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Excitonic coherence in a confined lattice: A simple model to highlight
the relevance of perturbation theory
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The exciton-phonon system in a confined environment is revisited within standard perturbation theory. Special
attention is paid to describing the time evolution of the excitonic coherences at finite temperature. To proceed,
the system involving an exciton dressed by a single phonon mode is considered. Owing to its simplicity, it is
solved exactly so that the relevance of the perturbation theory is checked. Within the nonadiabatic weak-coupling
limit, it is shown that several time scales govern the coherence dynamics. In the short-time limit, the coherences
behave as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place. Finally the
coherences recur almost periodically at specific revival times. Coherence decay and revival strongly depend on
the nature of the excitonic states. In particular, for odd lattice sizes, the coherence of the state exactly located at the
band center survives over a very long-time scale. Therefore, confinement-induced decoherence softening favors
high-fidelity quantum-state transfer and allows to encode the information on a quantum bit almost insensitive to
quantum decoherence.
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I. INTRODUCTION

Molecular lattices, large molecules, and biopolymers
exhibit regularly distributed atomic subunits. Owing to dipole-
dipole interaction, the energy of a specific electronic transition,
or a high-frequency vibrational mode, delocalizes between
these subunits. It gives rise to narrow-band excitons able to
move coherently and that play a key role in understanding
various phenomena.1,2 In light-harvesting complexes, Frenkel
excitons propagating along the array of pigment proteins allow
the conversion of solar energy into chemical energy.3–7 In
α-helices, amide-I excitons promoting vibrational energy flow
may participate in the transduction of the chemical energy into
mechanical work.8–19 In adsorbed molecular nanostructures,
vibrons provide an alternative to nanoscale electronics and
enhance surface reactions.20–29 Finally, because quantum bits
may be encoded in high-frequency vibrational modes,30–32

vibron-mediated quantum-state transfer is a promising way for
quantum information processing.33 Unfortunately, the exciton
does not propagate freely but it interacts with the phonons
of the host medium.34,35 The phonons are responsible for
dephasing and they tend to destroy the coherent nature of
the exciton.

So defined, the exciton-phonon system is a prototype
of an open system (exciton) coupled with a thermal bath
(phonons).2,36,37 Therefore, information about the exciton
properties is encoded in the reduced density matrix (RDM)
whose dynamics is governed by a generalized master equation
(GME). Among the different strategies elaborated to derive
exact GME, the time-convolutionless method (TCL-GME)
plays a central role.37–42 Within this method, a specific
projector is used to obtain a time local GME in which the
influence of the bath is encoded in a time-dependent relaxation
operator. Its form is particularly suitable for describing non-
Markovian processes and for building approximate equations
through a systematic perturbation expansion.

In many situations, narrow-band excitons propagate slower
than the phonons and the nonadiabatic weak-coupling limit

is reached. The Born approximation is invoked and a second-
order expansion is performed to derive a TCL2-GME. The
relaxation operator is thus defined in terms of the exciton-
phonon coupling correlation functions whose dynamics is
governed by free phonons. In an infinite lattice, the phonons be-
have as a reservoir insensitive to the exciton.43 The correlation
functions vanish after a short-time scale and the Markov limit is
reached. The TCL2-GME becomes a system of first-order dif-
ferential equations with constant coefficients whose solution
provides information about the exciton properties (coherence
dynamics,18 coherence transfer,44 diffusion coefficient,16,17,45

etc.).
In a finite-size lattice, a different behavior takes place owing

to the discrete nature of the phonon energy spectrum.46,47

As shown recently,48 the confinement yields the occurrence
of quantum recurrences. These recurrences provide to the
relaxation operator an almost periodic nature whose main con-
tribution results from the coupling with the lowest-frequency
phonon mode (LFPM). The GME reduces to a linear system
of differential equations with almost periodic coefficients. In
accordance with the Floquet theory, unstable solutions emerge
for particular values of the model parameters. They originate in
parametric resonances between specific excitonic frequencies
and the frequencies of the relaxation operator that involve the
LFPM. The parametric resonances give rise to an unphysical
exponential growth of the RDM, indicating that TCL2-GME
breaks down. Moreover, outside parametric resonances, the
TCL2-GME fails in reproducing the dynamics.

To overcome the problems inherent in the non-Markovian
dynamics, different strategies have be elaborated. Exam-
ples among many are the correlated projection superop-
erators method,49–51 the time-dependent projection-operator
approach,52–54 the effective-mode representation of non-
Markovian dynamics,55,56 the nonperturbative quantum master
equation,57,58 the continuous fraction method,59–61 and the
quantum jumps approach.62–64 In the present paper, the
non-Markovian exciton-phonon dynamics is revisited within
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the standard perturbation theory (PT).65,66 Following recent
works, it will be applied for describing a confined exciton
coupled with acoustic phonons, i.e., the so-called Fröhlich
model.46–48 Special attention will be paid to characterize the
excitonic coherences. They measure the ability of the exciton
to develop superimpositions involving the vacuum and the one-
exciton states, and they play a key role in understanding various
phenomena (optical response,67 quantum-state transfer,68 etc.).
The aim of this work is to show that PT is more accurate than
TCL2-GME provided that the lattice size is not too large. To
proceed, we shall restrict our attention to the system formed by
the exciton dressed by the LFPM only. The generalization to
the coupling with all the phonon modes will be addressed in a
forthcoming paper. Our motivation is twofold. First, the system
“exciton + LFPM” is so simple that numerical simulations can
be carried out easily. Consequently, it will be straightforward
to check the relevance of PT. Second, treating the system
“exciton + LFPM” may appear as a first step to renormalize
the influence of this mode and to avoid instabilities. In a second
step, standard open system theories may be applied, with the
remaining phonon modes being viewed as a new thermal bath.

The paper is organized as follows. In Sec. II, the exciton-
phonon Hamiltonian is described and the excitonic coherences
are defined. Then, PT is applied to evaluate the eigenenergies
and the eigenstates of the system. An approximate expression
for the coherences is finally established. In Sec. III, a numerical
analysis is performed in which PT is compared with exact
calculations. These results are discussed and interpreted in
Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

The Fröhlich model in a finite-size lattice with N sites
x = 1, . . . ,N has been described in numerous papers.46–48 We
only give here a brief summary with a special emphasis on the
coupling with the LFPM.

Within this model, one-exciton states are the first
excited states of N -coupled two-level systems. They define
N superimpositions of incident and reflected plane waves
with quantized wave vectors kπ/L, with k = 1, . . . ,N and
L = N + 1. They are expressed as

|k〉 =
N∑

x=1

√
2

L
sin

(
kπx

L

)
|x〉, (1)

where |x〉 is the first excited state of the xth two-level system.
The corresponding eigenenergies ωk = ω0 + 2� cos(kπ/L)
involve the Bohr frequency of each two-level system ω0 and the
hopping constant between neighboring sites � (h̄ = 1 will be
used throughout this paper). The exciton Hamiltonian is thus
written as HA = ∑N

k=1 ωk|k〉〈k|. Note that the vacuum state
|�〉 describes all the two-level systems in their ground state
with zero energy. The phonons refer to the external motions
of the lattice sites that behave as point masses M connected
via force constants W . They define N normal modes with
wave vectors pπ/L and frequencies �p = �c sin(pπ/2L),
with p = 1, . . . ,N and �c = √

4W/M . The dynamics of the
LFPM p = 1 is governed by the Hamiltonian HB = �a†a,
where � ≡ �1, a† and a being the standard phonon operators.

