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Electron-lattice and strain effects in manganite heterostructures: The case of a single interface
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A correlated inhomogeneous mean-field approach is proposed to study a tight-binding model of the manganite
heterostructures (LaMnO3)2n/(SrMnO3)n with average hole doping x = 1/3. Phase diagrams and spectral and
optical properties of large heterostructures (up to 48 sites along the growth direction) with a single interface are
discussed, and the effects of electron-lattice antiadiabatic fluctuations and strain are analyzed. The formation
of a metallic ferromagnetic interface is quite robust upon varying the strength of electron-lattice coupling and
strain, though the size of the interface region is strongly dependent on these interactions. The density of states
never vanishes at the chemical potential due to the formation of the interface, but it shows a rapid suppression
with increasing the electron-lattice coupling. The in-plane and out-of-plane optical conductivities show sharp
differences since the in-plane response has metallic features, while the out-of-plane one is characterized by a
transfer of spectral weight to high frequency. The in-plane response mainly comes from the region between the
two insulating blocks, so that it provides a clear signature of the formation of the metallic ferromagnetic interface.
Results are discussed in connection with available experimental data.
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I. INTRODUCTION

Transition-metal oxides are of great current interest because
of the wide variety of the ordered phases that they exhibit
and the strong sensitivity to external perturbations.1 Among
them, manganese oxides with the formula R1−xAxMnO3 (R
stands for a rare earth such as La, A represents a divalent
alkali element such as Sr or Ca, and x is the hole doping),
known as manganites, have been studied intensively both for
their very rich phase diagram and for the phenomenon of
colossal magnetoresistance.2 This effect is often exhibited in
the doping regime 0.2 < x < 0.5, where the ground state of the
systems is ferromagnetic. The ferromagnetic phase is usually
explained by invoking the double-exchange mechanism in
which hopping of an outer-shell electron from a Mn3+
to a Mn4+ site is favored by a parallel alignment of the
core spins.3 In addition to the double-exchange term that
promotes hopping of the carriers, a strong interaction between
electrons and lattice distortions plays a non-negligible role
in these compounds, giving rise to the formation of polaron
quasiparticles.4

Very recently, high-quality atomic-scale “digital” het-
erostructures consisting of a combination of transition-metal
oxide materials have been realized. Indeed, heterostructures
represent the first steps to use correlated oxide systems in
realistic devices. Moreover, at the interface, the electronic
properties can be drastically changed in comparison with
those of the bulk. Recent examples include the formation
of a thin metallic layer at the interface between band and
Mott insulators, such as, for example, between SrTiO3 (STO)
and LaTiO3 oxides5 or between the band insulators6 LaAlO3

and STO.
Very interesting examples of heterostructure are given

by the superlattices (LaMnO3)m/(SrMnO3)n with n/(m + n)
average hole doping.7 Here LaMnO3 (LMO) (one electron
per Mn eg state) and SrMnO3 (SMO) (no electrons per Mn
eg state) are the two end-member compounds of the alloy
La1−xSrxMnO3 and are both antiferromagnetic insulating. In

these systems, not only the chemical composition but also
the thickness of the constituent blocks specified by m and n is
important for influencing the properties of superlattices. Focus
has been on the case m = 2n corresponding to the average
optimal hole doping x = 1/3.8,9 The superlattices exhibit a
metal-insulator transition as a function of temperature for
n � 2 and behave as insulators for n � 3. The superlattices
undergo a rich variety of transitions among metal, the Mott
variable range hopping insulator, the interaction-induced
Efros-Shklovskii insulator, and the polaronic insulator.10

Interfaces play a fundamental role in tuning the metal-
insulator transitions since they control the effective doping
of the different layers. Even when the system is globally
insulating (n � 3), some nonlinear optical measurements
suggest that, for a single interface, ferromagnetism due to
the double-exchange mechanism can be induced between the
two antiferromagnetic blocks.11 Moreover, it has been found
that the interface density of states exhibits a pronounced
peak at the Fermi level whose intensity correlates with the
conductivity and magnetization.12 These measurements point
toward the possibility of a two-dimensional half-metallic gas
for the double layer13 whose properties have been studied
by using ab initio density-functional approaches.14 However,
up to now, this interesting two-dimensional gas has not been
experimentally assessed in a direct way by using lateral
contacts on the region between the LMO and SMO blocks.

In analogy with thin films, strain is another important
quantity to tune the properties of manganite heterostructures.
For example, far from interfaces, inside LMO, electron
localization and local strain favor antiferromagnetism and
eg (3z2 − r2) orbital occupation.15 The magnetic phase in
LMO is compatible with the C type.2 Moreover, by changing
the substrate, the ferromagnetism in the superlattice can be
stabilized.16

From a theoretical point of view, in addition to ab
initio calculations, tight-binding models have been used
to study manganite superlattices. The effects of magnetic
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and electron-lattice interactions on the electronic properties
have been investigated going beyond adiabatic mean-field
approximations.17,18 However, the double layer with large
blocks of LMO and SMO has not been studied much.
Moreover, the effects of strain have been analyzed only within
mean-field approaches.19

In this paper, we have studied phase diagrams and
spectral and optical properties for a very large bilayer
(LMO)2n/(SMO)n (up to 48 planes relevant for a comparison
with fabricated heterostructures) starting from a tight-binding
model. We have developed a correlated inhomogeneous mean-
field approach taking into account the effects of electron-lattice
antiadiabatic fluctuations. Strain is simulated by modulating
hopping and spin-spin interaction terms. We have found that
a metallic ferromagnetic interface forms for a large range of
the electron-lattice couplings and strain strengths. For this
regime of parameters, the interactions are able to change the
size of the interface region. We find the magnetic solutions
that are stable at low temperature in the entire superlattice.
The general structure of our solutions is characterized by three
phases running along the growth z direction: an antiferromag-
netic phase with localized or delocalized (depending on the
model parameters) charge carriers inside the LMO block, a
ferromagnetic state at the interface with itinerant carriers, and
a localized polaronic G-type antiferromagnetic phase inside
the SMO block. The type of antiferromagnetic order inside
LMO depends on the strain induced by the substrate.

