near-field absorption
accounts for 83% (23%) of the total absorption for a vertical
(horizontal) dipole emitter. At wavelength of 400 nm, where
nsi = 5.57 + 0.387i (Ref. 36), with d = 2z0 = 10 nm we find
for a vertical dipole that close to 80% of the power is absorbed
in the near field and for a horizontal dipole we find 38%.
However, for the two configurations chosen for the far-field
analysis (λ = 700 nm and d = λ or λ/10) we have found that
near-field absorption is quite small, especially if z0 > 5 nm.
Near-field absorption can, therefore, to a good approximation
be neglected, and we find it reasonable to use an approach that
relies on far fields only.

To evaluate the directionality of the radiation from the point
dipole we utilize the far-field approach outlined in Secs. II B
and II C. Because we take the far-field approach the silicon
substrate will in all what follows be modeled as a lossless
dispersionless dielectric with a dielectric constant of 12. First
we display the angular distribution of the scattered power using
the integral kernels together with the square root front factors
of Eqs. (17) and (18). In the first configuration, where d = λ,
the radiation pattern of a dipole embedded within the rutile film
at z0 = 350 nm shows that the scattered light with a very strong
preference is directed into the silicon, the radiation pattern in
the air above the rutile film is not noticeable (Fig. 7). Within the
silicon we see that light is primarily refracted under an angle
below but very close to the critical angle θc which separates
the regions of allowed (coming from propagating waves within
the rutile) and forbidden (coming from evanescent waves
within the rutile film) light within the silicon. The boundaries
between the allowed and forbidden regions in the silicon
are depicted in the figure with two straight dotted lines.

ε
3 
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ε
1 
= 6.25

ε
2 
= 1 Air

TiO
2

Si

λ = 700 nm

700 nm
z

0 
= 350 nm

z = 0

z = d

 x  or y

 z Vertical
Horizontal ϕ = 0
Horizontal ϕ = π/2

FIG. 7. (Color online) Angular radiation pattern of a vertical
(solid green) and a horizontal (solid black line for ϕ = 0 and dashed
magenta line for ϕ = π/2) electric point dipole embedded within a
d = 700 nm thin film of rutile TiO2 (ε1 = 6.25) on top of silicon
(ε3 = 12). The medium above the film is air (ε2 = 1), the free space
wavelength is 700 nm, and the point dipole is located in the center of
the film at z0 = λ/2 = 350 nm. The straight dotted black lines within
the silicon are the boundaries between allowed (below the lines) and
forbidden (above the lines) light.
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FIG. 8. (Color online) The same as Fig. 7, except z0 = λ/100 =
7 nm.

Propagating light with the largest parallel momentum in the
rutile film is directed parallel to the silicon surface and will
couple into the silicon under an angle with respect to the
surface normal of θc = arcsin(

√
ε1/ε3) = 46.2◦. Thus light

in the forbidden zone within the silicon (above the dotted
straight lines) can only come from scattered waves which in
the rutile film have κρ > k1 meaning that these waves are
evanescent with κz1 imaginary. That κz1 becomes imaginary
for large angles within the silicon is easily seen from κz1 =
k1

√
1 − sin2 θε3/ε1 as ε3 is larger than ε1. Evanescent waves

are strong in the near field of the scatterer and can therefore
contribute to the radiation distribution in the silicon if the
scatterer is close to the surface.25 This can be seen from the
results presented in Fig. 8. Here the angular radiation pattern
of an electric point dipole is displayed for a dipole-surface
separation of z0 = λ/100 = 7 nm. The pattern clearly shows
how a large part of the light is scattered into propagating
waves within the forbidden zone in the silicon. Thus for a
particle close to the silicon surface (λ/100) a significant part
of the scattered evanescent near field can be coupled into
propagating waves within the silicon. With thin-film silicon
solar cells in mind this could be very important because if we
assume an ideal rear reflector, the propagating waves in the
forbidden zone will be completely trapped within the silicon
film due to total internal reflection (they are propagating at
angles larger than θc). Thus these waves will experience an
infinite path length and will eventually be absorbed within the
silicon. Note also again that a very little part of the radiation
is scattered into the air above the rutile film.