Finally, the exciton-phonon interaction V results from a
stochastic modulation of the energy of each two-level system
by the external motions of the lattice. Restricting our attention
to the influence of the LFPM, this interaction favors the
exciton scattering from |k〉 to |k ± 1〉, mediated by phonon
exchanges.48

As a result, the exciton-phonon Hamiltonian is defined
as H = H0 + V , where H0 = HA + HB is the unperturbed
Hamiltonian. The coupling V is written as 48

V =
N−1∑
k=1

η(a† + a)[|k〉〈k + 1| + |k + 1〉〈k|], (2)

where η = [(EB�/L)(1 − (�/�c)2)]1/2, EB being the small
polaron binding energy expressed in terms of the coupling
strength χ as EB = χ2/W . Because H conserves the exciton
number, the Hilbert space is partitioned into independent
subspaces E = E0 ⊕ E1. In the zero-exciton subspace E0,
V = 0 so that the unperturbed states are eigenstates of H .
They correspond to tensor products involving the vacuum |�〉
and the phonon number states |n〉 and they describe n free
phonons with energy n�. In the one-exciton subspace E1, the
unperturbed states |k,n〉 = |k〉 ⊗ |n〉, with energy ε

(0)
k,n = ωk +

n�, refer to n phonons accompanied by an exciton in state |k〉.
Because V turns on in E1, they are no longer eigenstates of
H . The exact eigenstates |
μ〉, with eigenenergies εμ, are
superimpositions of the unperturbed states.

This model Hamiltonian will be used for describing the
exciton dynamics and PT will be applied to evaluate |
μ〉
and εμ. To proceed, we shall consider the nonadiabatic
weak-coupling limit ω0 	 �c (high energy exciton), 4� < �c

(nonadiabatic limit), and EB 
 � (weak-coupling limit). As
a result, � > |ωk − ωk±1|, ∀k, so that there is no resonance
between coupled unperturbed states. Nevertheless, both η and
the Bohr frequencies connected to coupled unperturbed states
decrease with L. Because Bohr frequencies decay faster than η,
quasiresonances occur for large lattice sizes. Consequently, as
explained in Sec. II C, PT can be applied provided that L is
not too large.

Although the present model is rather general, it will be used
for describing amide-I excitons in α-helices, i.e., a situation
in which the lattice temperature is about or higher than the
phonon cutoff frequency.8–19 In α-helices, peptide units linked
by H bonds are regularly distributed. Each unit contains a
high-frequency C = O vibration (amide-I mode) that gives rise
to vibrational excitons coupled with the phonons of the H bond
network. Such a system is a prototype of a finite-size lattice
because helices containing from three to 15 residues are the
most abundant in nature.69

Of course, the present model is too simple to accurately
describe vibrational energy flow in a real protein whose
dynamics exhibits a tremendous complexity owing to the rather
large number of degrees of freedom. In particular, this model
is unable to describe energy relaxation because it conserves
the number of amide-I excitons. In proteins, the amide-I
lifetime, typically ∼1 ps, results from intramolecular energy
redistribution owing to the anharmonic coupling between each
amide-I mode and a set of intramolecular normal modes
whose displacements are strongly localized on the C = O
groups.15,16,70–72 Consequently, we do not claim that the model
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is relevant to explain in detail the vibrational dynamics in a
protein. Nevertheless, its interest lies in the fact that it provides
a simple approach to promote the idea that PT is more accurate
than the TCL2-GME method, which has been applied recently
to a similar model.48 A more detailed study will be addressed
in a forthcoming paper.

B. Excitonic coherences

Coherences are RDM elements that measure the ability of
the exciton to develop superimpositions involving the vacuum
and the one-exciton states. As detailed previously,18,44,47,48

coherences switch on when the exciton-phonon system is
brought in a configuration out of equilibrium. To proceed,
the exciton is prepared in a superimposition |ψA〉 = c0|�〉 +
c1|k1〉, with |c0|2 + |c1|2 = 1. By contrast, the phonons are
assumed to be in thermal equilibrium at temperature T . Their
properties are encoded in the density matrix ρB so that the
initial state of the whole system is specified by the density
matrix ρ = |ψA〉〈ψA| ⊗ ρB .

In the excitonic eigenbasis, the coherence σk2�(t) is thus
defined as

σk2�(t) = 〈k2|TrB[e−iH tρeiHt ]|�〉, (3)

where TrB is a partial trace over the phonon degrees of
freedom. After simple algebraic manipulations, the coherence
is rewritten as σk2�(t) = Gk2k1 (t)σk1�(0), with σk1�(0) = c∗

0c1.
The matrix element Gk2k1 (t) is expressed as

Gk2k1 (t) =
∞∑

n=0

Pne
in�t 〈k2,n|e−iH t |k1,n〉, (4)

where Pn = [1 − exp(−β�)] exp(−βn�) is the equilibrium
population of the nth phonon number state (β = 1/kBT , kB

being the Boltzmann constant). The coherence σk2�(t) mea-
sures the ability of the exciton to develop a superimposition
involving |�〉 and |k2〉 at time t , given that a superimposition
involving |�〉 and |k1〉 was initially created. Consequently,
Gk2k1 (t) generalizes the concept of transition amplitude and
it defines the effective propagator of the exciton. It yields
the probability amplitude to observe the exciton in state
|k2〉 at time t given that it was in state |k1〉 at t = 0. The
effective nature of the propagator results from the fact that
the exciton interacts with the phonons during its transition.
More precisely, the full system being prepared in the factorized
state |k1,n〉, Gk2k1 (t) measures the probability amplitude to
observe the system in a factorized state exp(−in�t)|k2,n〉 that
characterizes an excitonic transition during which the phonons
evolve freely. An average over the initial phonon number is
finally performed.

In the local basis, the effective propagator gives information
about coherence transfer along the lattice. A particular ele-
ment, Gx2x1 (t), measures the ability of the exciton to develop a
superimposition involving the vacuum and the local state |x2〉
at time t , such a superimposition being initially created on the
site x1. From Eq. (1), Gx2x1 (t) is defined as

Gx2x1 (t) =
N∑

k2=1

N∑
k1=1

uk2x2uk1x1Gk2k1 (t), (5)

where ukx = √
2/L sin(kπx/L).

The effective propagator is the central object of the present
study. It characterizes the way the phonon bath modifies
the excitonic coherences in either the eigenbasis or the
local basis. Moreover, it provides information about exciton-
mediated quantum-state transfer. Finally, it yields the spectral
response [S(t) ∝ ∑

x1

∑
x2

Gx2x1 (t)] whose Fourier transform
is the exciton absorption spectrum. For the simple system
exciton + LFPM, the numerical diagonalization of H can be
carried out. As a result, we are able to build |
μ〉 and εμ so
that Eqs. (4) and (5) can be computed easily. In Sec. III, these
exact calculations will be compared with PT that is presented
in the next section.

C. Perturbation theory

1. Eigenenergies and eigenstates

According to standard PT,65,66 εμ and |
μ〉 can be expanded
as a Taylor series around the unperturbed quantities as

εk,n = ε
(0)
k,n + ε

(1)
k,n + ε

(2)
k,n + · · · ,

(6)
|
k,n〉 = |k,n〉 + ∣∣
(1)

k,n

〉 + ∣∣
(2)
k,n

〉 + · · · ,
where ε

(q)
k,n and |
(q)

k,n〉 stand for the qth-order corrections. Note
that the index μ now reduces to the indexes (k,n) that refer to
unperturbed states.

