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Defect-induced resonances and magnetic patterns in graphene
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We investigate the effects of point and line defects in monolayer graphene within the framework of the
Hubbard model, using a self-consistent mean-field theory. These defects are found to induce characteristic
patterns into the electronic density of states and cause nonuniform distributions of magnetic moments in the
vicinity of the impurity sites. Specifically, defect-induced resonances in the local density of states are observed
at energies close to the Dirac points. The magnitudes of the frequencies of these resonance states are shown to
decrease with the strength of the scattering potential, whereas their amplitudes decay algebraically with increasing
distance from the defect. For the case of defect clusters, we observe that with increasing defect-cluster size the
local magnetic moments in the vicinity of the cluster center are strongly enhanced. Furthermore, nontrivial
impurity-induced magnetic patterns are observed in the presence of line defects: zigzag line defects are found to
introduce stronger-amplitude magnetic patterns than armchair line defects. When the scattering strength of these
topological defects is increased, the induced patterns of magnetic moments become more strongly localized.
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I. INTRODUCTION

In situ formation of atomic-size defects has recently been
observed in graphene layers, using transmission electron
microscopy.1 Specifically, it has been demonstrated that
certain topological defects can be induced by irradiation with
electron beams, thus raising the possibility that more complex
impurity structures, such as specifically tailored line defects,
can in principle be achieved using similar experimental
techniques. The effects of such designer impurity structures
on the nanoscale are interesting, as they can have profound
effects on the electronic properties of the material. Similar
to anisotropic superconductors, graphene is known to have
a reduced electronic phase space close to its Fermi surface,
resulting in a linear low-energy density of states.2 For the case
of unconventional superconductors, the introduction of such
defects has been shown to have profound consequences, such
as formation of low-energy bound states (or quasibound states)
and localization of quasiparticles.3 In this paper we show that
these features have an analog in metallic graphene, in particular
when magnetic fluctuations are taken into account.

The effects of impurities in graphene are of particular
interest because their presence has been shown to strongly
reduce the otherwise remarkably high electronic mobility in
this compound4,5 and to change its electronic band structure.6,7

Furthermore, impurity-induced local puddles of charge carri-
ers have been proposed to be responsible for the observed min-
imum conductivity.5 Very recently, impurity-induced bound
states have been experimentally observed using scanning
tunneling microscopy.8 Specifically, it has been shown that
the tunneling current amplitude of these single-impurity bound
states decays inversely with the square of the distance from the
defect. Because of this algebraic dependence, they are in fact
quasibound states. It has also been suggested that such defects
induce local magnetic moments,7,9 which in turn can cause
global ferromagnetic instabilities with a transition temperature
that scales as the square root of the impurity concentration.8

A number of properties of graphene sheets with point
impurities have already been established.8,10–12 In particular,
in a recent experiment extended one-dimensional defects were

realized,13 demonstrating that the creation of designer defects
in graphene sheets is becoming realistic. In this paper, we
investigate the effects of such topological defects on the
local densities of state and on the magnetization patterns.
Specifically, we study the impurity-doped Hubbard model14

on a graphene sheet geometry, where we consider the cases of
single impurities and one-dimensional impurity clusters.

This manuscript is organized as follows: In the following
section, we discuss the model, the approximations used,
and the quantities we investigate. In the subsequent section,
we show results for the induced density of states and for
the magnetization in the impurity-doped Hubbard model.
We conclude with a section summarizing our results and
discussing possible experimental implications.

