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Signatures of Wigner molecule formation in interacting Dirac fermion quantum dots
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We study N interacting massless Dirac fermions confined in a two-dimensional quantum dot. Physical
realizations of this problem include a graphene monolayer and the surface state of a strong topological insulator.
We consider both a magnetic confinement and an infinite mass confinement. The ground-state energy is computed
as a function of the effective interaction parameter α from the Hartree-Fock approximation and, alternatively, by
employing the Müller exchange functional. For N = 2, we compare those approximations to exact diagonalization
results. The Hartree-Fock energies are highly accurate for the most relevant interaction range α <∼ 2, but the Müller
functional leads to an unphysical instability when α >∼ 0.756. Up to 20 particles were studied using Hartree-Fock
calculations. Wigner molecule formation was observed for strong but realistic interactions, accompanied by a
rich peak structure in the addition energy spectrum.
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I. INTRODUCTION

Massless two-dimensional (2D) Dirac fermions are of
central importance in several condensed matter applications
of current interest, in particular, for monolayer graphene1,2

and for the surface state of a 3D strong topological insulator
(TI).3,4 These systems offer readily accessible tabletop realiza-
tions of relativistic quantum physics, where electron-electron
interactions are typically much stronger than in atomic physics.
Interactions are characterized by an effective fine structure
constant α, where for graphene α ≈ 1 to 2, depending on
experimental details,2 while in TIs α is probably somewhat
smaller due to the large dielectric constant of the relevant
thermoelectric materials (e.g., Bi2Se3 or Bi2Te3).5 We study
here the problem of N massless 2D Dirac quasiparticles
confined to a circular quantum dot of radius R and interacting
through the Coulomb potential (with prefactor ∝ α). Quantum
dots formed in 2D semiconductor heterostructures have been
studied in great detail over the past two decades, both
experimentally6 and theoretically.7 Given the exceptional
properties of Dirac fermions and the unique properties of
the underlying materials, it is of considerable practical and
fundamental interest to investigate Dirac fermion quantum
dots. Since the commonly employed electrostatic gating6 is
problematic due to the (recently observed)8 Klein tunneling
phenomenon, the question of how to confine Dirac fermions
in a controlled manner arises. While quasibound states induced
by electrostatic potentials have also been studied,9–13 here we
consider two types of stable confinement: (i) an infinite-mass
boundary condition14–16 on the single-particle wave function
at r = R and (ii) confinement by a spatially inhomogeneous
magnetic field profile.17–20 Graphene dots have already been
investigated experimentally by several groups,21–26 where
confinement has so far been created lithographically. While
this (approximately) corresponds to case i above, such a
procedure may give rise to uncontrolled disorder effects along
the boundary, and route ii may offer a promising alternative
for future experiments (see also Ref. 27). For the TI surface
state, we are not aware of experimental reports of quantum
dot physics, but confinement should be achievable as well
using, for example, suitably arranged close-by ferromagnetic
layers.

On the theoretical side, another difficulty arises from the
Dirac nature of the quasiparticles when one attempts to include
electron-electron interactions. For the N -particle problem,
where a first-quantized formulation generally offers the most
natural route,7 the problem arises from the unboundedness of
the single-particle Dirac Hamiltonian in Eq. (1). This causes
the Brown-Ravenhall28 “disease”: the unbounded spectrum
allows particles to lose arbitrary amounts of energy by transfer-
ring their energy in (real) scattering events to other particles. To
circumvent this problem, suppose that the chemical potential
is located just above the Dirac point. We then follow Sucher29

and confine the Hilbert space to positive-energy eigenstates
of the full single-particle problem; that is, we assume an
inert filled Dirac sea. This projection approach has been
successfully employed in the same context before,19,20 and
one can also analyze other values for the chemical potential.
The accuracy of this method was carefully assessed in Ref. 19.
In short, the presence of a spectral gap due to confinement
allows to implement Sucher’s no-pair approximation29 since
electron-hole pair excitations neglected in this approach have
to overcome the gap.