The eigenenergies up to second order in the exciton-phonon
coupling are written as (ε(1)

k,n = 0)

εk,n = ωk + δω
(2)
k + n

(
� + δ�

(2)
k

)
, (7)

where δ�
(2)
k and δω

(2)
k are expressed in terms of μk = 1 − δk,N

and νk = 1 − δk,1 as

δ�
(2)
k = 2η2μk(ωk − ωk+1)

(ωk − ωk+1)2 − �2
+ 2η2νk(ωk − ωk−1)

(ωk − ωk−1)2 − �2
,

(8)

δω
(2)
k = η2μk

ωk − ωk+1 − �
+ η2νk

ωk − ωk−1 − �
.

As shown in Eq. (8), δω(2)
k is the correction of the energy of

an exciton in state |k〉 owing to its coupling with the phonons.
This correction does not depend on the phonon number. It re-
sults from the spontaneous emission of a phonon in the course
of which the exciton realizes transitions from |k〉 to |k ± 1〉.
However, in the nonadiabatic limit, the energy cannot be
conserved during such processes so that the phonon emission
is not a real process. The exciton is only able to exchange
a virtual phonon that is first emitted and then immediately
reabsorbed. In accordance with the small polaron concept,
δω

(2)
k is the manifestation of the so-called dressing effect. The

exciton does not propagate freely but it is dressed by a virtual
phonon cloud.

Similarly, δ�
(2)
k is the energy correction of a phonon

accompanied by an exciton in state |k〉. As shown in Eq. (7),
the energy correction nδ�

(2)
k now involves the phonon number

and it results from two mechanisms. First, the phonon can
be absorbed, giving rise to excitonic transitions from |k〉 to
|k ± 1〉. Such a process does not conserve the energy within
the nonadiabatic limit so that the phonon is immediately
reemitted. Second, the phonon induces the stimulated emission
of a second phonon in the course of which the exciton
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realizes transitions. But, as previously, the emitted phonon
is immediately reabsorbed. Both mechanisms correspond to
virtual processes, indicating that a phonon does no longer
evolve freely. It is dressed by an exciton that realizes virtual
transitions.

In Appendix A, PT is applied to derive eigenstates up to
second order in the exciton-phonon coupling [see Eq. (A1)].
Owing to this coupling, the eigenstates no longer factorize
and a quantum entanglement occurs. The first-order correction
to |k,n〉 involves the neighboring states |k ± 1,n ± 1〉, which
are directly coupled through V . By contrast, the second-order
correction exhibits three contributions. The first contribution
modifies the weight of the unperturbed state ensuring the
normalization of |
k,n〉 to unity up to second order. The
second contribution involves second-nearest-neighbor states
|k ± 2,n ± 2〉. The last contribution reveals that the eigenstates
involve unperturbed states in which either the phonon number
or the exciton state is conserved.

At this step, let us discuss the validity of the second-order
PT. Indeed, PT works quite well, provided that the coupling
between two unperturbed states |k,n〉 and |k ± 1,n ± 1〉 is
smaller than the corresponding Bohr frequency. To establish
a criterion at finite temperature, one first assumes that the
phonon number is approximately the average phonon number
n̄ = [exp(β�) − 1]−1. Then, because � 
 �c, the coupling
strength scales as η ≈ √

EB�/L. Finally, the smallest Bohr
frequency involving excitonic states close to the band center, is
approximately �(1 − 2B), B = 2�/�c being the adiabaticity.
In that context, for kBT 	 �, PT can be applied provided that

2

π

√
EBkBT

�2
c

√
L

1 − 2B
< x, (9)

where x specifies the desired accuracy for the approximate
eigenenergies (for a two-level system, x = 0.286 ensures an
error lower than 1%). Equation (9) defines a critical curve in
the parameter space. As a result, for a given temperature and
a fixed coupling strength, it reveals that a critical length L∗
discriminates between two regimes. For L < L∗, PT is
expected to correctly describe the exciton-phonon dynamics
whereas it certainly breaks down for L > L∗. Of course, the
smaller the coupling and the temperature are, the longer is the
critical length.

2. Excitonic coherences

Inserting Eqs. (7) and (A1) into Eq. (4) yields the effective
exciton propagator up to second order in the coupling. It
is expressed in terms of the renormalized energies ω̂k =
ωk + δω

(2)
k and �̂k = � + δ�

(2)
k as

Gk2k1 (t) =
N∑

k=1

e−iω̂k t

∞∑
n=0

Pne
−inδ�

(2)
k t

∞∑
m=0

ei(n−m)�̂k t

× [
δkk1δkk2δnm + 〈

k2,n
∣∣
(1)

k,m

〉〈



(1)
k,m

∣∣k1,n
〉

+ δkk1δnm

〈
k2,n

∣∣
(2)
k,n

〉 + δkk2δnm

〈



(2)
k,n

∣∣k1,n
〉]
. (10)

From the expression of |
(1)
k,m〉 [Eq. (A1)], m is either equal to

n or n ± 1 so that the sum over m simplifies. By contrast, the

sum over n defines an average according to a time-dependent
distribution function written as

P k
n (t) = e−n(β�+iδ�

(2)
k t)

Zk
B(t)

, (11)

where Zk
B(t) = [1 − exp(−β� − iδ�

(2)
k t)]−1. Strictly speak-

ing, P k
n (t) is not a probability distribution because it is

a complex-valued function. Nevertheless, it reduces to the
equilibrium population of the phonon number states at t = 0,
i.e., P k

n (t = 0) ≡ Pn ∀k. In that case, the normalization factor
Zk

B(t = 0) is the equilibrium partition function ZB = [1 −
exp(−β�)]−1.

Because the sum over k simplifies, one finally obtains
the effective propagator whose expression is displayed in
Appendix B.

III. NUMERICAL RESULTS

In this section, the previous formalism is applied for
describing amide-I excitons in a finite-size lattice of H-bonded
peptide units.18,44,47,48 To proceed, typical values for the
parameters are used: ω0 = 1660 cm−1, W = 15 N m−1,
M = 1.8 × 10−25 kg, and � = 7.8 cm−1. The phonon cutoff
frequency is equal to �c = 96.86 cm−1, indicating that
the nonadiabatic limit is reached (B = 0.16). The coupling
strength is approximately χ = 8 pN (EB = 0.21 cm−1), i.e., a
value close to the ab initio estimate.73 With these parameters,
Eq. (9) shows that the critical length L∗ ≈ 20 ensures the PT
validity over the temperature range T ∈ [0,300] K.

As shown in Fig. 1, PT yields a very good estimate
of the energy spectrum over a large energy scale (up to
1000 cm−1). The smaller the energy is, the better is the
agreement. The energy difference �ε = εμ − εk,n increases
with εμ, indicating that the PT accuracy decreases as the
phonon number n increases. This feature results from the
n dependence of the exciton-phonon coupling that scales
as

√
n. For instance, for the eigenstate μ = 100 (ε100 =

108.88 cm−1) that refers to the unperturbed state (k = 4,

(cm-1)
0 200 400 600 800 1000

-
kn

(c
m

- 1
)
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-0.005
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600 610 620 630 640 650
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-0.002
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-
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- 1
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FIG. 1. Energy difference εμ − εk,n vs εμ for N = 11.
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n = 8), the energy difference �ε = 4.44 × 10−5 cm−1 is
very small. By contrast, for the eigenstate μ = 900 (ε900 =
1026.10 cm−1) connected to (k = 1, n = 80), �ε increases to
reach 4.32 × 10−3 cm−1. Nevertheless, �ε is always smaller
than the energy-level spacing so that PT remains valid. Note
that the curve �ε vs εμ behaves almost periodically, indicating
that the PT accuracy depends on the nature of the unperturbed
states. Over a large energy scale, it seems that unperturbed
states involving k = N are the less well corrected.