II. MODEL

We consider the Hubbard model in the presence of
nonmagnetic impurities, given by the Hamiltonian

H = t

N∑
<i,j>,σ

(c†iσ cjσ + h.c.) + U

N∑
i

niσ nu−σ

+Ud

Ndefect∑
i,σ

niσ , (1)

where the sums extend over the two-dimensional honeycomb
lattice, t = −2.7 eV is the orbital hopping integral, and ciσ ,c

†
iσ

are electron creation and annihilation operators, respectively.
The second term denotes the on-site Coulomb repulsion, where
niσ is the number operator. The third term describes the
scattering of the electrons by local defects. When a strong
impurity, such as a vacancy, is created, the scattering strength
Ud goes toward infinity. In the following, we treat this model
within a mean-field approximation, i.e., the Coulomb repulsion
term is approximated as

Hmf = U

N∑
i

(〈niσ 〉ni−σ − 〈niσ 〉〈ni−σ 〉). (2)
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We choose U = 1.2t , leading to a semimetallic phase with a
conical dispersion, as observed in graphene. This parameter
choice is below the critical value (U/t)c = 2.2,4,5 at which
there is a quantum phase transition to an antiferromagnetic
insulating phase. The mean charge density 〈niσ 〉 is computed
self-consistently from

〈niσ 〉 =
∫

dEgiσ (E)f (E − Ef ), (3)

where giσ (E) = ∑
j �∗

i (Ej )�i(Ej )δ(E − Ej ) is the local
electronic density of states and f (E − Ef ) is the Fermi func-
tion. This self-consistent solution provides the local densities
of states and the spin densities Mi = (〈niσ 〉 − 〈ni−σ 〉)/2 on
each atom. The calculations discussed in the following section
are performed in real space on finite 960-site honeycomb
lattices.

III. RESULTS AND DISCUSSION

A. Single vacancy

Let us start by considering the effects of a single impurity
in graphene. Fig. 1(a) shows the calculated zero-energy local
density of states for a graphene sheet in the vicinity of a
vacancy. A localized state is observed to form in the vicinity
of the defect site, as has been reported previously,11,15 with a
characteristic triangular spatial pattern that is commensurate
with the lattice symmetry. For the parameters chosen here,
i.e., Ud/t = 1000 (corresponding to a vacancy), the energy

of the induced bound state is at −0.1 eV. In Fig. 1(b), we
compare the local densities of states at a site next to the
vacancy and at another site far away from it. The bound
state is clearly absent in the latter case, which instead shows the
well-known Dirac cone shape. Note that the linear dispersion
is slightly smeared out by the finite broadening (γ /t = 0.083)
obtained as the delta functions in giσ (E) are replaced by
Lorentzians.

Next we examine the spatial decay of the amplitude of
the defect-induced bound state. As observed in Fig. 1(c),
the magnitude of the impurity peak can be fitted well by
a power law proportional to the squared inverse of the
distance from the vacancy, which originates from the r−1

decay of the bound-state wave function,11 and which is hence
actually a quasibound state with power-law decay. This is
the same algebraic decay which has recently been reported by
scanning tunneling experiments.8 Furthermore, similar power-
law decay has been observed for quasibound states around
nonmagnetic impurities in anisotropic superconductors along
certain directions.16 In Fig. 1(d), we study the dependence
of the resonance energy on the magnitude of the impurity
scattering strength. The observed dependence is in agreement
with the resonant scattering behavior reported by Skrypnyk
et al.17 and Wehling et al.,18 i.e., with the resonance energy
(Er ) satisfying

Ud = W 2

Erln
∣∣ E2

r

W 2−E2
r

∣∣ , (4)

FIG. 1. (Color online) (a) Zero-energy local density of states in a graphene sheet with a single vacancy. (b) Local density of states at a
lattice site next to the vacancy (open circles) and at a site far away from it (black solid line). (c) Spatial dependence of the intensity of the
low-energy peak in the local density of states, corresponding to an impurity-induced quasibound state. The solid curve is a fit to a r−2 decay.
(d) Resonance energy at the impurity site as a function of the scattering strength Ud . The red solid curve is a fit to the asymptotic regime
discussed in the text, yielding a bandwidth W = 5.6 eV.
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where W is the bandwidth. When a vacancy is created, Ud/t

is infinite, and the resonance peak is close to the Dirac point.
A fit to the asymptotic behavior Er = 1 − exp( W 2

2Ud
) in the

strong coupling regime indicates that for the present case the
bandwidth is 5.6 eV.19 When the on-site Coulomb repulsion
U/t is increased, we find that the resonance peak continues
to follow the same dependence as in Fig. 1(d). The fit shown
here is only for the regime of scattering strengths larger than
Ud/t = 4.