We have discussed the spectral and optical properties
corresponding to different parameter regimes. Due to the
formation of the metallic interface, the density of states is finite
at the chemical potential. With increasing the electron-phonon
interaction, it gets reduced at the chemical potential, but it
never vanishes even in the intermediate to strong electron-
phonon coupling regime. Finally, we have studied both the
in-plane and out-of-plane optical conductivities, pointing out
that they are characterized by marked differences: the former
shows a metallic behavior, the latter a transfer of spectral
weight at high frequency due to the effects of the electrostatic
potential well trapping electrons in the LMO block. The
in-plane response at low frequency is mainly due to the region
between the two insulating blocks, so that it can be used as
a tool to assess the formation of the metallic ferromagnetic
interface.

The paper is organized as follows: In Sec. II, the model
and variational approach are introduced; in Sec. III, the results
regarding static properties and phase diagrams are discussed;
in Sec. IV, the spectral properties are analyzed; in Sec. V,
the optical conductivities are analyzed; and conclusions are
presented in the final section.

II. THE VARIATIONAL APPROACH

A. Model Hamiltonian

For manganite superlattices, the Hamiltonian of the bulk
H0 has to be supplemented by Coulomb terms representing
the potential arising from the pattern of the La and Sr ions,20

thus

H = H0 + HCoul. (1)

To set up an appropriate model for the double layer, it
is important to take into account the effects of the strain.
The epitaxial strain produces the tetragonal distortion of the
MnO6 octahedron, splitting the eg states into x2-y2 and 3z2-r2

states.19 If the strain is tensile, x2-y2 is lower in energy, while
if the strain is compressive, 3z2-r2 is favored. In the case of
n = 8 with three interfaces,15 the superlattices grown on STO
are found to be coherently strained: all of them are forced to
the in-plane lattice parameter of substrate and to an average
out-of-plane parameter c � 3.87 Å.15 As a consequence, one
can infer that LMO blocks are subjected to compressive strain
(−2.2%) and SMO blocks to tensile strain (+2.6%). For the
case of the LMO block, the resulting higher occupancy of
3z2-r2 enhances the out-of-plane ferromagnetic interaction
owing to the larger electron hopping out-of-plane. For the case
of the SMO block, the reverse occurs. A suitable model for the
bilayer has to describe the dynamics of the eg electrons, which
in the LMO and SMO blocks preferentially occupy the more
anisotropic 3z2-r2 orbitals and more isotropic x2-y2 orbitals,
respectively. For this reason, in this paper we adopt an effective
single-orbital approximation for the bulk manganite.

The model for the bulk takes into account the double-
exchange mechanism, the coupling to the lattice distortions,
and the superexchange interaction between neighboring local-
ized t2g electrons on Mn ions. The coupling to longitudinal
optical phonons arises from the Jahn-Teller effect that splits
the eg double degeneracy. Then, the Hamiltonian H0 reads

H0 = −
∑
�Ri,�δ

t|�δ|

(
S

�Ri, �Ri+�δ
0 + 1/2

2S + 1

)
c
†
�Ri

c �Ri+�δ

+ω0

∑
�Ri

a
†
�Ri

a �Ri
+ gω0

∑
�Ri

c
†
�Ri

c �Ri

(
a �Ri

+ a
†
�Ri

)

+ 1

2

∑
�Ri,�δ

ε| �δ| �S �Ri
· �S �Ri+�δ − μ

∑
�Ri

c
†
�Ri

c �Ri
. (2)

Here t|�δ| is the transfer integral of electrons occupying

eg orbitals between nearest-neighbor (NN) sites, S
�Ri, �Ri+�δ

0 is
the total spin of the subsystem consisting of two localized
spins on NN sites and the conduction electron, �S �Ri

is the

spin of the t2g core states (S = 3/2), and c
†
�Ri

(c �Ri
) creates

(destroys) an electron with spin parallel to the ionic spin
at the ith site in the eg orbital. The coordination vec-
tor �δ connects NN sites. The first term of the Hamilto-
nian describes the double-exchange mechanism in the limit
where the intra-atomic exchange integral J is much larger
than the transfer integral t|�δ|. Furthermore, in Eq. (2), ω0 de-

notes the frequency of the local optical-phonon mode, a†
�Ri

(a �Ri
)

is the creation (annihilation) phonon operator at the site i, and
the dimensionless parameter g indicates the strength of the
electron-phonon interaction. Finally, in Eq. (2), ε| �δ| represents
the antiferromagnetic superexchange coupling between two
NN t2g spins and μ is the chemical potential. The hopping of
electrons is supposed to take place between the equivalent NN
sites of a simple cubic lattice (with finite size along the z axis
corresponding to the growth direction of the heterostructure)
separated by the distance |n − n′| = a. The units are such that
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the Planck constant h̄ = 1, the Boltzmann constant kB = 1,
and the lattice parameter a = 1.