Although �ε increases with χ , Fig. 2 reveals that PT
mimics quite well the η dependence of the energy levels, even
in the intermediate-coupling regime (for N = 11, χ = 20 pN
yields η = 1.18 cm−1). In particular, PT describes the energy-
level crossing phenomena that affects the dressed states.
Owing to the coupling V , unperturbed states hybridize,
giving rise to energy shift and the splitting characteristic
of anticrossing processes. Consequently, some energy levels
repel each other whereas other energy levels get closer. These
levels describing exact uncoupled eigenstates, energy-level
crossing occurs.

At this step, we have verified that PT yields good estimates
of the eigenstates (not drawn). For χ = 8 pN, the main contri-
bution of each eigenstate is collinear to the corresponding
unperturbed state whose weight is well accounted by PT.
Nevertheless, for high-energy levels or for larger χ values, a
small discrepancy occurs between numerical calculations
and PT, especially for describing the weight of the states
|k ± 1,n ± 1〉. This feature arises because these contributions
result from first-order PT whereas the other contributions are
exact up to second order.

The η dependence of the phonon energy correction δ�
(2)
k is

illustrated in Fig. 3. The intensity and the sign of δ�
(2)
k depend

on the nature of the exciton that accompanies the phonon.
An exciton whose energy is above ω0 yields a redshift of
the phonon energy. Moreover, the closer to the band edge
the exciton energy is located, the larger is δ�

(2)
k . By contrast,

an exciton whose energy is below ω0 leads to a blueshift of
the phonon energy. As previously, excitonic states near the
band edge yield the largest phonon energy shift. A surprising
effect takes place for odd lattice sizes. In that case, a phonon
clothed by an exciton whose energy is exactly located at the
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FIG. 2. εμ (thin ×) and εk,n (circles) vs η for N = 11.
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FIG. 3. (Color online) η dependence of the phonon energy
correction δ�

(2)
k for (a) N = 10 and (b) N = 11.

band center is not perturbed. In other words, for k = L/2, one
obtains δ�

(2)
L/2 = 0 ∀ η.

Figure 4 displays the η dependence of the exciton energy
correction δω

(2)
k . Note that δω

(2)
k is almost insensitive to the

parity of the lattice size so that only the case N = 11 is
reported. The figure shows that the dressing by virtual phonons
is responsible for a redshift of the exciton energy so that δω

(2)
k

decreases as η increases. In absolute value, it is typically two
orders of magnitude larger than |δ�(2)

k |. Figure 4 reveals that
the sensitivity of the states k = 2, . . . ,N − 1 to the dressing
effect is almost k independent. In other words, these states
experience a similar energy shift whose value is typically of
approximately −2EB/L. By contrast, the states located at the
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FIG. 4. (Color online) η dependence of the exciton energy
correction δω

(2)
k for N = 11.
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band edges k = 1 and k = N appear weakly coupled with
the phonons. They exhibit almost the same energy shift whose
value, of approximately −EB/L, is typically two times smaller
than the energy correction of the other states.

To characterize the coherence transfer along the lattice,
let us consider the time evolution of the effective exciton
propagator in the local basis [Eq. (5)]. Special attention is
paid to describe the ability of the system to transfer a quantum
state between the two lattice sides, x1 = 1 and x2 = N . Such
information is encoded in the propagator |GN1(t)| whose time
evolution is shown in Fig. 5 for N = 8, T = 300 K and
χ = 8 pN. Note that Fig. 5 displays results provided by exact
calculations [Fig. 5(a)], PT [Fig. 5(b)], and the TCL2-GME
method [Fig. 5(c)]. 48

Although it is not really clear over the time scale shown
in Fig. 5, we have verified that both PT and TCL2-GME
yield a quite good estimate of the propagator in the short-time
limit (t < 100 ps). However, as time increases, TCL2-GME
fails in reproducing the time evolution of the propagator
and suggests, wrongly, that an efficient coherence transfer
occurs over a rather long-time scale. This is no longer the
case for PT that describes accurately the time evolution
of the transmitted coherence, even in the long-time limit.
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FIG. 5. Excitonic propagator in the local basis for N = 8, T =
300 K, and χ = 8 pN. (a) Exact calculation, (b) PT, and (c) TCL2-
GME.

According to Figs. 5(a) and 5(b), the exciton propagator
behaves as follows. Initially equal to zero, |GN1(t)| reaches
a first maximum that characterizes a direct exciton transfer
between the two lattice sides. Then, owing to the confinement,
|GN1(t)| does not vanish, but it exhibits peaks that are
almost periodically distributed. These peaks define quantum
recurrences that occur at either classical periods, revival times,
or super-revival times.47,74 Nevertheless, as time increases, the
intensity of the quantum recurrences decreases, indicating that
a rather slow quantum decoherence takes place. Note that the
coherence decays rather algebraically than exponentially. For
instance, at ∼100 ps, the maximum value of the propagator is
∼0.75. It becomes typically of ∼0.2 at ∼1000 ps and reduces
to 0.1 near 2000 ps. In other words, the transmitted coherence
exhibits small amplitude fluctuations around a mean value
that apparently tends to zero as time reaches 2000 ps. We have
verified that such a behavior is characteristic of a lattice whose
size is an even number.

As shown in Fig. 6, similar results are observed for N = 9.
Note that the TCL2-GME method is not reported in Fig. 6
because it gives a time evolution quite similar to that displayed
in Fig. 5(c). Both PT and TCL2-GME yield accurate results
in the short-time limit and they reveal the occurrence of
peaks regularly distributed. Nevertheless, as time increases,
TCL2-GME breaks down and only PT provides results in
good agreement with the exact calculations. The transmitted
coherence still displays quantum recurrences whose intensity
slightly decreases as time increases. However, it is as if the
transmitted coherence converged to a nonvanishing value
of ∼0.17 by exhibiting high-frequency oscillations whose
amplitude is ∼0.8. In fact this feature is rather general and
it occurs for an odd lattice size.

At this step, let us mention that long-time simulations have
been carried out over a time scale equal to 20 000 ps (not
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FIG. 6. Excitonic propagator in the local basis for N = 9, T =
300 K, and χ = 8 pN. (a) Exact calculation and (b) PT.
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drawn). Coherence revivals have been observed, indicating
that the transmitted coherence does not vanish whatever the
parity of the lattice size. These features will be discussed
later. Moreover, for larger χ values, we have observed that PT
remains quite good. For instance, for χ = 16 pN, PT captures
the main part of the propagator whereas TCL2-GME yields an
unphysical exponential growth.

Information about the optimized coherence transfer is
displayed in Fig. 7 for T = 300 K. For a lattice containing
N sites, Fig. 7 shows the maximum value of the transmitted
coherence, i.e., tN = Max[|GN1(t)|], which occurs over an
observation time scale equal to 1000 ps. For χ = 0 pN,
tN = 1 provided that N � 7. Then, it slightly decreases with
N , giving rise to a high-fidelity transfer. Note that a linear
regression yields tN ≈ 1 − 0.013(N − 7) for N � 7. In fact,
when χ = 0 pN, the coherence properties are governed by
the exciton Hamiltonian that favors quantum recurrences.
Consequently, the maximum of |GN1(t)| occurs after the
exciton has experienced several reflections. For instance, for
N = 16, tN = 0.86 is very close to unity, the maximum taking
place at t = 852.2 ps. When the exciton-phonon interaction
is turned on, the intensity of the quantum recurrences is
reduced (see Figs. 5 and 6) so that tN decreases. For χ =
8 pN, it typically scales tN ≈ 1 − 0.019(N − 1), whereas for
χ = 12 pN, it behaves as tN ≈ 1 − 0.022(N − 1). Note that a
critical size Nc ≈ 8 discriminates between two regimes. When
N < Nc, the maximum of |GN1(t)| takes place at either a
revival time or a super-revival time for which the exciton has
experienced many reflections. By contrast, for N > Nc, the
most probable event giving rise to the maximum of |GN1(t)|
is a direct transfer between the lattice sides.