For the second case where the film thickness is reduced
to d = λ/10 = 70 nm and the dipole emitter is located in
the center of the film the angular distribution of the scattered
power is presented in Fig. 9. In this case the angle distribution
is wider than for the thicker film (compare with Fig. 7), and
it can be seen how also some of the scattered evanescent
waves in the rutile, even for a dipole in the middle of the
film, contribute to the propagating radiation in the silicon. For
d = 70 nm and a dipole emitter close to the silicon surface
z0 = 7 nm the radiation pattern is depicted in Fig. 10. It can
be seen how a large part of the scattered evanescent waves
within the rutile film contribute to the propagating light within
the silicon. When compared to Fig. 9 it is clear that a larger
part of the radiation is located in the forbidden zone of the
silicon.
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FIG. 9. (Color online) The same as Fig. 7, except d = 70 nm and
z0 = 35 nm.

For solar cells it is of course very important that the fraction
of scattered light that couples into the silicon is as large as
possible. From Figs. 7–10 it is clear that the radiation of the
dipole emitter with a strong preference is directed toward the
silicon. The explanation for this is that the silicon has a much
higher refractive index than the rutile film and the air above
has a much lower refractive index. By performing the integrals
in Eqs. (17) and (18) it is possible to make an exact evaluation
of the total amount of light scattered into the silicon σ3 and
into the air σ2, respectively. We have evaluated σ3/σ2 versus
the position of the dipole emitter z0 for both film thicknesses;
d = λ (Fig. 11) and d = λ/10 (Fig. 12). Both horizontal and
vertical dipole emitters are considered. From Fig. 11 it can
be seen that scattering into the silicon dominates for both
polarizations and for all positions of the dipole emitter. For
a vertically polarized dipole emitter the ratio is much larger
than for a horizontally polarized dipole. This is because a
vertical dipole primarily radiates in the directions parallel to
the interfaces whereas a horizontal dipole primarily radiates
in the direction perpendicular to the interface. Thus most of
the radiation from a vertical dipole will be incident on the
rutile-air interface under an angle larger than the critical angle
and will therefore experience total internal reflection. This is
not the case for a horizontally polarized dipole emitter. Note
that the ratio σ3/σ2 shows an interference phenomenon with
a close to constant period not far from half the wavelength of
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FIG. 10. (Color online) The same as Fig. 7, except d = 70 nm
and z0 = 7 nm.

0 100 200 300 400 500 600 700
0

20

40

σ 3
/σ

2 f
or

 h
or

iz
on

ta
l d

ip
ol

e

 z
0 (nm)

 

 

0 100 200 300 400 500 600 700
0

200

400
Horizontal dipole
Vertical dipole

σ 3
/σ

2 f
or

 v
er

ti
ca

l d
ip

ol
e

30

10 100

300

d = λ = 700 nm

FIG. 11. Ratio between the total amount of light scattered into
the silicon below and the air above the rutile film vs the position of
the dipole emitter z0. The film thickness is equal to the wavelength
d = λ = 700 nm. The left y axis is for horizontally polarized dipoles
and the right y axis is for vertically polarized dipoles.

the light in the rutile λ/(2
√

ε1) = 140 nm. The interference
phenomenon can also be seen from the radiation pattern
in Fig. 8 where the scattering cross section is oscillating
along θ . For plasmon assisted solar cells it is primarily the
horizontally polarized dipole moments that are important,
because under normal incidence, which is appropriate for solar
cells, vertical dipole moments cannot be induced in the metal
nanoparticles by the incident solar radiation. For horizontally
polarized dipole emitters close to the silicon surface σ3/σ2

becomes larger than 30 meaning that more than 96% of
the scattered radiation will couple into the silicon. For the
thin film σ3/σ2 versus the position of the dipole emitter is
presented in Fig. 12. In this case the interference phenomenon
disappears because the film thickness is smaller than half the
wavelength of the light in the rutile film. However, the results
show that it is still possible to achieve a ratio larger than
30 for a horizontal dipole emitter if it is close to the silicon
surface.