Below we show and compare results from three different
computational approaches. In particular, we perform self-
consistent Hartree-Fock (HF) calculations and, in addition,
study a similar self-consistent variational procedure using
the so-called Müller density matrix functional (replacing the
Fock term).30,31 In atomic physics applications, the Müller
functional is sometimes superior to the HF approach and is
valuable because it yields a lower bound for the ground-state
energy.31 We note that HF calculations for graphene dots with
infinite-mass confinement have also been carried out by other
groups.32,33 While the HF approximation is known to provide
an upper bound for the exact (within Sucher’s projection
approach) ground-state energy,20 the Müller functional is again
expected to generate a variational lower bound. We compare
results from those two approaches to exact diagonalization
computations for N = 2 interacting Dirac quasiparticles. The
model and those three numerical approaches are described
in Sec. II, while the comparison for N = 2 can be found in
Sec. III. As expected, the exact results are always bracketed by
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the results obtained with the Müller functional and under the
HF approximation. However, within the range α � 2 studied
in this work, we find that the HF results are much closer to
the exact results and provide a rather accurate approximation.
However, results based on the Müller functional show an
unphysical divergence when α >∼ 0.756 and are less accurate
than the HF results for small α. (Of course, for α → 0, all three
methods recover the correct noninteracting results.) Having
established the HF approach as a highly accurate approach for
α � 2 and N = 2, we continue in Sec. IV with a presentation
of HF results for N > 2 Dirac particles in a quantum dot with
infinite-mass confinement. Besides the ground-state energy,
we study various physical observables like the particle density
and the spin density. Our results suggest that in a confined
geometry Dirac particles can form a “Wigner molecule” as pre-
viously discussed for Schrödinger particles in semiconductor
dots.7,34–36 When the Coulomb interactions dominate over the
kinetic energy, a Wigner crystal can be formed where electrons
spontaneously order in a crystalline structure. The presence of
a confining potential makes this Wigner crystallization more
favorable,35 and although no Wigner crystal is expected for
bulk graphene,37 we find that the confined geometry allows
for a finite-size Wigner “molecule” even for Dirac fermions.
The paper concludes with a discussion in Sec. V.

II. MODEL AND COMPUTATIONAL APPROACHES

In this section we discuss the model studied in this work
and address the different calculational schemes employed to
study the N -particle problem for interacting Dirac fermions in
a quantum dot.

A. Single-particle model

We consider a single species of massless 2D Dirac fermions
described by the single-particle Hamiltonian (−e < 0 is the
electron charge)

H0 = vF σ ·
(

p + e

c
A
)

+ Mσ3, (1)

where σ = (σ1,σ2) and the Pauli matrices σi refer to the
sublattice structure of the honeycomb lattice for graphene2 or
to the electronic spin degree of freedom for the TI surface
state.3 The Fermi velocity in graphene is vF ≈ 106 m/s,
while the corresponding value for the TI surface state is
approximately half this value. A single Dirac cone as in
Eq. (1) can be realized for a TI surface,3 but in graphene
there generally is a fourfold degeneracy due to the valley and
spin degrees of freedom.2 For graphene, we then assume a
spin- and valley-polarized situation where the single-valley
theory [Eq. (1)] gives useful predictions.38 In fact, our basic
qualitative conclusion, that is, that Wigner crystallization is
possible in graphene dots, is also found from HF calculations
including the spin and valley degrees of freedom.39 In addition,
we allow for a static vector potential A(r) corresponding to
inhomogeneous magnetic fields or, in the case of graphene,
also to strain-induced pseudomagnetic fields.2 Finally, M(r)
corresponds to a mass term. To form a quantum dot, where
Dirac fermions are confined to a bounded spatial region, say,
a disk of radius R around the origin, we now consider the
two possibilities mentioned in Sec. I. We study circularly

symmetric cases, where the total angular momentum operator
J = −ih̄∂φ + h̄σz/2 is conserved and has eigenvalues h̄j with
half-integer j ≡ m + 1/2, m ∈ Z. Single-particle solutions to
H0ψ = Eψ can then be written as

ψm(r,φ) = eimφ

(
ψ1,m(r)

ieiφψ2,m(r)

)
. (2)

In what follows, we measure energies (lengths) in units of
h̄vF /R (R), and we always focus on E > 0 solutions.