Regarding the terms due to the interfaces, one considers
that La3+ and Sr2+ ions act as +1 charges of magnitude e

and neutral points, respectively. In the heterostructure, the
distribution of those cations induces an interaction term for
eg electrons of Mn giving rise to the Hamiltonian

HCoul =
∑
�Ri �= �Rj

1

2εd

e2n �Ri
n �Rj

| �Ri − �Rj |
+

∑
�RLa
i �= �RLa

j

1

2εd

e2∣∣ �RLa
i − �RLa

j

∣∣
−

∑
�Ri, �RLa

j

1

εd

e2n �Ri∣∣ �Ri − �RLa
j

∣∣ , (3)

with n �Ri
= c

†
�Ri

c �Ri
the electron occupation number at the Mn

site i, �Ri and �RLa
i are the positions of Mn and La3+ in the ith

unit cell, respectively, and εd is the dielectric constant of the
material. In our calculation, the long-range Coulomb potential
has been modulated by a factor η inducing a fictitious finite
screening length (see Appendix). This factor was added only
for computational reasons since it allows us to calculate the
summations of the Coulomb terms over the lattice indices. We
have modeled the heterostructures as slabs whose in-plane size
is infinite.

To describe the magnitude of the Coulomb interaction, we
define the dimensionless parameter α = e2/(aεdt|�δ|), which
controls the charge-density distribution. The order of mag-
nitude of α can be estimated from the hopping parameter
t|�δ| ∼ 0.65 eV, lattice constant a = 4 Å, and typical value of
the dielectric constant ε ∼ 10 to be around 0.2.

Strain plays an important role also by renormalizing the
heterostructure parameters. Strain effects can be simulated by
introducing an anisotropy into the model between the in-plane
hopping amplitude tδ|| = t (with δ|| indicating nearest neigh-
bors in the x-y planes) and out-of-plane hopping amplitude
t|δz| = tz (with δz indicating nearest neighbors along the z

axis).21 Moreover, the strain induced by the substrate can
directly affect the patterns of core spins.22 Therefore, in our
model, we have also considered the anisotropy between the
in-plane superexchange energy ε|δ||| = ε and the out-of-plane
one ε|δz| = εz. We have found that the stability of magnetic
phases in LMO blocks is influenced by the presence of
compressive strain, while in SMO the sensitivity to strain is
poor. Therefore, throughout the paper, we take as reference
the model parameters of the SMO layers and we will consider
anisotropy only in the LMO blocks with values of the ratio
tz/t larger than unity and of the ratio εz/ε smaller than unity.

Finally, to investigate the effects of the electron-lattice
coupling, we will use the dimensionless quantity λ defined
as

λ = g2ω0

6t
. (4)

Throughout the paper, we will assume ω0/t = 0.5.

B. Test Hamiltonian

In this work, we will consider solutions of the Hamiltonian
that break the translational invariance in the out-of-plane z

direction. The thickness of the slab is a parameter of the system
that will be indicated by Nz. We will build up a variational
procedure including these features of the heterostructures. A
simplified variational approach similar to that developed in
this work has already been proposed by some of the authors
for manganite bulks23 and films.24,25

To treat variationally the electron-phonon interaction, the
Hamiltonian (1) has been subjected to an inhomogeneous
Lang-Firsov canonical transformation.26 It is defined by
parameters depending on plane indices along the z direction:

U = exp

⎡
⎣−g

∑
i||,iz

(
fizc

†
i||,iz ci||,iz + �iz

)(
ai||,iz − a

†
i||,iz

)⎤⎦ , (5)

where i|| indicates the in-plane lattice sites (ix,iy), while iz are
the sites along the direction z. The quantity fiz represents the
strength of the coupling between an electron and the phonon
displacement on the same site belonging to the iz plane, hence it
measures the degree of the polaronic effect. On the other hand,
the parameter �iz denotes a displacement field describing static
distortions that are not influenced by instantaneous position of
the electrons.

To obtain an upper limit for free energy, the Bogoliubov
inequality has been adopted:

F � Ftest + 〈H̃ − Htest〉t , (6)

where Ftest and Htest are the free energy and the Hamiltonian
corresponding to the test model that is assumed with an ansatz.
H̃ stands for the transformed Hamiltonian H̃ = UHU †. The
symbol 〈〉t indicates a thermodynamic average performed
by using the test Hamiltonian. The only part of Htest that
contributes to 〈H̃ − Htest〉t is given by the spin degrees of
freedom and depends on the magnetic order of the t2g core
spins. For the spins, this procedure is equivalent to the standard
mean-field approach.