B. Line vacancies

Next, let us examine the effects of more extended defects in
graphene on the electronic density of states. In Fig. 2 we study
the local density of states in the vicinity of a zigzag line defect,
consisting of 13 contiguous vacancies in a graphene sheet. The
Hamiltonian parameters are chosen to be the same as for the
point defect discussed earlier. Similar to the case of a single
vacancy, we observe that the local density of states shows a
pronounced low-energy peak close to the impurity, indicating
localization of the charge carriers. As expected, the amplitude
of this induced resonance peak in the local density of states
is enhanced compared with the case of a single impurity. For
example, at the central site next to the line defect for the given
parameters the amplitude is greater by approximately a factor
of 2.2, a direct consequence of constructive interference of the
joint point defects. Furthermore, we find that the spatial decay
in the local-density states at the Dirac point is the same as
for the point defect when moving away from the line defect
in a perpendicular direction. As shown in the upper inset of
Fig. 2(a), it falls off with an inverse square power law along
the path indicated in the lower inset.

In contrast, the zero-energy local density of states parallel to
the line defect does not behave monotonically. In Fig. 2(b), we
plot the local density of states along a path parallel to the line
defect. It is evident that the magnitude of the defect-induced
bound state varies by two orders of magnitude along this cut.
Furthermore, in contrast to the perpendicular direction, an
M-shaped dependence in gi↓(E = 0) is observed, indicating
destructive interference close to the center of the defect, and

maxima at two nontrivial positions along the parallel cut. At
the resonance energy, on the other hand, gi↓(Er = −0.4 eV)
shows Gaussian behavior, with the maximum located at
the center of the impurity cluster, indicating constructive
interference.

Analogous bound-state phenomena have recently been
observed close to zigzag edges.20–22

C. Impurity clusters and random defects

The shape and size of impurity clusters is known to
profoundly affect the conductivity in the graphene sheet.
In particular, it is believed that the carrier concentration is
dramatically modified by the presence of extended defects
in the system.23 Here we examine the specific case of one-
dimensional zigzag vacancy clusters with variable length. In
Fig. 3, the effects of defect cluster size on the local and global
density of states are shown, using the same parameter choices
as in the previous sections.

As seen in Fig. 3(a), when the number of vacancy sites
(nd ) in the impurity cluster is gradually increased from 1
to 13, a significant feature in the local density of states is
that the intensity of the resonance peaks is enhanced due
to the formation of an impurity band in the vicinity of the
Dirac point. This is in agreement with a prediction of Pereira
et al.11 Second, the spin-up resonance is blue-shifted with
increasing size of the impurity cluster, whereas the spin-down
resonance is red-shifted. This is due to the presence of on-site
Coulomb interactions, leading to stronger spin polarization in
the vicinity of vacancies clusters, as we will discuss in the
following section. Notice also that the resonance peaks are not
present in the smallest impurity clusters with nd = 2 and 4,
reflecting the absence of induced local magnetic moments.
This striking effect, which is visible only in the smallest
impurity clusters, is due to the cancellation of defect-induced
spin-polarized bound states, in agreement with an observation
recently reported by Kumazaki et al.24

Next, we focus on the case where vacancies are randomly
distributed within in the graphene sheet. Fig. 3(b) shows the
global density of states as a function of defect concentration.