B. Infinite mass confinement

A well-known way to describe confinement theoretically
is to impose an infinite-mass boundary condition on the wave
function [Eq. (2)] at r = 1, that is, M(r < 1) = 0 and M(r >

1) → ∞. As shown by Berry and Mondragon,14 the effect
of M(r) in Eq. (1) is then fully captured by the boundary
condition

ψ1,m(1) = ψ2,m(1), (3)

stating that no current flows through the boundary. With the
Bessel function Jm, the Dirac equation is solved for r < 1 by
the ansatz

ψ1,m(r) = AJm(Er), ψ2,m(r) = AJm+1(Er),

where boundary condition (3) yields the energy quantization
condition14

Jm(Emn) = Jm+1(Emn). (4)

This equation has to be solved numerically. (Note, again, that
E is given in units of h̄vF /R and r in units of R.) Positive-
energy solutions for given m are then labeled by n ∈ N. We
mention in passing that there are no zero-energy solutions.14

The normalization factor A is

Amn = [
π

(
J 2

m − Jm−1Jm+1 + J 2
m+1 − JmJm+2

)]−1/2
, (5)

where all Bessel functions are evaluated at Emn. To summarize,
the single-particle solutions ψa under a circular infinite-mass
confinement are labeled by a = (m,n), with m ∈ Z and n ∈
N. The eigenenergies Ea follow by solving Eq. (4) and the
eigenspinor is (r < 1)

ψa(r,φ) = Aae
imφ

(
Jm(Ear)

ieiφJm+1(Ear)

)
. (6)

For a detailed discussion of the single-particle spectrum, see
Ref. 15.

C. Magnetic confinement

The second possibility for confining Dirac quasiparticles
is to employ spatially inhomogeneous magnetic fields. This
possibility has been explored theoretically before,17–20 and
we study the simplest case of a piecewise constant magnetic
field, B(r) = B�(r − 1), with B > 0 and the Heaviside step
function �(x). The eigenenergies for this single-particle
problem can be found numerically and were given in Ref. 20.
The spectrum contains “dot states,” with probability density
concentrated in the disk region r < 1, plus relativistic bulk
Landau states for r > 1. The Landau states are weakly
perturbed by the presence of the dimensionless “missing flux”
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parameter δ := R2/2
2, where 
 := √
c/eB is the magnetic

length. Because of this perturbation, Landau level energies
are slightly shifted away from their standard bulk value, but
dot states can be clearly distinguished in the single-particle
spectrum. With chemical potential chosen such that all bulk
Landau states below the first Landau state, E(1) := √

2R/
 (in
units of h̄vF /R), are filled, the relevant dot states are in the
window 0 < Ea < E(1). All eigenstates can again be labeled
by a = (m,n), that is, using angular momentum j = m + 1/2
and the index n ∈ N. For given missing flux δ, there are Nb(δ)
dot states, where Nb increases with increasing δ (see Ref. 20).
The N -particle problem can then be studied for N � Nb(δ)
only. In fact, due to the repulsive interactions, the maximum
number of bound electrons may be lowered even farther.20 For
the infinite-mass confinement (case i), there is no constraint
on the number of particles held by the dot.

We now add electron-electron interactions to the N -particle
problem. The Coulomb interaction matrix elements are given
in terms of the eigenspinors ψa ,

Vaa′b′b := α

∫
drdr ′

|r − r ′| (ψ†
a · ψb) (r) (ψ†

a′ · ψb′ ) (r ′), (7)

with Va′abb′ = Vaa′b′b. Due to the total angular momentum
conservation, only matrix elements with ma + ma′ = mb +
mb′ do not vanish. Interaction matrix elements with large
momentum exchange k = mb − ma (k ∈ Z) are numerically
small,19 but all possible values of k (for a chosen basis size)
are taken into account below. For the magnetic dot (case ii),
the matrix elements (7) are most conveniently evaluated by
expanding ψa in conventional relativistic Landau level states.20

For infinite-mass confinement (case i), after inserting Eq. (6)
into Eq. (7), some algebra (cf. also Appendix B in Ref. 20)
yields