Let us now study the time evolution of the coherences
expressed in the excitonic eigenbasis. To proceed, we shall
restrict our attention to the diagonal elements Gkk(t) of the
effective propagator. These elements define the coherence of
quantum states involving the vacuum and the one-exciton
eigenstates. To simplify, Gkk(t) will be called the coherence of
the state |k〉. Such a restriction is valid because the propagator
is diagonally dominant. More precisely, our numerical study
reveals that Gk2k1 (t) �= 0 for |k2 − k1| = 0,2,4, . . . , only.
As predicted by PT [Eq. (B1)], diagonal terms are the
most intense because they involve the contribution of the
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FIG. 7. (Color online) Maximum value of the transmitted coher-
ence over 1000 ps vs lattice size for χ = 0, 8, and 12 pN. Exact
calculations (full lines) and PT (× symbols).

eigenstates collinear to the unperturbed states. By contrast,
nondiagonal terms |k2 − k1| = 2 remain small because they
are proportional to the square of the coupling. Finally, PT does
not account on nondiagonal terms |k2 − k1| = 4,6, . . . that
involve high-order contributions of the coupling. Fortunately,
these latter terms almost vanish in the weak-coupling limit.

For an even lattice size (N = 8), |Gkk(t)| is displayed in
Fig. 8 for T = 300 K and χ = 8 pN. The figure clearly
shows the agreement between exact calculations [Fig. 8(a)]
and PT [Fig. 8(b)]. In the short-time limit (t < 50–100 ps),
it reveals that the coherences exhibit high-frequency small-
amplitude fluctuations just below their initial value equal
to unity. Then, as time increases, the coherences decrease,
indicating that quantum decoherence takes place over 2000 ps.
Note that this decay is rather algebraic than exponential.
Each coherence follows a decaying function that supports a
high-frequency small-amplitude modulation. However, such a
behavior depends on the nature of the excitonic state. First, the
coherences evolve in pairs so that |Gkk(t)| typically behaves
as |GL−kL−k(t)|. Second, the coherence of states close to the
band edges decays faster than the coherence of states located
near the band center. Finally, the modulation amplitude is more
pronounced for states located near the band center.

Let us mention that simulations carried out at different tem-
peratures have revealed that the temperature enhances quantum
decoherence. The larger the temperature is, the faster the
coherences decay. In addition, as the temperature increases,
the modulation amplitude increases. Note that we have verified
that the TCL2-GME method provides quite good results in the
short-time limit (t < 100 ps). However, as time increases,
it rapidly breaks down and it suggests, wrongly, that the
coherences survive over 2000 ps.

For N = 9, |Gkk(t)| is shown in Fig. 9 for T = 300 K
and χ = 8 pN. As previously, a very good agreement is
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FIG. 8. (Color online) Time evolution of |Gkk(t)| for N = 8, T =
300 K, and χ = 8 pN. (a) Exact calculations and (b) PT.
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FIG. 9. (Color online) Time evolution of |Gkk(t)| for N = 9, T =
300 K, and χ = 8 pN. (a) Exact calculations and (b) PT.

observed between exact calculations [Fig. 9(a)] and PT
[Fig. 9(b)]. Basically, the coherences behave as in Fig. 8.
They first exhibit fast oscillations just below their initial
value. Then, they follow a decaying function that supports
a high-frequency small-amplitude modulation. Note that the
modulation amplitude appears larger, especially for states near
the band center. However, a surprising effect occurs that was
not observed for an even lattice size. Indeed, the coherence of
the state exactly located at the band center (k = L/2) evolves
differently. In the short-time limit, it slightly decreases from
unity by exhibiting high-frequency damped oscillations. As
time increases, the oscillations disappear and the coherence
converges to a finite value rather close to unity. In other
words, the coherence survives over a very long-time scale
in spite of the coupling with the phonons at high temperature.
Note that the influence of the temperature is twofold. First,
as the temperature increases, the constant value reached by
the coherence decreases. For instance, for T = 100 K it is
equal to 0.96 and it reduces to 0.90 for T = 300 K. Then,
the amplitude of the damped oscillations increases with the
temperature. Nevertheless, the larger the temperature is, the
faster the modulation disappears.

According to the previous results, it would seem that
quantum decoherence arises for states k �= L/2. However,
this is a deceptive appearance as illustrated in Fig. 10
for N = 9. Indeed, for k �= L/2, each coherence decreases
from unity and it finally reaches a minimum value almost
k independent. Such a behavior is characterized by the
so-called decoherence time T d

k for which |Gkk(T d
k )| = 0.5.

However, as time increases, the coherence increases again
until it recurs at a specific revival time T r

k . This scenario
continues, giving rise to a periodic evolution of the coherence.
Its dynamics is thus governed by both the decoherence
time and the revival time, whose values strongly depend on
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FIG. 10. (Color online) Long-time evolution of |Gkk(t)| for N =
9, T = 300 K, and χ = 8 pN. (a) Exact calculations and (b) PT.

the excitonic eigenstates. The closer to the band edges the
states are located, the shorter are T d

k and T r
k . For instance,

one obtains T d
1 = T d

9 ≈ 110 ps and T r
1 = T r

9 ≈ 5300 ps
whereas T d

2 = T d
8 ≈ 170 ps and T r

2 = T r
8 ≈ 8700 ps. The

other coherences also recur but for revival times longer
than the time scale reported in the figure. As mentioned
previously, the decoherence time decreases with the temper-
ature. By contrast, the revival time is typically temperature
independent. Nevertheless, the temperature modifies the co-
herence revivals whose intensity decreases as the temperature
increases.

As shown in Fig. 10, PT mimics quite well the exact
calculations over a very long-time scale. Nevertheless, a small
discrepancy occurs between exact calculations and PT for de-
scribing the coherence of the state k = L/2. Indeed, according
to PT, this coherence converges whereas Fig. 10(a) reveals that
it slightly decreases as time increases. In fact, this coherence
exhibits both quantum decoherence and coherence revival but
over a very long-time scale. To illustrate this feature, Fig. 11
displays the time evolution of this coherence for χ = 12 pN,
i.e., a coupling value for which T d

L/2 is shortened to 11 050 ps.
In that case, quantum decoherence is clearly evidenced, as well
as PT breakdown. Note that the other coherences remain quite
well described by PT (not drawn). To overcome this difficulty,
a fourth-order PT has been applied to improve the energy
correction of the unperturbed states (Appendix C). Doing so,
we have verified that the fourth-order PT only slightly modifies
the time evolution of the coherence of the states k �= L/2. By
contrast, it strongly affects the time evolution of the coherence
of the state k = L/2 whose long-time behavior now resembles
the time evolution provided by exact calculations.