In order to estimate the path length enhancement and hence
the absorption enhancement in the silicon due to the presence
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FIG. 12. Ratio between the total amount of light scattered into the
silicon below and the air above the rutile film vs the position of the
dipole emitter z0. The film thickness is one tenth of the wavelength
d = λ/10 = 70 nm.

085419-9



JESPER JUNG et al. PHYSICAL REVIEW B 83, 085419 (2011)

FIG. 13. (Color online) Schematic illustration of the multiple
scattering events in the plasmon assisted thin-film Si solar cell under
consideration.

of metal nanoscatterers within the rutile film we follow the
approach of Catchpole and Polman in Ref. 6. The maximum
path length enhancement Lmax depends on multiple scattering
events where the light is scattered via the embedded metal
nanoparticles as illustrated schematically in Fig. 13. If we
assume that the light is perfectly reflected at the rear side of
the silicon film, the maximum path length enhancement can
approximately be calculated as6

Lmax = 2dav

1 − fsubs
, (29)

where dav is the ratio of the path length of a single pass over the
active silicon layer to its thickness averaged over the angular
radiation distribution of the scattered power within the silicon
and fsubs is the ratio of the power scattered into the silicon to
the total scattered power in a single scattering event. Hence,
Lmax expresses the maximum path length enhancement (due
to the presence of the nanoparticles) compared to a single
pass across the active silicon layer. Thus if Lmax, for example,
is 50 and the thickness of the silicon film is 2 μm, then
the maximum optical path length within the active silicon is
approximately 100 μm. It should however be noted that the
light that couples into the silicon in the forbidden zone (due to
near-field coupling) will be perfectly reflected when it returns
to the silicon-rutile interface, meaning that this part of the
radiation will be completely trapped within the active silicon
film. We calculate dav by integrating the normalized angular
distribution of the radiated power within the silicon weighted
by 1/ cos θ , thus

dav =
∫ 2π

0

∫ π
2

0 r2 sin θdθdϕ 1
cos θ

〈S3〉 · r̂∫ 2π

0

∫ π
2

0 r2 sin θdθdϕ〈S3〉 · r̂
, (30)

where θ is defined as depicted in Fig. 2(a). fsubs is calcul-
ated as

fsubs = σ3

σ2 + σ3
, (31)

where we assume that all the scattered light eventually will be
coupled out of the rutile film.

For both polarizations of the emitter dav and Lmax have been
calculated versus the position z0 for the thick d = λ = 700 nm
rutile film (Fig. 14) and for the thin d = λ/10 = 70 nm
rutile film (Fig. 15). From Fig. 14(a) it can be seen how the
normalized average propagation distance both for a horizontal
and a vertical dipole emitter increases when the emitter
approaches the silicon surface. For intermediate positions it
can be noted that dav is slightly smaller than

√
2 which means
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FIG. 14. (a) Normalized average propagation distance and (b)
maximum path length enhancement vs the position of the dipole
emitter z0 for the configuration where d = λ = 700 nm.

that the average refraction angle is close to 45◦, which is
in good agreement with the radiation distribution presented
in Fig. 7. From the path length enhancements in Fig. 7(b)
the interference phenomenon due to the thick film is clear.
It can be noted that for a horizontal dipole an enhancement
of over 100 can be achieved when the scatterer approaches
the rutile-silicon interface. For intermediate distances the
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FIG. 15. (a) Normalized average propagation distance and
(b) maximum path length enhancement vs the position of the dipole
emitter z0 for the configuration where d = λ/10 = 70 nm.
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FIG. 16. Penetration depth of light in silicon vs the wavelength.
The plot is based on experimental data taken from Palik (Ref. 36).

path length enhancement of a horizontal dipole oscillates
around approximately 60. For vertically induced dipoles
enhancements of over 1000 can even be achieved if the emitter
is very close to the silicon surface. For the configuration
where d = λ/10 = 70 nm dav and Lmax are presented versus
the emitter position z0 in Fig. 15. For both polarizations dav

decreases over the entire interval when z0 increases. From
the path length enhancements of Fig. 15(b), it can be seen
how the thin-film configuration also allows for a path length
enhancement of over 100 for horizontally induced dipole
moments when the particle approaches the silicon surface.