Vaa′b′b = (4π )2αAaAa′Ab′Ab

∞∑
l=0

Ck,l

×
∫ 1

0
dr r−l(Jma

(Ear)Jmb
(Ebr)

+ Jma+1(Ear)Jmb+1(Ebr))

×
∫ r

0
dr ′ (r ′)l+1(Jma′ (Ea′r ′)Jmb′ (Eb′r ′)

+ Jma′ +1(Ea′r ′)Jmb′ +1(Eb′r ′)). (8)

The coefficient Ck,l vanishes when l + |k| is odd or when
l < |k|. For k = l = 0, we have Ck,l = 1/2. In all remaining
cases, we obtain

Ck,l = (2l − 1)!!

2l+1l!

(l+|k|)/2∏
n=1

(n − 1/2) (n − l − 1)

n(n − l − 1/2)
.

Equation (8) is then evaluated by numerical integration
routines and yields the interaction matrix elements.

D. Numerical approaches

Next, we briefly describe three numerical approaches to
obtaining the ground-state energy for a quantum dot containing
N Dirac fermions, namely, HF simulations, the Müller density
matrix formulation, and exact diagonalization (for N = 2). To

have a well-defined many-body problem, we follow Sucher29

and restrict ourselves to the projected single-particle space;that
is, we assume an inert filled Dirac sea. Hence summations over
a = (m,n) will only include positive-energy single-particle
solutions (Ea > 0). In the numerical calculations, the basis
size (i.e., the number K of single-particle orbitals spanning the
Hilbert space) was always chosen sufficiently large to ensure
convergence. Failure to converge indicates an instability of the
method, as we will see in the case of the Müller functional for
strong interactions.

First, the HF approach amounts to self-consistent mini-
mization of the functional,

EHF[γ ] =
∑

a

Eaγaa +1

2

∑
aa′bb′

(Vaa′b′b − Vaa′bb′ )γa′b′γab, (9)

where the density matrix γ obeys γ 2 = γ and tr(γ ) = N .
In our case, γ is a real symmetric matrix. The numerical
algorithm to obtain the HF ground state is standard and can
be found, for instance, in Ref. 20. Second, the Müller density
matrix formulation employs a different form for the exchange
term, where one minimizes the functional30,31

EM[γ ] =
∑

a

Eaγaa + 1

2

∑
aa′bb′

(Vaa′b′bγa′b′γab

−Vaa′bb′ (γ 1/2)a′b′ (γ 1/2)ab), (10)

where γ is, again, a real symmetric matrix with tr(γ ) = N , but
now γ 2 � γ . A stable numerical approach to minimization of
EM[γ ] in Eq. (10), the so-called projected gradient algorithm,
has been formulated and tested before.40,41 We have employed
precisely the same method here. Finally, the exact numerical
diagonalization of the full many-body problem is only possible
for small particle numbers due to the exponential increase
in computational complexity with increasing N . We have
therefore carried out exact diagonalization calculations only
for N = 2 Dirac fermions, primarily to check the accuracy
of the two computationally less expensive but approximate
alternative approaches. Details of the exact diagonalization
approach have been described in Ref. 19.

III. COMPARISON OF METHODS: N = 2

In this section, we show and compare the results of the three
approaches described in Sec. II for N = 2 Dirac fermions. For
the infinite-mass confinement case, results for the ground-state
density E(α) are shown in Fig. 1. Clearly, the numerically
exact result obtained from exact diagonalization is bracketed
by the HF prediction from above and by the Müller result from
below. The HF approximation provides very accurate estimates
for E(α), while the Müller functional is only reliable for very
small α. In fact, the application of the Müller functional to
the free-space case reveals an intrinsic divergence for strong
interactions α > αc, where the critical value is (see Ref. 42,
correcting an earlier attempt)43

αc = 2

y + 1/y
≈ 0.756, y = �4(1/4)

8π2
. (11)