FIG. 2. (Color online) (a) Local density of states at various distances from a zigzag line defect in a graphene sheet. The upper inset shows
the intensity of the zero-energy local density of states as a function of the position along the direction perpendicular to the defect, indicated by
the dashed line in the lower inset. (b) Same as (a), but along the direction parallel to the defect, as shown in the lower inset.
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FIG. 3. (Color online) (a) Low-energy local density of states (LDOS) in the vicinity of linear impurity clusters of varying sizes, ranging
from a single vacancy (bottom) to 13 vacancies (up). The LDOS is measured at a lattice site next to the center of the defect chain. The resonance
peaks at positive energies correspond to spin-up electrons, whereas the negative resonances correspond to spin-down electrons; (b) global
density of states for different concentrations of randomly placed defects; (c) intensity of the resonance peak in (b), located at 0.36 eV, as a
function of defect concentration.

In the low-energy region, the intensity of the resonance
peak (Er ∼ 0.36 eV) is found to be significantly enhanced
with increasing defect concentration. This indicates that this
feature in the global density of states is not just a simple
superposition of the local density of states surrounding the
vacancies. The space between the vacancies is reduced when
the defect concentration is increased, and the contributions
from the localized states are therefore reduced. This implies
that a maximum conductivity will be observed when a critical
defect concentration is formed in the graphene sheet. Notice
that another relatively small resonance peak located at Er ∼
−0.36 eV, which originates from the uneven number of spin-up
and spin-down electrons in the system, resulting from the
random distribution of vacancies sites. In the high-energy
region, a softening of the van Hove singularity located at
±2.7 eV and development of Lifshitz tails at the band edge
are induced by increasing the defect concentration.15

D. Magnetic patterns

Next, we examine the magnetic patterns induced by defects.
Within the self-consistent mean-field calculation the numbers
of spin-up and spin-down electrons are fixed during the

iteration process, whereas the total number of electrons is
kept equal to the number of carbon atoms. As the honeycomb
lattice of graphene is composed of two sublattices, containing
atoms A and B, the presence of a single vacancy defect implies
that the numbers of A atoms (NA) and B atoms (NB) are not
equal. Therefore, magnetic moments are induced, consistent
with Lieb’s theorem,25 i.e., the total spin of the ground state is
S = (NA − NB)/2.

Let us first examine the magnetic pattern in a graphene
sheet induced by a single defect, shown in Fig. 4(a). The
total magnetic moment in this case is 0.5/960, since only
one A atom in the 960-site sheet is missing. The magnetic
moment is localized around the vacancy, resembling the LDOS
shown in Fig. 1(a). If the vacancy is introduced into the A
sublattice, the magnitude of the induced magnetic moment
in the B sublattice is larger than in the A sublattice, with
a maximum value MB = −0.058μB and MA = 0.0088μB .
This indicates that the effective magnetic interaction be-
tween spins in opposite sublattices is antiferromagnetic, and
the interaction between spins on the same sublattice is
ferromagnetic.24,26–28

When a zigzag-type line defect is introduced, a pronounced
localized magnetic pattern is formed close to the defect, as

FIG. 4. Magnetic patterns in a graphene sheet with (a) a single defect, (b) a zigzag-type line defect containing 13 atoms, and (c) an
armchair-type line defect, also containing 13 atoms. The defects are placed in the center of the sheet, as indicated by the white symbols.
The color scale ranges from white (strong spin-down magnetization) to black (strong spin-up magnetization). The scattering strength is
Ud/t = 1000, corresponding to vacancies.
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FIG. 5. Magnetic patterns in a graphene sheet induced by a zigzag line defect placed at the center of the sheet. The positions of the impurity
atoms are denoted by white symbols. Here, we consider various impurity scattering strengths (a) Ud/t = 1, (b) Ud/t = 3, and (c) Ud/t = 5,
while keeping U/t = 1.2. The color scale ranges from black (negative magnetization) to white (positive magnetization).

observed in Fig. 4(b). For example, when taking out 7 A atoms
and 6 B atoms, the induced magnetic moment magnitudes in
the B sublattice are larger than the A sublattice with maximum
impurity-induced magnetic moments MB = −0.151μB and
MA = 0.146μB . Although the total magnetic moment remains
0.5/960, the local magnetic moment is 2.6 times larger than for
a single vacancy in the spin-down case and 16.6 times larger
for the spin-up case. This can be understood by comparing the
intensities of the LDOS resonance peaks in these cases. The
magnetic moment shows a spatial Gaussian shape, following
the resonance in the local density of states shown in Fig. 2(b).