To estimate how thick the silicon film must be in order to
absorb the light the extinction coefficient (the imaginary part
of the complex refractive index Im[

√
εSi(ω)]) of silicon is a

key parameter. Based on data from Palik36 we have plotted
the penetration depth h = 1/(Im[

√
εSi(ω)]k0) as a function of

the wavelength (Fig. 16). Note the logarithmic scale on the y

axis. For example at a wavelength of 700 nm the penetration
depth is approximately 8.9 μm, at 1000 nm it is 0.4 mm, and
at 1100 nm it has increased to 0.56 cm. These numbers must
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FIG. 17. Maximum path length enhancement Lmax for horizon-
tally polarized dipole moments as a function of the wavelength for
d = 700 nm and z0 = 350 nm (dashed curve) and for d = 70 nm and
z0 = 35 nm (dotted curve).

be compared to the maximum optical path length that can
be achieved via the multiple scattering events in a plasmon
assisted thin-film Si solar cell (cf. Fig. 13). Thus, in order to
make the comparison we have calculated Lmax as a function
of the wavelength (Fig. 17). Only horizontally polarized
dipole moments that are relevant in solar cell applications are
considered. Based on the two different configurations analyzed
above we have chosen to calculate Lmax for d = 700 nm
and z0 = 350 nm (dashed curve), and for d = 70 nm and
z0 = 35 nm (dotted curve). In the configuration where the
rutile film is 700 nm thick an oscillating behavior with a period
that increases with the wavelength can be clearly seen. For the
d = 70 nm configuration no oscillations are seen with the
wavelength. At λ = 700 nm the configuration with the thin
rutile film has Lmax ≈ 60 whereas the thick film configuration
has Lmax ≈ 45. Thus for the optical path length to exceed the
penetration depth at λ = 700 nm the thickness of the active
Si film should at least be 8.9 μm/45 ≈ 200 nm. However,
at longer wavelengths the required Si film thickness increases
significantly. At λ = 1000 nm the Si film thickness should be
a least 9.5 μm, and at λ = 1100 nm the required film thickness
has increased to approximately 130 μm.

IV. CONCLUSION

Utilizing the dyadic Green’s function formulation opti-
mization and design of plasmon-assisted solar cell configu-
rations have been analyzed. Metal nanoparticles embedded
in high-index thin films placed on top of silicon solar cells
are studied in the small particle limit, where only dipole
contributions are important. Thus the metal nanoparticles
are represented by electric point dipoles. Based on this
assumption we have presented semianalytical expressions for
light scattering both into the silicon substrate and into the air
superstrate. These expressions are found by integrating the
flux of the scattered power over semispheres in the sub- or
superstrate, respectively. The flux of the scattered power is
calculated exactly using analytical far-field approximations
of the dyadic Green’s function which have been derived
from the full dyadic Green’s function of the three-layer
reference structure. Also a near-field approximation of the
dyadic Green’s function has been derived, which has been used
to set up a semianalytical expression for the total near-field
power absorbed in the substrate. Our theoretical approach
has been used to analyze metal nanoscatterers within a thin
rutile film on top of silicon. For a horizontal dipole emitter,
which is the relevant polarization for solar cells, a fraction of
more than 96% of the scattered radiation can be coupled into
the silicon if the dipole is close to the silicon interface, and
optical path length enhancements of more than 100 can be
achieved.
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APPENDIX A: ANGULAR INTEGRAL

The integral in Eq. (11) is evaluated using kir � 1 as
follows:

∫ π
2

0
dαf (α) exp[ikir cos(α − θ )]