To conclude this section, let us mention that a numerical
simulation of the phonon reduced density matrix r(t) =
T rA[ρ(t)] has been carried out. The main idea was to clarify if
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FIG. 11. (Color online) Long-time evolution of the exci-
tonic coherences |Gkk(t)| for k = L/2, N = 9, T = 300 K, and
χ = 12 pN.

the presence of an exciton strongly affects the phonon proper-
ties in the weak-coupling limit. Therefore, initially in thermal
equilibrium, we have observed that the phonon statistical state
is only slightly modified. Indeed, the populations rnn(t) of
the phonon number states |n〉 are no longer constant. They
exhibit small-amplitude fluctuations around their equilibrium
value. In addition, phonon coherences rnn′(t) switch on. When
the exciton occupies a local state at t = 0, coherences with
|n − n′| = 1,2,3, . . . turn on. By contrast, phonon coherences
with |n − n′| = 2,4,6, . . . occur when the exciton is initially
created in an eigenstate. Fortunately, the phonon coherences
are very small, so that it is as if the phonons still remained in
a quasiequilibrium with a slightly fluctuating temperature.

IV. DISCUSSION

The numerical results show that PT is a powerful tool for
describing the exciton-phonon system in a confined environ-
ment. Within the nonadiabatic weak-coupling limit, it yields a
very good estimate of the spectral properties of the system over
a rather large energy scale. The behavior of the eigenenergies
is encoded into two parameters, namely, the exciton energy
correction δω

(2)
k and the phonon energy correction δ�

(2)
k . These

parameters account for both the dressing of the exciton by a vir-
tual phonon cloud and the dressing of each phonon by excitonic
virtual transitions. Furthermore, PT is particularly suitable
for describing the dynamics of the excitonic coherences over
short-, intermediate-, and long-time scales. In that sense, it is
more accurate than second-order master equation approaches
that quite well mimic the dynamics in the short-time limit but
break down over intermediate- and long-time scales.

Our results reveal that the evolution of the excitonic
coherences is governed by several time scales. In the short-time
limit (t < 100 ps for amide-I exciton), the coherences in the
excitonic eigenbasis exhibit high-frequency small-amplitude
fluctuations just below their initial value equal to unity. It
is as if the coherences survived in spite of the exciton-
phonon coupling at finite temperature. In the local basis,

the transmitted coherence evolves almost periodically and it
shows peaks that characterize quantum recurrences. As time
increases, quantum decoherence takes place over a time scale
specified by the so-called decoherence time. The coherence
of each eigenstate slowly decreases rather algebraically than
exponentially. Similarly, quantum decoherence favors an
algebraic decay of the transmitted coherence and the quantum
recurrences decrease as time increases. Nevertheless, the
coherences do not vanish, neither in the local basis nor in
the eigenbasis. Quantum decoherence is only transient and the
coherences in the eigenbasis recur at specific revival times. The
main observation is that both decoherence times and revival
times strongly depend on the nature of the excitonic states.
The closer to the band center the states are located, the longer
are the decoherence times and the revival times. In particular,
for odd lattice sizes, they become extremely long for the state
exactly located at the band center.

To interpret the time evolution of the coherences, let us
introduce two simplifying approximations. First, the effec-
tive propagator being diagonally dominant in the excitonic
eigenbasis, a diagonal element Gkk(t) characterizes a coher-
ence σk�(t), i.e., σk�(t) ≈ Gkk(t)σk�(0). Then, in the weak-
coupling limit, the eigenstates being almost collinear to the
unperturbed states, one assumes |
k,n〉 ≈ |k,n〉. Consequently
Eq. (10) yields

Gkk(t) ≈ e−iω̂k t

∞∑
n=0

Pne
in(�−�̂k )t . (12)

The physics provided by Eq. (12) can be understood as
follows. At t = 0, the system is prepared in a factorized
state |
(0)〉 = [c0|�〉 + c1|k〉] ⊗ |n〉. This state describes
n phonons accompanied by an exciton in a superimposed state,
phonons and exciton being independent. As time increases, this
state evolves in an entangled exciton-phonon state as

|
(0)〉 ≈ c0|�〉 ⊗ |φ(�)
n (t)〉 + c1e

−iω̂k t |k〉 ⊗ ∣∣φ(k)
n (t)

〉
, (13)

where |φ(�)
n (t)〉 = exp(−in�t)|n〉 is the state of n free phonons

whereas |φ(k)
n (t)〉 = exp(−in�̂kt)|n〉 describes the evolution

of n phonons dressed by the exciton. After performing a trace
over the phonon degrees of freedom, the coherence scales
as Gkk(t) ≈ exp(−iω̂kt)〈φ(�)

n (t)|φ(k)
n (t)〉. The phase factor

characterizes the evolution of the exciton dressed by a virtual
phonon cloud. It does not significantly modify the coherence
dynamics. By contrast, the so-called decoherence factor 36,37

〈φ(�)
n (t)|φ(k)

n (t)〉 measures the ability of the phonons to evolve
freely in spite of their interaction with the exciton. When the
phonons are initially in a pure state, the decoherence factor
reduces to a phase factor exp (in(� − �̂k)t) that involves the
energy difference between free and dressed phonons. This
latter phase factor does not affect the excitonic coherence.
Unfortunately, at finite temperature, the phonons are described
by a statistical mixture of number states. As shown in Eq. (12),
the coherence is thus proportional to the average value of the
decoherence factor. Performing the average, its modulus is
written as

|Gkk(t)| ≈ 1√
1 + 4�n̄2 sin2

(
1
2δ�

(2)
k t

) , (14)
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where �n̄2 = n̄(n̄ + 1) measures the thermal fluctuations
of the phonon number. In spite of its simple appearance,
Eq. (14) allows us to recover the main features observed in
our numerical analysis.

First, owing to the symmetry of the phonon energy
correction, i.e., δ�

(2)
k = −δ�

(2)
L−k (Fig. 3), the coherences

evolve in pairs. One obtains |Gkk(t)| = |GL−kL−k(t)|, in good
agreements with the results displayed in Figs. 8–10.

Second, Eq. (14) reveals that the average over the initial
phonon number leads to quantum decoherence. Indeed, when
δ�

(2)
k t 
 1, the coherence, initially equal to unity, slowly

decreases as time increases. It does not decrease in an exponen-
tial way. Instead, it exhibits an algebraic decay and scales as
|Gkk(t)| ≈ [1 + (�n̄δ�

(2)
k t)2]−1/2. This decay is characterized

by a decoherence time T d
k defined as (|Gkk(T d

k )| = 1/2),

T d
k =

√
3

�n̄
∣∣δ�(2)

k

∣∣ , (15)

because �n̄ scales as T , Eq. (15) shows that the tem-
perature enhances quantum decoherence. Moreover, T d

k is
inversely proportional to the square of the coupling through its
dependence with respect to the phonon energy correction [see
Eq. (8)]. From this dependence, we recover that the closer to
the band edges the excitonic state is located, the shorter is T d

k .
For instance, with the parameters used in Fig. 10, Eq. (15)
yields T d

1 = T d
9 = 106.65 ps and T d

2 = T d
8 = 175.52 ps,

in good agreement with the numerical estimates. As observed
in Fig. 9, Eq. (15) reveals that the coherence of the excitonic
state exactly located at the band center (k = L/2) survives over
an infinite time scale. This feature occurs for an odd lattice
size only because δ�

(2)
L/2 vanishes owing to the symmetry

of the exciton energy spectrum. Indeed, during both phonon
absorption and phonon-stimulated emission, the virtual ex-
citonic transition form |k〉 to |k + 1〉 is counterbalanced by
the transition form |k〉 to |k − 1〉. When k = L/2, both
contributions exactly compensate resulting in a zero-phonon
energy shift so that T d

L/2 → ∞. Of course, such a behavior
results from a second-order PT whereas exact calculations
reveal that T d

