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Energy relaxation rate of the two-dimensional hole gas in a GaAs/InGaAs/GaAs quantum well
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The nonohmic conductivity of two-dimensional hole gas (2DHG) in single GaAsIn0.2Ga0.8AsGaAs quantum-
well structures within the temperature range of 1.4–4.2 K, the carrier’s densities p = (1.5 − 8) × 1015m−2 and a
wide range of conductivities (10−4–100)G0 (G0 = e2/π h) was investigated. It was shown that at conductivity
σ > G0 the energy relaxation rate P (Th,TL) is well described by the conventional theory [P. J. Price, J. Appl.
Phys. 53, 6863 (1982)], which takes into account scattering on acoustic phonons with both piezoelectric and
deformational potential coupling to holes. At the conductivity range 0.01G0 < σ < G0 energy the relaxation
rate significantly deviates down from the theoretical value. The analysis of dP

dσ
at different lattice temperature TL

shows that this deviation does not result from crossover to the hopping conductivity, which occurs at σ < 10−2,
but from the Pippard ineffectiveness.
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I. INTRODUCTION

In the case of conductivity over delocalized states (diffusive
conductivity), the electric-field dependence of the conduc-
tivity originates from the heating of the two-dimensional
hole gas (2DHG) up to temperature Th, greater than lat-
tice temperature TL. In the stationary conditions Th is
determined by the balance between incoming energy rate
Pin and energy relaxation rate P . Therefore, studying the
nonohmic conductivity, one can find the energy relaxation
rate P , its dependence on TL, Th, and determine the main
mechanisms of the energy relaxation. Moreover, the study of
nonohmic conductivity provides an opportunity to find the
conditions in which the diffusion conductivity changes to
hopping conductivity with the change of density, disorder,
and temperature. It is possible due to the fact that in the
hopping regime of conductivity σ (E) dependence results not
only from the change of the carrier distribution over energy,
but also from the change in probability of hopes along the
field.

Over the past 20 years there have been published a number
of experimental papers, investigating heating of 2D electron
gas in GaAs structures at high conductivities,1–5 2D hole
gas in SiGe,5 and a few papers studying heating of holes
in GaAs,6,7 but only for lattice temperatures below 100 mK.
To the best of our knowledge, there is no experiment within
a wide conductivity range at higher temperatures in GaAs.
In the present paper, we investigate the dependence of the
energy relaxation rate on the carrier density and the strength of
disorder in InGaAs-based 2D hole structures in the temperature
range of 1.4–4.2 K and a wide range of conductivities
(10−4–100)G0. We have obtained the following results. It
was shown, that at conductivities above G0 the energy
relaxation rate is well described in terms of scattering on
acoustic phonons.8 At lower conductivities (3 × 10−2 − 1)G0

the energy relaxation rate deviates down from the theory in
Ref. 8, while the regime of conductivity remains diffusive.
This deviation is associated with the Pippard ineffectiveness
of electron-phonon interactions. It was shown that a crossover
to the hopping conductivity with lowering of σ occurs
at σ ∼ 10−2.

II. EXPERIMENTAL DETAILS

The structures investigated were grown by metalorganic
vapor-phase epitaxy on a semi-insulating GaAs substrate and
consist of a 0.2 mum thick undoped GaAs buffer layer, a
10 nm InGaAs quantum well, and a 0.2–0.3 mum cap layer
of undoped GaAs. The Carbone δ layer was situated at the
distance of 7 nm (samples 3855, 3857) or 15 nm (3953) from
each side of the quantum well. The samples were mesa-etched
into the standard Hall bars. The hole density was varied by
applying voltage to the Al gate electrode, deposited by thermal
evaporation. Nonohmic conductivity measurements on gated
structures require special care: the voltage drop along the
sample must be significantly lower than the gate voltage,
otherwise the distribution of the carrier under the gate electrode
would be non-homogeneous. To avoid this effect the sample
surface was covered by a 3–5 mum thick dielectric (parylen)
layer before depositing the gate electrode. With this layer
dp

dVg
was less than 5 × 108 cm−2V−1 and we could apply gate

voltage Vg up to 300 V (while the voltage drop along the sample
was less than 0.5 V). The hole densities and conductivities at
zero gate voltage and lattice temperature TL = 1.4 K for the
structures investigated are listed in Table I.

The hole effective mass m = 0.16m0 was obtained from the
temperature dependence of Shubnikov–de Haas oscillations.9

The dependence p(Vg) was obtained in a set of measurements
with a long gate electrode, covering two pairs of Hall
contacts (upper inset in Fig. 1). The heating experiments
were taken with a shorter (Hall contacts remained uncovered)
gate electrode (lower inset in Fig. 1) to avoid the rise
in contact resistance at a high bias voltage. The current
dependence of voltage drop between potential contacts 3–4
was measured during the current sweep while the lattice
temperature remained constant. Temperature dependence of
conductivity was measured in a linear regime of the response.

III. RESULTS AND DISCUSSION

Figure 1 shows the dependences of the conductivity on
lattice temperature σ (Th) and electric field σ (E) at lattice
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TABLE I. The parameters of the samples.