The model test Hamiltonian, Htest, is such that that electron,
phonon, and spin degrees of freedom are not interacting with
each other:

Htest = H
sp
test + H

ph
test + H el

test. (7)

The phonon part of Htest simply reads

H
ph
test = ω0

∑
i||,iz

a
†
i||,iiz

ai||,iiz , (8)

and the spin term is given by

H
sp
test = −gSμB

∑
i||

∑
iz

hz
i||,izS

z
i||,iz , (9)

where gS is the dimensionless electron-spin factor (gS � 2),
μB is the Bohr magneton, and hz

i||,iz is the effective variational
magnetic field. In this work, we consider the following
magnetic orders modulated plane by plane:

F, hz
i||,iz = ∣∣hz

iz

∣∣;
A, hz

i||,iz = (−1)iz
∣∣hz

iz

∣∣;
(10)

C, hz
i||,iz = (−1)ix+iy

∣∣hz
iz

∣∣;
G, hz

i||,iz = (−1)ix+iy+iz
∣∣hz

iz

∣∣.
085107-3



A. IORIO et al. PHYSICAL REVIEW B 83, 085107 (2011)

For all these magnetic orders, the thermal averages of double-
exchange operator, corresponding to neighboring sites in the
same plane iz γiz;i||,i||+δ|| and in different planes ηiz,iz+δz;i|| ,
preserve only the dependence on the z-plane index:

γiz;i||,i||+δ|| =
〈
S

i||,iz;i||+δ||,iz
0 + 1/2

2S + 1

〉
t

= γiz ,

ηiz,iz+δz;i|| =
〈
S

i||,iz;i||,iz+δz

0 + 1/2

2S + 1

〉
t

= ηiz,iz+δz
. (11)

To get the mean-field electronic Hamiltonian, we make
the Hartree approximation for the Coulomb interaction. The
electronic contribution H el

test to the test Hamiltonian becomes

H el
test = −t

∑
i||

Nz∑
iz=1

∑
δ||

γize
−Viz c

†
i||,iz ci||+δ||,iz

− tz
∑
i||

Nz∑
iz=1

∑
δz

ηiz,iz+δz
e−Wiz,iz+δz c

†
i||,iz ci||,iz+δz

+
∑
i||

Nz∑
iz=1

[φeff(iz) − μ] c
†
i||,iz ci||,iz

+NxNy(T1 + T2) + NxNyg
2ω0

∑
iz

�iz . (12)

In Eq. (12), the quantity φeff(iz) indicates the effective potential
seen by the electrons. It consists of the Hartree self-consistent
potential φ(iz) (see Appendix) and a potential due to the
electron-phonon coupling:

φeff(iz) = φ(iz) + g2ω0Ciz , (13)

with

Ciz = f 2
iz

− 2fiz + 2�iz (fiz − 1). (14)

The factors e−Viz and e−Wiz,iz+δz represent the phonon thermal
average of Lang-Firsov operators:

e−Viz = 〈
Xi||,izX

†
i||+δ||,iz

〉
t
, e−Wiz,iz+δz = 〈

Xi||,izX
†
i||,iz+δz

〉
t
,

(15)

where the operator X �Ri
reads

X �Ri
= e

gfiz (a �Ri
−a

†
�Ri

)
.

Finally, the quantity T1 and T2 derive from the Hartree
approximation (see Appendix), and Nx and Ny denote the size
of the system along the two in-plane directions, respectively.
To calculate the variational free energy, we need to know
eigenvalues and eigenvectors of H el

test that depend on the
magnetic order of core spins through the double-exchange
terms.

C. Magnetic order and diagonalization of the electronic
mean-field Hamiltonian

To develop the calculation, we need to fix the magnetic
order of core spins. The pattern of magnetic orders is
determined by the minimization of the total free energy. By
exploiting the translational invariance along the directions

perpendicular to the growth axis of the heterostructure, the
diagonalization for H el

test reduces to an effective unidimensional
problem for each pair of continuous wave vectors (kx,ky) = �k||.
For some magnetic patterns, the electronic problem is charac-
terized at the interface by a staggered structure. Therefore, we
study the electron system considering a reduced first Brillouin
zone of in-plane wave vectors. To this aim, we represent H el

test
with the 2Nz states

|kx,ky,iz〉, |kx + π,ky + π,iz〉, (16)

with the wave vectors such that −π/2 < kx < π/2, −π/2 <

ky < π/2, and iz going from 1 to Nz. The eigenstates of the
electronic test Hamiltonian are indicated by E(kx,ky,n), with
the eigenvalue index n going from 1 to 2Nz. The eigenvector
related to n is specified in the following way: biz (�k||,n) for
the first Nz components, piz (�k||,n) for the remaining Nz

components.
The variational procedure is self-consistently performed by

imposing that the total density of the system ρ is given by
NLa/Nz, with NLa the number of layers of the LMO block, and
the local plane density χ (iz) is equal to 〈n �Ri

〉. Therefore, one
has to solve the following Nz + 1 equations:

ρ = 1

NxNyNz

∑
�k||

∑
n

nF [E(�k||,n)] (17)

and

χ (iz) = 1

NxNy

∑
�k||

∑
n

nF[E(�k||,n)]
{∣∣biz (�k||,n)

∣∣2 + ∣∣piz (�k||,n)
∣∣2

+ [
b∗

iz
(�k||,n)piz (�k||,n) + p∗

iz
(�k||,n)biz (�k||,n)

]}
, (18)

where nF (z) is the Fermi distribution function. These equations
allow us to obtain the chemical potential μ and the local charge
density χ (iz). As a result of the variational analysis, one is able
to get the charge-density profile corresponding to magnetic
solutions that minimize the free energy.