L/2 is very long but remains finite. To account
on this feature, a fourth-order PT has been realized (see
Appendix C). In that case, fourth-order corrections δ�

(4)
k

remain negligible when compared with δ�
(2)
k , excepted for k =

L/2 because δ�
(2)
L/2 = 0. The corresponding decoherence time

is approximately T d
L/2 = √

3/�n̄|δ�(4)
L/2|. With the parameters

used in Fig. 11, one obtains T d
L/2 = 11816 ps, in quite good

agreement with the numerical results.
At this step, let us mention that the so-called decoher-

ence rate �d
k = �n̄δ|�(2)

k |/√3 depends quadratically on the
coupling strength. However, its temperature dependence is
encoded in the thermal fluctuations of the phonon number.
In that sense, it differs from the standard expression of the
dephasing rate that characterizes the decoherence of an open
system coupled with a reservoir of harmonic oscillators.2 In
that case, GME methods show that the temperature dependence
of the rate originates in its dependence with respect to the aver-
age phonon number n̄. At high temperature, both approaches
yield a similar temperature dependence because �n̄ ≈ n̄ ≈
kBT /�. This is no longer the case at low temperature because

�n̄/n̄ = exp(β�/2). Inserting Eq. (8) into Eq. (15) for k = 1
(or k = N ) reveals that the largest decoherence rate scales as
�d

1 ≈ 13.85�EBkBT /(�2
cL) at high temperature. It decreases

as L increases, provided that L < L∗. This latter condition
ensures that �d

1 remains smaller than the smallest excitonic
Bohr frequency �ω ≈ 3�π2/L2.

Finally, Eq. (14) shows that the coherence is a periodic
function of time so that quantum decoherence is only transient.
The coherence does not vanish and it reaches a minimum at
time tk = π/|δ�(2)

k |. This minimum, equal to 1/
√

1 + 4�n̄2,
only depends on the thermal fluctuations of the phonon
number. It thus decreases as the temperature increases. As
time increases, the coherence increases again and it finally
recurs at a revival time T r

k = 2π/|δ�(2)
k |. The revival time is

temperature independent and it only depends on the invert
of the phonon energy correction. As a result, the closer to
the band edges the excitonic state is located, the shorter
is T r

k . For instance, with the parameters used in Fig. 10,
one obtains T r

1 = T r
9 = 5322 ps and T r

2 = T r
8 = 8758 ps,

in good agreement with the numerical estimates. As for
the decoherence time, second-order PT predicts an infinite
revival time for the coherence of the state k = L/2. However,
within fourth-order PT (Appendix C), δ�(4)

L/2 no longer vanish.
With the parameters used in Figs. 10 and 11, one obtains
T r

L/2 ≈ 2.98 × 106 ps and T r
L/2 ≈ 5.89 × 105 ps, for χ =

8 pN and χ = 12 pN, respectively. Note that Eq. (14)
describes exact revivals for which the coherence reaches unity.
This feature results from the assumption that the eigenstates
reduce to the unperturbed states. However, by using Eq. (B1),
the temperature effect is taken into account so that the
maximum of the coherence decreases as the temperature
increases.

In the local basis, the transmitted coherence is a superim-
position of the coherences in the eigenbasis as

GN1(t) ≈ − 2

L

N∑
k=1

(−1)k sin2

(
kπ

L

)
Gkk(t). (16)

In the short-time limit, GN1(t) scales as the propagator of a
bare exciton. It measures the ability of the system to copy the
initial state on the side site x = N . The initial excitation on
site x = 1 yields the emission of a wave packet that propagates
with a group velocity v ≈ 2�. After a time τ0 ≈ L/v, the
wave packet reaches the site x = N and a peak occurs in
GN1(t). As observed in Figs. 5 and 6, such a mechanism takes
place almost periodically and some peaks in GN1(t) define
recurrences that occur according to the so-called classical
period 2τ0.47,74 They describe situations in which the exciton
quantum state partially resembles the copy of the initial state
but localized on the site x = N . Moreover, the discrete nature
of the exciton energy spectrum provides both revival times and
super-revival times for which the reappearance of the wave
packet on the site x = N yields quantum states that strongly
resemble the initial state.47,74 Unfortunately, as time increases,
quantum decoherence takes place and the intensity of these
quantum recurrences decreases. For an even lattice size, each
coherence Gkk(t) decreases as time increases, so that |GN1(t)|
slowly decays. It finally exhibits small-amplitude fluctuations
close to zero, as displayed in Fig. 5. By contrast, for an odd
lattice size, the coherence of the state k = L/2 survives so
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that |GN1(t)| shows small-amplitude oscillations around an
average value of approximately 2/L, as illustrated in Fig. 6.
Note that over longer time scales, coherence revivals in Gkk(t)
give rise to quantum recurrences in the transmitted coherence.
However, these recurrences remain weak because different
coherences Gkk(t) are characterized by different revival times.
It is unlikely that coherences Gkk(t) will recur simultaneously
to provide a strong recurrence in GN1(t).

To conclude, we would like to point out that, in addition
to its academic interest, the present work reveals interesting
features that may be applied to quantum information process-
ing in condensed matter. Indeed, it has been shown that the
confinement softens the quantum decoherence experienced
by an exciton coupled with a phonon bath, even at high
temperature. This softening is particular important, at least, for
two main reasons. First, the confinement enhances the ability
of the system to promote high-fidelity quantum-state transfer.
Over an observation time scale of approximatley a few times
the decoherence time, the maximum value of the transmitted
coherence decreases almost linearly with the lattice size. In
short lattices, the exciton realizes many reflections before
experiencing quantum decoherence, so that the optimized
transmitted coherence occurs at either a revival time or a
super-revival time. By contrast, in longer lattices, a direct
quantum-state transfer takes place between the lattice sides.
This feature is fully different from the behavior observed in
an infinite lattice in which dephasing-limited coherent motion
yields a strong localization of the transmitted coherence that
decreases exponentially with distance.44 Second, the excitonic
state exactly located at the band center is almost insensitive to
the phonon bath. Consequently, a superimposition involving
the vacuum and this particular one-exciton state is able to
keep its coherent nature over an extremely long-time scale.
Of course, this effect arises provided that the weak-coupling
limit is reached. However, our results have shown that the
decoherence time remains very long even in the intermediate-
coupling regime. Consequently, at high temperature, such
a superimposition can be viewed as an ideal quantum bit
insensitive to quantum decoherence, the biggest threat in
quantum computing.

V. CONCLUSION

In the present paper, the properties of the exciton-phonon
system in a confined environment has been revisited within
PT. Special attention has been paid for describing the time
evolution of the excitonic coherences. To proceed, the system
involving an exciton dressed by a single phonon mode has
been considered. Due to its simplicity, it was solved exactly
so that the PT performance has been checked. Within the
nonadiabatic weak-coupling limit, it has been shown that PT
is a powerful tool for describing the spectral properties of
the system over a rather large energy scale. Moreover, it is
particularly suitable for characterizing the coherence dynamics
over short-, intermediate-, and long-time scales. It is thus more
accurate than second-order master equation approaches that
rapidly break down.

We have shown that several time scales govern the dynamics
of the coherences. In the short-time limit, the coherences
behave as if the exciton was insensitive to the phonon

bath. Then, quantum decoherence takes place over a time
scale specified by the decoherence time. However, quantum
decoherence is only transient so that the coherences do not
vanish in the long-time limit. Instead, they recur periodically
at specific revival times. Both decoherence times and revival
times strongly depend on the nature of the excitonic states.
In particular, for odd lattice sizes, it has been shown that
the coherence of the state exactly located at the band center
survives over an extremely long-time scale. In that context, it
has been pointed out that confinement-induced decoherence
softening favors high-fidelity quantum-state transfer. Further-
more, it allows to encode the information on a quantum
bit almost insensitive to quantum decoherence, even at high
temperature.