Sample p, ×1011 cm−2 σ (1.4 K),G0

3855 5.4 44.2
3857 8.7 84
3953 4 100

temperature TL = 1.4 K and Vg = 0 for sample 3855. The
temperature dependence of conductivity of degenerate gas
(EF � kBT , EF is the Fermi level) at low temperatures is
fully determined by the temperature dependence of quantum
corrections to the conductivity. The corrections depend on
nothing but the carrier temperature Th [the dependence
σ (T ) for similar structures was investigated in Ref. 10]. In
this case, having compared the temperature dependence of
conductivity in the ohmic regime and electric-field dependence
of conductivity, we have reconstructed (follow the dashed line
in Fig. 1) the electric field dependence of hole temperature
Th, and, then, we have calculated the incoming power Pin =
jE = σE2, required to heat the holes up to Th.11 In stationary
conditions, Pin is equal to an energy relaxation rate P (Th,TL).
The temperature dependence of the energy relaxation rate
P (Th,TL), obtained at different lattice temperature TL for
sample 3855, is presented in Fig. 2. at conductivity 44.2G0.
Similar results were obtained for all the structures investigated
over a wide conductivity range.

Let us compare our experimental data with the theory. As
the mechanism governing a relaxation rate at low temperatures
is scattering on acoustic phonons with both piezoelectric and
deformational couplings, we use the theory from Ref. 8 for the
quantitative analysis. The energy relaxation rate as a function
of hole temperature Th and lattice temperature TL is written as a
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FIG. 1. The dependence of conductivity on lattice temperature in
the ohmic regime (open circles), and on the electric field at TL = 1.4 K
(crosses). The solid line is the approximation of σ (E) by a smooth
function. Upper inset: Hall bar with a gate for p(Vg) measurements.
Lower inset: Hall bar with gate for heating experiments.
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FIG. 2. (Color online) Hole temperature dependence of energy
relaxation rate at different lattice temperatures for sample 3855 [Vg =
0,p = 5.4 × 1011,σ (1.4) = 44.2G0]. Dashed and dotted lines are the
contributions from the coupling with deformation and piezoelectric
potential, respectively, solid lines are their sums.

difference of two identical functions, where one term depends
on Th, and the other on TL [Eq. (12) in Ref. 8]:

P (Th,TL) = p

h̄EF

[F (Th) − F (TL)] (1)

with

F (T ) =
∫

dq|I (q)|2a[S(q)]2(h̄w)3N (h̄w/kBT ), (2)

where I (q) = ∫ d

−d
ρ(z)eiqzdz is the form factor for the normal-

direction wave function [ρ(z) =
√

1
d

cos(πz
2d

)]; 2d is the width
of quantum well; S(q) is a screening factor; N (h̄w/kBT ) is
the phonon distribution function; a is a quantity, associated
with the three-dimensional scattering matrix. In general F (T )
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FIG. 3. (Color online) The power �P required to heat holes from

lattice temperature TL = 1.4 K up to Th = 1.9 K as a function of
concentration. The solid line is a theoretical curve in accordance with
Eq. (1). Dotted lines are only to guide the eye.
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FIG. 4. (Color online) The power �P required to heat holes
from lattice temperature TL = 1.4 K up to Th = 1.9 K as a function
of conductivity at TL = 1.4 K. Solid line is theoretical dependence
�P (p(σ )) for sample 3855.

is the sum of deformation-coupled and piezoelectric-coupled
contributions:

F = FDP
Ln + FPZ

Ln + FPZ
Tr ,

where index Ln refers to the longitudinal component of
the wave vector, and Tr to the transversal one. Then each
component of a could be expressed as follows3:

aPZ
Tr = b0

α2

q2 + Q2

8q4Q2 + Q6

2(q2 + Q2)3
, (3)

aPZ
Ln + aDP

Ln = b0

(
α2

q2 + Q2

9q4Q2 + Q6

2(q2 + Q2)3
+ 1

)
, (4)

where α = eh14
�

, h14 is a piezoelectric coupling constant, � is
the deformation potential, q and Q are the components of the
wave vector normal to and parallel to the heterolayer plane,
respectively. The constant b0 is equal to m∗�2

h̄22kl
, where kl is an

elastic constant equal to ρ · s2
Ln (ρ is the density of GaAs, s2

Ln
is the longitudinal velocity of sound).

We have calculated temperature dependences of the
energy relaxation rate using the following coupling constants:
h14 = 1.5 × 109V/m (Ref. 12), � = 8 eV (Ref. 13), and the
two-dimensional screening constant p = ( aB

2 )−1 = 0.5 nm−1,
where aB is an effective Bohr radius.

The calculated curves P (Th,TL) are presented in Fig. 2.
The dashed and dotted lines are the contributions of the
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FIG. 5. (Color online) The derivative of
energy relaxation rate with respect to σ

at different lattice temperatures for sample
3855. The values of conductivities at TL =
1.4 K are presented in the panels.
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deformation and piezoelectric couplings, respectively. One can
see that their contributions are comparable within the whole
temperature range. The solid line is their sum. As seen from
Fig. 2 the theoretical curves are in good agreement with the
experimental data.