Although this critical value was derived for the case of a
vanishing magnetic field, we anticipate that it applies also
to the confined geometry, with or without a magnetic field,
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FIG. 1. (Color online) Interaction contribution to the ground-state
energy, E(α) − E(0) (in units of h̄vF /R), vs the fine structure constant
α for an infinite-mass confined dot containing N = 2 particles.
Results for the three approaches are shown; see text. HF results
are very close to the exact diagonalization results, while the Müller
functional gives a lower bound. Straight lines are a guide for the eye
only. Inset: Same for the Müller functional, with a different basis
size K . Note the absence of convergence for large α.

since it arises from the fact that both the kinetic energy and the
Coulomb singularity scale as inverse length for short distances;
that is, a regular magnetic field is clearly irrelevant for the
singular behavior. (Such a result has recently been established
in a related situation.)44 For α > αc, the exchange part in
the Müller functional [Eq. (10)] provides a strong attraction
that effectively forces particles to form a droplet. In our case,
this singular behavior implies that the “ground-state” energy
drops to −∞. In numerical computations, this is reflected by
the fact that the energy becomes cutof dependent, going to
−∞ as the basis size K grows. This phenomenon is clearly
visible in the inset in Fig. 1, but a precise comparison of
the predicted critical value for αc [Eq. (11)] with numerics is
difficult. This singularity is an unphysical artifact of the Müller
density matrix approach and indicates that it is only useful for
α � 1. In contrast, the HF approximation is very close to the
exact value even for α = 2.

A very similar picture emerges from the corresponding
study of the magnetically confined dot (see Fig. 2). In both
cases and for all α � 2, the interaction energy obtained under
the HF approximation is less than 1% above the corresponding
exact value. In the remainder of the paper, we study N > 2
particles using the HF approach. We have compared the results
of the Müller functional for N > 2 to the corresponding HF
results as well, and with increasing N they come closer. Hence
we expect that the relative accuracy of the HF results (at the
least) does not deteriorate for N > 2.

IV. HARTREE-FOCK RESULTS FOR N > 2 PARTICLES

In the previous section, we have established that HF
calculations are able to provide very accurate estimates for
the ground-state energy of Dirac fermions in a circular
quantum dot. In this section, we describe the results of our
HF calculations for up to N = 20 particles. For clarity, we
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FIG. 2. (Color online) Same as Fig. 1, but for the magnetically
confined case with 
 = R. The basis size K here corresponds to
2|mmin|.

focus on the infinite-mass confinement case, but qualitatively
similar results were also found for the magnetic confinement.

Figure 3 shows HF results for the N -dependent addition
energy,

(N ) := E(N + 1) + E(N − 1) − 2E(N ), (12)

both for α = 2 and for the noninteracting case (α = 0). The HF
ground-state energy E(N ) obtained from our self-consistent
numerical calculation is shown in the inset in Fig. 3. A peak in
the addition energy for some N implies a higher stability of the
N -particle dot. In analogy to atomic and nuclear physics, this
N is often referred to as the “magic number.”7 While already
the noninteracting dot has some structure in the addition energy
spectrum (due to the single-particle spectrum), for example,
the small peaks at N = 7 and N = 11 visible in Fig. 3, the
interacting case is characterized by more pronounced features.

2         4 6 8 10 12 14 16 18
N

0

2

4

6

8

Δ
(N

)

α=0.0
α=2.0

4 8 12 16 20
N

0

200

400

600

E
(N

)

FIG. 3. (Color online) HF results for the addition energy (N )
[Eq. (12)] vs the particle number N for a dot formed by infinite-mass
confinement. Results are shown for α = 2 [(red) circles] and for
α = 0 [(black) squares]; straight lines are a guide for the eye only.
Inset: HF results for the energy E(N ) vs N , for the same interaction
parameters.
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FIG. 4. (Color online) HF results for the radial density profile
ρ(r) vs r for N = 9 particles with several α.

For α = 2, we observe clear peaks (see Fig. 3) corresponding
to the magic numbers N = 4, 7, 11, 13, 15, and 18. Although
some of these numbers coincide with the noninteracting ones,
it is evident that the addition energy spectrum is drastically
changed by electron-electron interactions in such a finite-size
system.