III. STATIC PROPERTIES AND PHASE DIAGRAMS

We have found the magnetic solutions and the corre-
sponding density profiles that are stable for different sizes
of the LMO and SMO blocks. The inhomogeneous variational
approach allows us to determine the values of the electron-
phonon parameters fiz and �iz and the magnetic order of the
t2g spins through the effective magnetic fields hiz . We will
study the systems in the intermediate to strong electron-phonon
regime characteristic of manganite materials focusing on two
values of coupling: λ = 0.5 and 0.8. The maximum value of
in-plane antiferromagnetic superexchange is ε = 0.01t . The
value of the Coulomb term α is fixed to α = 0.2. We will
analyze the heterostructures in the low-temperature regime:
T = 0.05t .

The general structure of our solutions is characterized
by three phases running along the z direction. Actually,
according to the parameters of the model, we find G or
C antiferromagnetic phases corresponding to localized or
delocalized charge carriers inside the LMO block, respectively.
The localization is ascribed to the electron-phonon coupling,
which gives rise to the formation of small polarons. For
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FIG. 1. (Color online) Comparison among density profiles cor-
responding to different sizes at λ = 0.5 and ε = 0.01t . The index
0 indicates the interface Mn plane between the last La plane in the
LMO block and the first Sr plane in the SMO block.

the values of λ considered in this paper, a ferromagnetic
phase always stabilizes around the interface. The size of the
ferromagnetic region at the interface is determined by the
minimization of the free energy and depends on the values
of the system parameters. Only for larger values of λ and ε is
the possibility of interface ferromagnetism forbidden. Inside
the SMO block, a localized polaronic G-type antiferromagnet
phase is always stable.

At first, we have analyzed the scaling of the static properties
as a function of the size of the system along the z growth
direction. Therefore, a comparison of the density profiles
has been done with (LMO)8/(SMO)4, (LMO)16/(SMO)8, and
(LMO)32/(SMO)16 systems. In Fig. 1, we show the density
profiles in a situation where strain-induced anisotropy has
not been introduced. It is worth noticing that we indicate the
interface Mn plane between the last La plane in the LMO block
and the first Sr plane in the SMO block with the index 0. For a
sufficiently large number of planes, the charge profile along z

shows a well-defined shape. Indeed, the local density is nearly
unity in the LMO block, nearly zero in the SMO block, and
it decreases from 1 to 0 in the interface region. The decrease
of charge density for the first planes of LMO is due to the
effect of open boundary conditions along the z direction. In the
intermediate electron-phonon coupling regime that we con-
sider in Fig. 1, the region with charge dropping involves four
to five planes between the two blocks. We notice that the local
charge density for (LMO)16/(SMO)8 and (LMO)32/(SMO)16

systems is very similar around the interface. Furthermore,
the numerical results show close values of variational free
energy corresponding to the above-mentioned systems. Given
the similarity of the properties of these two systems, in the
following we will develop the analysis on the role of the
interface studying the system (LMO)16/(SMO)8.

For the same set of electron-phonon and magnetic
couplings, the variational parameters and the Hartree
self-consistent potential along the z axis are shown in
Fig. 2. The effective magnetic fields are plotted for the most
stable magnetic solution: antiferromagnetic G orders well
inside LMO (planes 1–15) and SMO (planes 19–24), and
ferromagnetic planes at the interface (planes 16–18). The peak
in the plot of the magnetic fields signals that ferromagnetism is

2 4 6 8 10 12 14 16 18 20 22 24

-6
-4.5

-3

φ(
i z)

2 4 6 8 10 12 14 16 18 20 22 240

0.5

1

f i z

2 4 6 8 10 12 14 16 18 20 22 24
Sites along z-direction

8
16
24

|h
z i z|

Chemical potential   μ

FIG. 2. (Color online) Self-consistent Hartree potential φ(iz)
(upper panel, in units of t), variational parameters fiz (middle panel),
and effective magnetic fields |hz

iz
| (lower panel) along the z axis for

λ = 0.5 and ε = 0.01t .

quite robust at the interface. The variational electron-phonon
parameters fiz are small on the LMO side and at the interface,
but close to unity in the SMO block. This means that, for these
values of the couplings, carriers are delocalized in LMO up to
the interface region, but small polarons are present in the SMO
block. The quantities �iz , which enter the variational treatment
of the electron-phonon coupling, are determined by fiz and the
local density 〈niz〉 through the equation �iz = 〈niz〉(1 − fiz ).
The Hartree self-consistent potential � indicates that charges
are trapped into a potential well corresponding to the LMO
block. Moreover, it is important to stress the energy scales
involved in the well: the barrier between the LMO and SMO
blocks is of the order of the electron bandwidth. Furthermore,
at the interface, the energy difference between neighboring
planes is of the order of the hopping energy t .

As mentioned above, for these systems, strain plays an
important role. To study quantitatively its effect, we have
investigated the phase diagram under the variation of the
hopping anisotropy tz/t for two different values of εz (εz =
ε = 0.01t , εz = 0). Indeed, we simulate the compressive strain
in the LMO block increasing the ratio tz/t and decreasing
εz/ε. On the other hand, the tensile strain in the SMO
block favors the more isotropic x2-y2 orbital and does not
yield sizable effects. Therefore, for the SMO block, in the
following we choose tz = t and εz = ε. For what concerns
the electron-phonon interaction, we assume the intermediate
coupling λ = 0.8. As shown in the upper panel of Fig. 3, upon
increasing the ratio tz/t up to 1.7 for εz = ε, the magnetic order
in LMO does not change since it remains G antiferromagnetic.
However, the character of charge carriers is varied. Actually,
for λ = 0.8, in the absence of anisotropy, small polarons are
present in the LMO block. Moreover, at tz/t � 1.5, in LMO,
a change from small localized polarons to large delocalized
polarons occurs. For all values of the ratio tz/t , the interface
region is characterized by ferromagnetic order with large
polaron carriers and SMO by G antiferromagnetic order with
small polaron carriers.