It is impossible to compare directly our experimentally
obtained values of the energy relaxation rate with the results in
Refs. 6 and 7, as they have been obtained at lower temperatures
(below 100 mK). However, if we calculate P (Th,TL) with
the coupling constants, we used, we would get the energy
relaxation rate only twice as large as the experimental value
in Refs. 6 and 7. We believe that it is quite a good agreement
for extrapolation from units of Kelvin down to milli-Kelvin
temperatures.14

From Eq. (1) it follows that besides coupling constants,
temperatures Th and TL, the only sample parameter which
the energy relaxation rate depends on is hole density. Let us
analyze the dependence of the power �P required to heat
holes from lattice temperature TL = 1.4 K up to Th = 1.9 K,
shown in Fig. 3. It is seen that at densities above a certain
value (different for each sample), the experimental data are in
agreement with the theory. At lower densities the experimental
energy relaxation rate significantly deviates downward from
the theoretical value significantly. Such divergence for all cases
takes place when the conductivity of 2D gas falls below G0

(Fig. 4).
A possible reason for such divergence could be the change

of a conductivity mechanism (it is commonly believed that at
σ < πG0 conductivity is hopping), and in this case the above-
described treatment with P is not valid anymore. To clarify the
conductivity mechanism let us analyze the derivative ∂P

∂Th
.15

From Eq. (1) it is seen that in a diffusive regime the
derivative ∂P/∂Th is independent of lattice temperature TL. It
means that experimental dependences ∂P

∂Th
= f (Th), obtained

at different TL should fall on the universal curve.15 This
statement is valid when the change of σ with the electric
field originates from the change of the hole temperature only.
As a consequence, the set of curves ∂P/∂σ as a function of σ

also has such a property. Besides, the treatment with ∂P/∂σ

is more consequential because when the approximation of the
hole temperature fails, ∂P/∂σ remains defined.

In the hopping regime, firstly, σ depends both on lattice and
hole temperatures. Secondly, the change of conductivity with
the electric field results not only from hole heating, but also
from the change in the probability of hops. Finally, the energy
distribution function of holes in the electric field can deviate
from the Fermi-Dirac function. All these effects have to lead
to a divergence of dependences ∂P

∂σ
= f (σ ) at different TL.

Dependencies ∂P/∂σ for sample 3855, obtained experi-
mentally, are depicted in Fig. 5. As seen from Fig. 3(a), the
data taken at different lattice temperatures fall on one universal
dependence when the conductivity of the 2D gas is relatively
high σ (1.4K) = 44.1G0. With decreasing conductivity this
behavior remains until the conductivity reaches the value of
2.8 × 10−2G0 [Fig. 3(b,c)]. And only at σ ≈ 2.8 × 10−2G0 ≈
10−2 e2

h
the curves begin to diverge, and with a decrease

in conductivity they diverge drastically [Fig. 3(d,e,f)]. Such
divergence indicates a crossover to a hopping regime of
conductivity in the investigated structures.
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FIG. 6. (Color online) The dependence of power �P required to
heat holes from lattice temperature TL = 1.4 K up to Th = 1.9 K as a
function of conductivity for p-type and n-type structures.

Hence, the conductivity remains diffusive at σ (1.4 K) >

3 × 10−2G0 and the drop in the energy relaxation rate at
conductivity range 3 × 10−2G0 < σ < 1G0 is not caused by
a crossover to the hopping conductivity. We believe that
it is caused by the Pippard ineffectiveness of the electron-
phonon interactions,16 which takes place under the following
conditions: i) the number of carriers within the length of the
thermal phonon is sufficient to introduce the local conductivity
qt

kF
< 1 (qt is the wave vector of the thermal phonon), and ii)

qt l < 1, (l means free path). It was shown in Ref. 17, that the
energy relaxation rate would decrease linearly in this regime.
Indeed (see Figs. 4, 6), in the investigated structures the linear
decrease of the energy relaxation rate is observed. It begins
at σ (1.4 K) ≈ G0, when both conditions mentioned above
are satisfied: qt l ≈ 0.2 (qt l = 1 at σ ≈ 8G0). The parameter
qt

kF
remains smaller than the unity within the whole range of

temperatures. It should be noted that the analogous behavior
was observed also on n-type structures (Fig. 6).18

IV. CONCLUSION

We have shown that in the diffusive regime at conduc-
tivities above G0 the energy relaxation rate of 2D holes
structures is well described in terms of inelastic scattering on
acoustic phonons with both piezoelectric and deformational
couplings to holes. It was shown that within the conduc-
tivity range of (3 × 10−2 − 1)G0 the conductivity remains
diffusive, while the energy relaxation rate deviates from the
theoretical prediction of Ref. 8 downward. Such a linear
decrease results from the Pippard ineffectiveness for case
qt l < 1, qt

kF
< 1. The analysis of ∂P/∂σ at a different lattice

temperature shows that below 10−2G0 the conductivity is
hopping.
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