Finally, because the present approach has revealed the
powerfulness of PT, it will be generalized for describing an
exciton coupled with all the phonon modes in a confined
environment and at finite temperature.

APPENDIX A: EIGENSTATES OF THE FULL
HAMILTONIAN H

According to the standard second-order PT, the eigenstates
of the full Hamiltonian H are expressed as

|
k,n〉 = |k,n〉 + √
n + 1[μ+

k |k+1,n+1〉 + ν+
k |k−1,n+1〉]

+√
n[μ−

k |k + 1,n − 1〉 + ν−
k |k − 1,n − 1〉]

− 1
2

[
(n + 1)

(
μ+2

k + ν+2
k

) + n
(
μ−2

k + ν−2
k

)]|k,n〉
+

√
(n + 1)(n + 2)μ+

k u+
k |k + 2,n + 2〉

+
√

(n + 1)(n + 2)ν+
k v+

k |k − 2,n + 2〉
+

√
n(n − 1)μ−

k u−
k |k + 2,n − 2〉

+
√

n(n − 1)ν−
k v−

k |k − 2,n − 2〉
+u0

k[(n + 1)μ+
k + nμ−

k ]|k + 2,n〉
+ v0

k [(n + 1)ν+
k + nν−

k ]|k − 2,n〉
− λ

√
(n + 1)(n + 2)(μ+

k + ν+
k )|k,n + 2〉

+ λ
√

n(n − 1)(μ−
k + ν−

k )|k,n − 2〉, (A1)

where the different parameters are defined as

μ±
k =η(ωk − ωk+1 ∓ �)−1μk, ν±

k =η(ωk − ωk−1 ∓ �)−1νk,

u±
k =η(ωk−ωk+2 ∓ 2�)−1μ′

k, v±
k =η(ωk−ωk−2 ∓ 2�)−1ν ′

k,

u0
k = η(ωk − ωk+2)−1μ′

k, v0
k = η(ωk − ωk−2)−1ν ′

k,

λ = η/2�, (A2)

with μk = 1 − δk,N , νk = 1 − δk,1, μ′
k = μk(1 − δk,N−1), and

ν ′
k = νk(1 − δk,2).

APPENDIX B: EXCITONIC COHERENCES

The approximate expression of the effective exciton propa-
gator up to second order in the exciton-phonon coupling V is
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written as

Gk2k1 (t) = Z
k1
B (t)

ZB

e−iω̂k1 t
[
1 − (

nk1 (t) + 1
)(

μ+2
k1

+ ν+2
k1

) − nk1 (t)
(
μ−2

k1
+ ν−2

k1

)]
δk2,k1 + Z

k1+1
B (t)

ZB

e−iω̂k1+1t
[
ei�̂k1+1t nk1+1(t)ν+2

k1+1

+ e−i�̂k1+1t
(
nk1+1(t) + 1

)
ν−2

k1+1

]
δk2,k1 + Z

k1−1
B (t)

ZB

e−iω̂k1−1t
[
ei�̂k1−1t nk1−1(t)μ+2

k1−1 + e−i�̂k1−1t
(
nk1−1(t) + 1

)
μ−2

k1−1

]
δk2,k1

+ Z
k1
B (t)

ZB

e−iω̂k1 t u0
k1

[(
nk1 (t) + 1

)
μ+

k1
+ nk1 (t)μ−

k1

]
δk2,k1+2 + Z

k1
B (t)

ZB

e−iω̂k1 t v0
k1

[(
nk1 (t) + 1

)
ν+

k1
+ nk1 (t)ν−

k1

]
δk2,k1−2

+ Z
k2
B (t)

ZB

e−iω̂k2 t v0
k2

[(
nk2 (t) + 1

)
ν+

k2
+ nk2 (t)ν−

k2

]
δk2,k1+2 + Z

k2
B (t)

ZB

e−iω̂k2 t u0
k2

[(
nk2 (t) + 1

)
μ+

k2
+ nk2 (t)μ−

k2

]
δk2,k1−2

+ Z
k1+1
B (t)

ZB

e−iω̂k1+1t
[
ei�̂k1+1t nk1+1(t)μ+

k1+1ν
+
k1+1 + e−i�̂k1+1t

(
nk1+1(t) + 1

)
μ−

k1+1ν
−
k1+1

]
δk2,k1+2

+ Z
k1−1
B (t)

ZB

e−iω̂k1−1t
[
ei�̂k1−1t nk1−1(t)μ+

k1−1ν
+
k1−1 + e−i�̂k1−1t

(
nk1−1(t) + 1

)
μ−

k1−1ν
−
k1−1

]
δk2,k1−2, (B1)

where nk(t) = [exp(β� + iδ�
(2)
k t) − 1]−1. At time t = 0,

nk(t = 0) reduces to the average phonon number at thermal
equilibrium n̄ = [exp(β�) − 1]−1.

APPENDIX C: FOURTH-ORDER ENERGY CORRECTION

To third order, the energy correction ε
(3)
k,n vanishes owing to

the symmetry of the coupling Hamiltonian V . By contrast, the
fourth-order energy correction is written as

ε
(4)
k,n = δω

(4)
k + nδ�

(4)
kn , (C1)

where δω
(4)
k and δ�

(4)
kn are the fourth-order correction to the

exciton energy and to the phonon energy, respectively. They
are defined as

δω
(4)
k = 2η

(
μ+2

k u+
k + ν+2

k v+
k

) − 2ηλ(μ+
k + ν+

k )2 + η
(
μ+2

k u0
k

+ ν+2
k v0

k

) − η
(
μ+2

k + ν+2
k

)
(μ+

k + ν+
k ) (C2)

and
δ�

(4)
k,n = η(n + 3)

(
μ+2

k u+
k + ν+2

k v+
k

) + η(n − 1)

× (
μ−2

k u−
k + ν−2

k v−
k

) − ηλ(n + 3)(μ+
k + ν+

k )2

+ ηλ(n − 1)(μ−
k + ν−

k )2 + ηu0
k

[
(n + 2)μ+2

k

+ nμ−2
k + 2(n + 1)μ+

k μ−
k

] + ηv0
k

[
(n + 2)ν+2

k

+ nν−2
k + 2(n + 1)ν+

k ν−
k

] − η(n + 2)
(
μ+2

k + ν+2
k

)
× (μ+

k + ν+
k ) − ηn

(
μ−2

k + ν−2
k

)
(μ−

k + ν−
k )

− η(n + 1)
(
μ−2

k + ν−2
k

)
(μ+

k + ν+
k )

− η(n + 1)
(
μ+2

k + ν+2
k

)
(μ−

k + ν−
k ). (C3)

Equation (C3) shows that the energy correction of a single
phonon is not well defined owing to the nonlinear dependence
of nδ�

(4)
k,n versus the phonon number n. To overcome this

difficulty, a mean field procedure is applied. To proceed, the
effective energy of a single phonon �̂k is defined according
to the relation 〈n� + nδ�

(2)
k + nδ�

(4)
k,n〉 = n̄�̂k , where the

symbol 〈· · ·〉 is an average over the phonon number according
to the density matrix ρB . The correction of the phonon energy
up to fourth order is finally expressed as δ�

(4)
k = 〈nδ �

(4)
k,n〉/n̄.

It is easily extracted from Eq. (C3) by using the relation
〈n2〉 = 2n̄2 + n̄.
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