It has been shown that it is also important to consider the
anisotropy in superexchange (εz �= ε) parameters as a conse-
quence of strain.22 To simulate the effect of compressive strain
in LMO, a reduction of εz will be considered. We discuss the
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FIG. 3. (Color online) Phase diagram in the hopping anisotropy-
energy plane for the LMO16SMO8 system, corresponding to λ = 0.8
for εz = 0.01t (upper panel) and εz = 0 (lower panel).

limiting case εz = 0. For this regime of parameters, the effect
on the magnetic phases is the strongest. As shown in the lower
panel of Fig. 3, for 1.28 � tz/t � 1.5, in the LMO block, a C-
type antiferromagnetic phase is the most stable. The transition
from small to large polarons again takes place at tz/t � 1.5.
Therefore, we have shown that there is a range of parameters
where the LMO block has C-type antiferromagnetic order
with small localized polarons. Due to the effect of strain, the
magnetic solution in LMO turns out to be compatible with
experimental results in superlattices.15 The interface is still fer-
romagnetic with metallic large polaron features. In the figure,
A/B/C refers to magnetic orders and the character of charge
carriers inside LMO (A), at interface (B), inside SMO (C).

To analyze the effects of the electron-phonon interaction, a
comparison between two different electron-phonon couplings
is reported in Fig. 4. We have investigated the solutions
that minimize the variational free energy at a fixed value
of the anisotropy factors tz/t = 1.3 and εz = 0 at λ = 0.5
and 0.8. The magnetic solution in the LMO block is C

antiferromagnetic until the 15th plane. For both values of
λ, polarons are small. In the SMO block, starting from the
19th plane, the solution is G-type antiferromagnetic together
with localized polarons. Three planes around the interface are
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FIG. 4. (Color online) Comparison between local particle density
corresponding to λ = 0.5 and 0.8 for tz/t = 1.3 and εz = 0.

TABLE I. Ratio between the magnetization and its saturation
value for λ = 0.5 and 0.8 as a function of the anisotropy ratio tz/t

for εz = 0.

tz/t Magnetization (λ = 0.5) Magnetization (λ = 0.8)

1.0 0.1148 0.1090
1.1 0.1182 0.1123
1.2 0.1206 0.1146
1.3 0.1222 0.1161
1.4 0.1233 0.1172
1.5 0.1241 0.1179

ferromagnetically ordered. For λ = 0.5, all three planes at the
interface are characterized by delocalized polarons, while for
λ = 0.8, only the plane linking the ends of the LMO and SMO
blocks is with delocalized charge carriers.

As shown in Fig. 4, the quantity λ has important conse-
quences on the physical properties, such as the local particle
density. Actually, for λ = 0.8, the transition from occupied to
empty planes is sharper at the interface. Only one plane at the
interface shows an intermediate density close to 0.5. For λ =
0.5, the charge profile is smoother and the three ferromagnetic
planes with large polarons have densities different from 0
and 1.

The last static quantity that we have evaluated is
the magnetization. In Table I, we report the ratio between
the magnetization of the heterostructure and the saturation
value as a function of the anisotropy term tz/t . We consider
the case in which εz = 0. Due to the formation of a few
ferromagnetic planes at the interface, the magnetization ratio
is very small (of the order of 0.1). Moreover, for λ = 0.8, its
value is slightly smaller than 1 at λ = 0.5. The comparison
with recent experimental data (see Ref. 9) on the single
interface is very interesting. The order of magnitude of the
calculated magnetization (about 0.12 times the saturation
value per manganese at tz/t = 1.3) is in good agreement
with the experimental value at low temperature (0.162 times
the saturation bulk ferromagnetic value per manganese).
Therefore, not only the kind of magnetic order, but also the
order of magnitude of magnetization compare quite well with
experimental data.

For the analysis of the spectral and optical quantities, we
will consider the parameters used for the discussion of the
results in the last figure and the table focusing on tz/t = 1.3.

IV. SPECTRAL PROPERTIES

In this section, we will calculate the spectral properties of
the heterostructure for the same parameters used in Fig. 4.