The resulting ground-state density ρ(r) is rotationally
invariant and can therefore be analyzed in terms of the angular-
averaged density ρ(r), which is normalized as

∫ 1
0 rdrρ(r) =N .

Figure 4 shows HF results for the density ρ(r) for N = 9
and several α. In the noninteracting case (α = 0), the density
profile is rather smooth, but with increasing α the particles are
pushed toward the boundary and form a ring. When comparing
the shoulder-like feature apparent in Fig. 4 (around r ≈ 0.5) to
the corresponding correlation plot (see below), we find that no
significant particle weight is contained in the shoulder; that is,
with high probability all particles are close to the boundary. For
N = 19 particles, a richer structure emerges (see Fig. 5), with
three different spatial “shells” emerging for strong interactions.
In particular, by integrating over the density curve shown , we
find that 1 particle is located near the origin, 3 particles are
contained in a second shell around r ≈ 0.45, and the remaining
15 particles are close to the boundary.

To obtain more detailed insight we next study the density-
density correlation function

g(r,r ′) = 〈ρ(r)ρ(r ′)〉, (13)

0 0.2 0.4 0.6 0.8 1
r

0

1

2

3

4

ρ(
r)

/N

α=0.0
α=0.5
α=1.0
α=1.5
α=2.0

N=19

FIG. 5. (Color online) Same as Fig. 4, but for N = 19.
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FIG. 6. (Color online) Correlation plot g(r,r ′) for N = 9 par-
ticles and α = 2, corresponding to Fig. 4. The position r ′ is fixed
at (0.95,0), and the color scale indicates the correlation degree for
different r within the quantum dot.

where r ′ is kept fixed. Monitoring g(r,r ′) as a function of
r , the spatial arrangement of the particles in the dot can be
revealed.

Two-dimensional correlation plots for N = 9 and N = 19
(with α = 2) are shown in Figs. 6 and 7, respectively. In these
plots, we keep r ′ = (0.95,0) fixed and show the correlations
as a function of r = (x,y) within the dot. For N = 9, Fig. 6
is consistent with all electrons being arranged equidistantly
on a ring close to the boundary. The correlation plot in Fig. 7
for N = 19 particles also confirms the conclusions reached
from the analysis of the density plot in Fig. 5. The outermost
spatial shell (near the boundary) holds 15 particles, a second
ring contains 3 particles, and 1 particle is located at the center.
The combined analysis of density and correlation plots for
all particle numbers under study, N � 20, results in the shell
filling sequence in Table I.

These observations provide a signature for the onset of
Wigner molecule behavior; that is, we have a finite-size system
where Wigner crystallization sets in but quantum fluctuations
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FIG. 7. (Color online) Same as Fig. 6, but for N = 19.
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TABLE I. Shell filling sequence for a 2D interacting Dirac
fermion dot with circular hard-wall confinement. N cl

i denotes the
number of particles in the ith spatial shell obtained from the
minimization of the classical electrostatic energy [Eq. (14)]. Ni is
the corresponding HF quantity for α = 2; see the text.

N N1 N2 N3 N cl
1 N cl

2 N cl
3

2 2 – – 2 – –
3 3 – – 3 – –
4 4 – – 4 – –
5 4 – – 5 – –
6 6 – – 6 – –
7 7 – – 7 – –
8 8 – – 8 – –
9 9 – – 9 – –
10 10 – – 10 – –
11 1 10 – 11 – –
12 1 11 – 1 11 –
13 1 12 – 1 12 –
14 1 13 – 1 13 –
15 2 13 – 1 14 –
16 3 13 – 1 15 –
17 1 3 13 2 15 –
18 1 3 14 2 16 –
19 1 3 15 3 16 –
20 1 3 16 3 17 –

are still important.35,36 For comparison to the deep Wigner
crystallized limit, we now briefly discuss the classical limit
(which here is defined by taking the limit α → ∞), where
the electrostatic energy dominates completely and the kinetic
energy can be neglected. The repulsive interaction then tries
to maximize the distance between particles, leading to the
formation of spatial shells. The shell filling sequence for
a harmonically confined Wigner molecule (of Schrödinger
fermions) is well known,7,34,35 and HF calculations have been
able to capture the Wigner molecule formation.36 For the 2D
circular hard-wall confinement considered here, however, a
different shell filling sequence follows by minimization of the
classical electrostatic energy Ec(N ) with respect to all particle
positions r i=1,...,N within the disk (ri � R = 1):