= eiki r

∫ π
2

0
dαf (α) exp(ikir[cos(α − θ ) − 1])

≈ eiki rf (θ )
∫ π

2

0
dα exp

(
−i

kir

2
(α − θ )2

)

≈ eiki rf (θ )
∫ ∞

−∞
d� exp

(
−i

kir

2
�2

)

= f (θ )

√
2π

ikir
eiki r , (A1)

where � = α − θ and we have used that∫ ∞

−∞
e−ax2

dx =
√

π

a
. (A2)

APPENDIX B: FAR-FIELD APPROXIMATIONS:
A SECOND APPROACH

In this approach we derive the far-field approximations
of the dyadic Green’s functions G(ff)

2 (r,r′) and G(ff)
3 (r,r′)

starting from the dyadic Green’s function of a homoge-
nous material G0(r,r′). In cylindrical coordinates (ρ,ϕ,z)
G0(r,r′) may be written as a Sommerfeld integral over
the in-plane (⊥ to ẑ) momentum κρ . We split into s- and
p-polarized waves as G0(r,r′) = G(s)

0 (r,r′) + G(p)
0 (r,r′) and

get37

G(s)
0 (r,r′) = −i

4π

∫ ∞

0
dκρ

eiκz1 |z−z′ |

κz1

[
J ′

0(κρρ)

ρ
ρ̂ρ̂ + κρJ

′′
0 (κρρ)ϕ̂ϕ̂

]
, (B1a)

G(p)
0 (r,r′) = i

4πk2
1

∫ ∞

0
dκρe

iκz1 |z−z′ |
[

κ3
ρ

κz1

J0(κρρ)ẑẑ + i
z − z′

|z − z′| [ρ̂ẑ + ẑρ̂]κ2
ρJ ′

0(κρρ) − κz1κρJ
′′
0 (κρρ)ρ̂ρ̂ − κz1

J ′
0(κρρ)

ρ
ϕ̂ϕ̂

]
,

(B1b)

where we have assumed that ρ ′ = 0. The derivation is presented for r ∈ 2 to obtain G(ff)
2 (r,r0). For r ∈ 3 a very similar

derivation can be made to obtain G(ff)
3 (r,r0). We start with the s-polarized part of the dyadic Green’s function. For a three-layer

structure where the emitter is located within the thin film [see Fig. 2(b) and note that z′ = z0] the factor eiκz1 |z−z′ | must be
replaced as

eiκz1 |z−z′| →
{

eiκz1 (d−z′)t
(s)
12

[ ∞∑
n=0

(
r

(s)
12 r

(s)
13 e2iκz1 d

)n

]
+ eiκz1 z′

r
(s)
13 eiκz1 d t

(s)
12

[ ∞∑
n=0

(
r

(s)
12 r

(s)
13 e2iκz1 d

)n

]}
eiκz2 (z−d) = ξ

(s)
+,2(κρ,z

′,d)eiκz2 z.

(B2)

By substituting this into Eq. (B1a) an expression identical
to Eq. (7a) is obtained. In the far field the κρ integration
limit is taken as k2, and we may write κρ = k2 sin α, κz2 =
k2 cos α, dκρ = κz2dα, and k2 sin α = k1 sin α′. Furthermore
we introduce θ [see Fig. 2(b)] and get z = r cos θ and ρ =
r sin θ . As ρ is large the ρ̂ρ̂ term of the s-polarized part of the
dyadic Green’s function vanishes. If we, as in Sec. II, make
an asymptotic expansion of the Bessel function for ρ large it
is easy to see that we again encounter integrals like Eq. (11),
and after some algebra the s-polarized part of the far-field
approximation of G2(r,r′) can be obtained as

G(s,ff)
2 (r,r0) = eik2r

4πr

κz2

κz1

ξ
(s)
+,2(θ,z0,d)ϕ̂ϕ̂, (B3)

where it is understood that κz2 = k2 cos θ , κz1 =
k1

√
1 − sin2 θε2/ε1, and κz3 = k3

√
1 − sin2 θε2/ε3. For

p polarization we first analyze the case of a z-oriented dipole.
Starting from Eq. (B1b) this yields

G(p)
0 (r,r′) · ẑ = i

4πk2
1

∫ ∞

0
dκρe

iκz1 |z−z′ |

×
[

κ3
ρ

κz1

J0(κρρ)ẑ + i
z − z′

|z − z′|κ
2
ρJ ′

0(κρρ)ρ̂

]
.