Fig. 4(c) shows the impurity-induced magnetic pattern of
a graphene sheet in the presence of an armchair line defect.
Compared to the zigzag line defect and the single defect, the
induced local magnetic moment is much weaker. This indicates
the absence of impurity bound states in the vicinity of armchair
line defects and armchair edges, as also reported in previous
work.20

So far, we have focused on the limit of very strong impurity
scattering, corresponding to vacancy defects. When these
vacancy sites are replaced by impurity atoms, the resulting
scattering strengths are typically smaller, i.e., of the order of
Ud ∼ t . In Fig. 5, we study the evolution of the magnetic pat-
terns induced by a zigzag line defect as a function of increasing
impurity scattering strength, while leaving U/t = 1.2.

Examining the spatial structure of these magnetic patterns,
we observe that they become more localized with increasing
impurity scattering strength, which is expected. More inter-
esting, however, is the evolution of these patterns. For weak
impurity scattering (Ud/t = 1), the local magnetic moment
is not strongly localized around the impurity sites. When the
scattering strength is increased to Ud/t = 3, the local magnetic
moment localizes more strongly around the edge of the
impurity cluster with maximum induced magnetic moments
MB = −0.0187μB and MA = 0.0024μB . For even stronger
scattering, i.e., Ud/t = 5, the local magnetic moment localizes
close to the center of impurity cluster, with maximum induced
magnetic moments MB = −0.0586μB and MA = 0.0088μB .
A Gaussian shape along the direction parallel to the zigzag
defect is observed, which was already seen in Fig. 4(b) for
the case when Ud/t tends to infinity. When the scattering
strength of impurity increases, a stronger localized state is

formed around the impurity sites, and hence a stronger local
magnetic moment.

IV. CONCLUSION

In summary, we have studied the effects of point, zigzag,
and armchair line defects on the electronic and magnetic
structure in graphene sheets, using a self-consistent nu-
merical solution of the mean-field Hubbard model on a
two-dimensional honeycomb lattice. In the vicinity of point
and zigzag defects, we observe pronounced impurity-induced
scattering resonances in the electronic density of states, which
are largely absent for armchair line defects. In the case of a
point-vacancy defect, the amplitude of the impurity-induced
local density of states is found to decay inversely proportional
to r2, and its frequency is observed to converge as |Er | ∼
1/Ud with increasing impurity scattering strength. The local
electronic density of states around zigzag line defects is
found to be strongly enhanced as well. The amplitudes of the
impurity-induced scattering resonances decay with a power
law similar to the case of a point defect, and otherwise their
spatial dependence is rather featureless, with the exception
of a local minimum in the local electronic density of states
appearing near the center of zigzag line defects, indicating
destructive interference. For linear clusters of impurities, we
observe that the induced local magnetic moments are enhanced
close to the center of the line defect, indicating the formation
of spin-polarized localized states. Furthermore, for the case of
randomly placed defects, we find that maximum conductivity
can be achieved at a nontrivial critical defect concentration.
Strong impurity-induced magnetic patterns are also observed
in the vicinity of point defects and zigzag line defects. For the
case of point defects, a threefold symmetric magnetic pattern
is observed. In the case of zigzag line defects, the amplitudes
of the defect-induced magnetic moments are strongest at the
center of the line defect and weaker at its ends. Generally, the
impurity-induced magnetic patterns of the zigzag line defect
display a Gaussian spatial pattern along the direction of the
line. This strong orientational magnetic pattern is found to
persist down to fairly small impurity scattering strengths of
Ud/t = 5, below which the induced patterns become more
uniform.
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14N. M. R. Peres, M. A. N. Araújo, and Daniel Bozi, Phys. Rev. B
70, 195122 (2004); M. A. N. Araújo and N. M. R. Peres, J. Phys.
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