Performing the canonical transformation (5) and exploiting
the cyclic properties of the trace, the electron Matsubara
Green’s function becomes

G( �Ri, �Rj ,τ ) = −〈
Tτ c �Ri

(τ )X �Ri
(τ )c†�Rj

(0)X†
�Rj

(0)
〉
. (19)

By using the test Hamiltonian (7), the correlation function can
be disentangled into electronic and phononic terms.23,24 Going
to Matsubara frequencies and making the analytic continuation
iωn → ω + iδ, one obtains the retarded Green’s function and
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the diagonal spectral function A
ixiy
iz

(ω) corresponding to �Ri =
�Rj ,

A
ix,iy
iz

(ω)

= eS
iz
T

∞∑
l=−∞

Il(S
iz )e

βlω0
2 [1 − nF (ω − lω0)]g

ix,iy
iz

(ω − lω0)

+ eS
iz
T

∞∑
l=−∞

Il(S
iz )e

βlω0
2 nF (ω + lω0)g

ix,iy
iz

(ω + lω0),

(20)

where S
iz
T = g2f 2

iz
(2N0 + 1), Siz = 2g2f 2

iz
[N0(N0 + 1)]

1
2 ,

Il(z) are modified Bessel functions, and g
ix,iy
iz

(ω) is

g
ix,iy
iz

(ω) = 2π

NxNy

∑
�k||

2Nz∑
n=1

δ[ω − E(�k||,n)]
{∣∣biz (�k||,n)

∣∣2

+ ∣∣piz (�k||,n)
∣∣2 + (−1)ix+iy

[
b∗

iz
(�k||,n)piz (�k||,n)

+p∗
iz

(�k||,n)bicz
(�k||,n)

]}
. (21)

The density of states D(ω) is defined as

D(ω) = 1

NxNyNz

1

2π

∑
ix ,iy ,iz

A
ix ,iy
iz

(ω). (22)

In Fig. 5, we report the density of state of the system
(LMO)16/(SMO)8. It has been calculated measuring the
energy from the chemical potential μ. This comparison has
been made at fixed low temperature (kBT = 0.05t), therefore
we can consider the chemical potential very close to the Fermi
energy of the system. At λ = 0.5, the spectral function exhibits
a residual spectral weight at μ. The main contribution to
the density of states at the chemical potential μ comes from
the three ferromagnetic large polaron planes at the interface.
Indeed, the contributions due to the (LMO) and (SMO) blocks
is negligible.

For stronger electron-phonon coupling at λ = 0.8, we
observe an important depression of the spectral function
at μ. Hence the formation of a clear pseudogap takes
place. This result is still compatible with the solution of
our variational calculation since, for this value of λ =
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FIG. 5. (Color online) Comparison between density of states (in
units of 1/t) as a function of the energy (in units of t) corresponding
to λ = 0.5 and 0.8.

0.8, there is only one plane with delocalized charge car-
riers that corresponds to the plane indicated as the in-
terface (iz = 17), while the two additional ferromagnetic
planes around the interface are characterized by small
polarons. The depression of the density of states at the
Fermi energy is due also to the polaronic localization
well inside the LMO and SMO block. In any case, we
find that, even for λ = 0.8, the density of states never
vanishes at the interface, in agreement with experimental
results.12

In this section, we have found strong indications that
a metallic ferromagnetic interface can form at the inter-
face between LMO and SMO blocks. This situation should
be relevant for superlattices with n � 3, where resistivity
measurements made with contacts on top of LMO show
a globally insulating behavior. In our analysis, we have
completely neglected any effect due to disorder even if, both
from experiments8,9 and theories,17 it has been suggested that
localization induced by disorder could be the cause of the
metal-insulator transition observed for n � 3. We point out
that the sizable source of disorder due to the random doping
with Sr2+ is strongly reduced since, in superlattices, La3+
and Sr2+ ions are spatially separated by interfaces. Therefore,
the amount of disorder present in the heterostructure is
strongly reduced in comparison with the alloy. However,
considering the behavior of the LMO (SMO) block as that
of a bulk with a small amount of holes (particles), one
expects that even a weak disorder induces localization. On
the other hand, a weak disorder is not able to prevent the
formation of the ferromagnetic metallic interface favored
by the double-exchange mechanism and the charge transfer
between the bulklike blocks: the states at the Fermi level due
to the interface formation have enough density12 so that they
cannot be easily localized by weak disorder. In this section,
we have shown that this can be the case in the intermediate
electron-phonon coupling regime appropriate for LMO/SMO
heterostructures.

In the next section, we will analyze the effects of electron-
phonon coupling and strain on the optical conductivity in the
same regime of the parameters considered in this section.

V. OPTICAL PROPERTIES

To determine the linear response to an external field of
frequency ω, we derive the conductivity tensor σα,β by means
of the Kubo formula. To calculate the absorption, we need only
the real part of the conductivity,

Reσα,α(ω) = − Im�ret
α,α

ω
, (23)

where �ret
α,β is the retarded current-current correlation function.

Following a well-defined scheme23,24 and neglecting vertex
corrections, one can get a compact expression for the real part
of the conductivity σα,α . It is possible to get the conductivity
both along the plane perpendicular to the growth axis, σxx , and
parallel to it, σzz. To calculate the current-current correlation
function, one can use the spectral function A�k||;iz,jz

derived
in the previous section exploiting the translational invariance
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along the in-plane direction. It is possible to show that the
components of the real part of the conductivity become

Re[σxx](ω) = e2t2

NxNy

∑
kx ,ky

4sen2(kx)
1

Nz

∑
iz,jz

γizγjz

× 1

ω

∫ ∞

−∞

dω1

4π
[nF (ω1 − ω) − nF (ω1)]

×Akx,ky ;iz,jz
(ω1 − ω)Akx,ky ;iz,jz

(ω1) (24)

and

Re[σzz](ω)= e2t2

NxNy

∑
kx ,ky

1

Nz

∑
iz,jz

∑
δ1z,δ2z

δ1zδ2zηiz,iz+δ1z
ηjz,jz+δ2z

1

ω

×
∫ ∞

−∞

dω1

4π
[nF (ω1 − ω) − nF (ω1)]