(B4)

For a three-layer structure where the emitter is located in
medium 1 the p-polarized part transforms as ρ̂ → ρ̂

κz2
κz1

and

eiκz1 |z−z′ | →
{

eiκz1 (d−z′)t
(p)
12

[ ∞∑
n=0

(
r

(p)
12 r

(p)
13 e2iκz1 d

)n

]
+ eiκz1 z′

r
(p)
13 eiκz1 d t

(p)
12

[ ∞∑
n=0

(
r

(p)
12 r

(p)
13 e2iκz1 d

)n

]}
ε1

ε2
eiκz2 (z−d)

= ξ
(p)
+,2(κρ,z

′,d)
ε1

ε2
eiκz2 z, (B5)
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where the factor ε1/ε2 must be introduced if t
(p)
12 = 1 + r

(p)
12

and r
(p)
12 is given by Eq. (5). With the same arguments as

above and after some algebra the far-field approximation
becomes

G(p,ff)
2 (r,r0) · ẑ = −eik2r

4πr
sin θ

κz2

κz1

ξ
(p)
+,2(θ,z0,d)θ̂ , (B6)

where again it is understood that κz2 = k2 cos θ , κz1 =
k1

√
1 − sin2 θε2/ε1, and κz3 = k3

√
1 − sin2 θε2/ε3.

For a ρ-oriented dipole Eq. (B1b) yields

G(p)
0 (r,r′) · ρ̂ = i

4πk2
1

∫ ∞

0
dκρe

iκz1 |z−z′ |

×
[
−κρκz1J

′′
0 (κρ)ρ̂ + i

z − z′

|z − z′|κ
2
ρJ ′

0(κρρ)ẑ

]
(B7)

and in this case ρ̂ → ρ̂
κz2
κz1

and the factor eiκz1 |z−z′ | must be
replaced as

eiκz1 |z−z′ | →
{

eiκz1 (d−z′)t
(p)
12

[ ∞∑
n=0

(
r

(p)
12 r

(p)
13 e2iκz1 d

)n

]
− eiκz1 z′

r
(p)
13 eiκz1 d t

(p)
12

[ ∞∑
n=0

(
r

(p)
12 r

(p)
13 e2iκz1 d

)n

]}
ε1

ε2
eiκz2 (z−d)

= ξ
(p)
−,2(κρ,z

′,d)
ε1

ε2
eiκz2 z, (B8)

where it should be noted that the sign of the field changes after the reflection. In the far field we obtain

G(p,ff)
2 (r,r0) · ρ̂ = eik2r

4πr
cos θξ

(p)
−,2(θ,z0,d)θ̂ . (B9)

Thus the entire far-field approximation of the dyadic Green’s function for a dipole emitter in medium 1 and an observation point
in the superstrate (r ∈ 2) can be constructed from the combination of Eqs. (B3), (B6), and (B9) as

G(ff)
2 (r,r0) = eik2r

4πr

[
κz2

κz1

ξ
(s)
+,2(θ,z0,d)ϕ̂ϕ̂ − sin θ

κz2

κz1

ξ
(p)
+,2(θ,z0,d)θ̂ ẑ + cos θξ

(p)
−,2(θ,z0,d)θ̂ ρ̂

]
, (B10)

which is identical to Eq. (13) and where it should be noted that
θ and θ̂ is defined as shown in Fig. 2(b). For r ∈ 3 a similar

derivation yields an expression identical to Eq. (14) with θ and
θ̂ defined as depicted in Fig. 2(a).
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