Ec(N ) =
N∑

i<j

α

|rj − r i | . (14)

The first possible configuration has all particles arranged
equidistantly on a unit circle, resulting in the classical energy

E(1)
c (N ) = Nα

2
×

{∑(N−1)/2
k=1

1
sin(πk/N) , N odd,∑(N−2)/2

k=1
1

sin(πk/N) + 1
2 , N even.

(15)

If, instead, one particle resides at the origin plus N − 1
particles on the outer ring as above, the energy of this second
configuration is

E(2)
c (N ) = E(1)

c (N − 1) + (N − 1)α. (16)

For N � 16, numerical minimization of Eq. (14) shows
that these two configurations always yield the lowest-
energy solutions. In particular, E(1)

c < E(2)
c for N < 12

(see Table I). For 16 < N � 20, an additional inner ring is
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r
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-1

-0.5

0

0.5

s r
(r
)/
N

α=0.0
α=0.5
α=1.0
α=1.5
α=2.0

N=9

FIG. 8. (Color online) HF results for the spin density sr in the
radial direction vs r for N = 9 and various α.

formed containing N cl
1 > 1 particles, surrounded by the outer

ring containing N cl
2 = N − N cl

1 particles. For all N � 20, the
classical lowest-energy solution thus has at most two spatial
shells, but configurations with three shells as observed in
the quantum calculation are energetically quite close. The
agreement between the shell filling sequence observed for
α = 2 and in the classical limit is not perfect but indicates
that we are already rather close to the classical limit for α = 2
and have a Wigner molecule, despite the theoretically predicted
absence of Wigner crystallization in bulk graphene.37 Even for
α = 1, the above density plots suggest that incipient Wigner
molecule behavior can be observed. (Of course, this is a smooth
crossover and not a phase transition.) However, the fact that
there are still substantial quantum fluctuations for α = 2 is
also clear from the addition spectrum in Fig. 3. In the deep
classical limit, there is much less pronounced structure in the
addition energy spectrum.

Finally, we point out that there is also interesting spin
texture in such a quantum dot. The Pauli matrices in Eq. (1)
are directly connected to the electronic spin density in a TI
surface via the relation3,38

s(r) = (sx,sy)T = h̄

2
〈êz × σ 〉. (17)

For the case of graphene, the Pauli matrices refer to the
sublattice degree of freedom, which is not easily accessible
for experiments. The spin density, Eq. (17), points within
the 2D plane and is always isotropic, that is, independent of
the angular variable. We find that only the radial component
sr (r) := s · êr (with êr = r/r) does not vanish. The resulting
nontrivial spin texture is shown in Fig. 8 for N = 9 and
several α.

V. DISCUSSION

In this paper, we have discussed interaction effects in
circular 2D quantum dots where the particles are massless
Dirac fermions. Physical realizations of the studied model
are given by graphene and the surface state of a TI. For the
case of two particles, we have compared three methods to
establish that HF calculations provide highly accurate results
for physically relevant interaction strengths. An alternative
method based on the Müller density matrix functional was
also studied, but since Müller’s ansatz for the two-particle
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density respects the right normalization condition but sacrifices
its positivity, it suffers from an unphysical divergence for
sufficiently strong interactions. An improvement would have
to take this drawback into account, while not dropping
the sum rule for the density and the convexity of the
functional.

The case of N � 20 particles has then been studied
using HF simulations. The resulting addition spectrum of the
quantum dot reveals pronounced magic numbers that cannot be
explained by a noninteracting picture. Moreover, the density
profiles and the density-density correlation functions show
that we are rather close to the classical limit already for

experimentally relevant interaction parameters (α ≈ 1 to 2).
The formation of spatial shells is a clear signature of a
Wigner molecule, and we therefore predict that in such a
finite-size system the usual argument37 for the absence of
Wigner crystallization of Dirac fermions can be effectively
circumvented.
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