×Akx,ky ;iz+δ1z,jz+δ2z
(ω1 − ω)Akx,ky ;iz,jz

(ω1). (25)

In Fig. 6, we report the in-plane conductivity as a function
of the frequency at λ = 0.5 and 0.8. We have checked that
the in-plane response mainly comes from the interface planes.
Both conductivities are characterized by a Drude-like response
at low frequency. Therefore, the in-plane conductivity provides
a clear signature of the formation of the metallic ferromagnetic
interface. However, due to the effect of the interactions, we
have found that the low-frequency in-plane response is at least
one order of magnitude smaller than that of free electrons in the
heterostructures. Moreover, additional structures are present in
the absorption with increasing energy. For λ = 0.5, a new band
with a peak energy of the order of hopping t = 2ω0 is clear in
the spectra. This structure can be surely ascribed to the pres-
ence of large polarons at the three interface planes.23 Actually,
this band comes from the incoherent multiphonon absorption
of large polarons at the interface. This is also confirmed by the
fact that this band is quite broad, therefore it can be interpreted
in terms of multiple excitations. For λ = 0.8, the band is even
larger and shifted at higher energies. In this case, at the inter-
face, large and small polarons are present with a ferromagnetic
spin order. Therefore, there is a mixing of excitations whose net
effect is the transfer of spectral weight at higher frequencies.

FIG. 6. (Color online) The conductivity [in units of e2/(mt), with
m = 1/(2t)] into the plane perpendicular to the growth direction of
the (LMO)16/(SMO)8 bilayer as a function of the energy (in units of
t) for different values of λ.
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FIG. 7. (Color online) The conductivity [in units of e2/(mt),
with m = 1/(2t)] along the growth direction of the (LMO)16(SMO)8

bilayer as a function of the energy (in units of t) for λ = 0.5 and 0.8.

The out-of-plane optical conductivities show significant
differences in comparison with the in-plane responses. In
Fig. 7, we report out-of-plane conductivity as a function of the
frequency at λ = 0.5 and 0.8. First, we observe the absence
of the Drude term. Moreover, the band at energy about 2ω0

is narrower than that in the in-plane response. Therefore,
the origin of this band has to be different. Actually, the
out-of-plane optical conductivities are sensitive to the interface
region. A charge carrier at the interface has to overcome an
energy barrier to hop to the neighbor empty site. As shown in
Fig. 2, the typical energy for close planes at the interface is of
the order of the hopping t . Therefore, when one electron hops
along z, it has to pay at least an energy of the order of t . In the
out-of-plane spectra, the peaks at low energy can be ascribed to
this process. Of course, by paying a larger energy, the electron
can hop to the next nearest neighbors. This explains the width
of this band due to interplane hopping.

Additional structures are present at higher energies in the
out-of-plane conductivities. For λ = 0.5, the band at high
energy is broad with small spectral weight. For λ = 0.8, there
is an actual transfer of spectral weight at higher energies. A
clear band is peaked around 10t . This energy scale can be
interpreted as given by 2g2ω0 = 9.6t for λ = 0.8. Therefore,
in the out-of-plane response, the contribution at high energy
can be interpreted as due to small polarons.23,27

Unfortunately, experimental data about optical properties
of the LMO/SMO bilayers are still not available. Therefore,
comparison with experiments is not possible. Predictions on
the different behaviors among σxx and σzz can be easily
checked if one uses in-plane and out-of-plane polarization
of the electrical fields used in the experimental probes.
More importantly, the formation of two-dimensional gas at
the interface is expected to be confirmed by experiments made
by using lateral contacts directly on the region between the
LMO and SMO blocks. The dc conductivity of the sheet could
directly measure the density of carriers of the interface metal
and confirm the Drude-like low-frequency behavior of in-plane
response.

Finally, we have evaluated the conductivity of the entire
system at zero frequency for different values of model
parameters. In Fig. 8 , we report the in-plane (upper panel)
and out-of-plane (lower panel) conductivity as a function of
the anisotropy ratio tz/t for λ = 0.5 and 0.8. As expected, the
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FIG. 8. (Color online) The conductivity at zero frequency [in
units of e2/(mt), with m = 1/(2t)] of the (LMO)16(SMO)8 bilayer
into the plane perpendicular to the growth direction (upper panel)
and along the growth direction (lower panel) as a function of the
anisotropy ratio tz/t for λ = 0.5 and 0.8.

conductivity gets larger upon increasing the ratio tz/t since
ferromagnetic solutions are favored. Moreover, we point out
that the out-of-plane conductivity is one order of magnitude
less than the in-plane conductivity. The order of magnitude of
the resistivity has been estimated considering the out-of-plane
contribution of the calculated conductivity. For tz/t = 1.3, the
resistivity is about 0.2 � cm, a value that is comparable with
experimental results at low temperature for the single interface
(of the order of 1 � cm).9 It is clear that disorder effects present
in the material (not included in our analysis) should increase
the value of resistivity by enhancing the scattering rate of
the carriers. Therefore, a value of resistivity smaller than the
experimental value is compatible with the complexity of these
heterostructures.

VI. CONCLUSIONS

In this paper, we have discussed phase diagrams and
spectral and optical properties for a very large bilayer
(LMO)2n/(SMO)n (up to 48 sites along the growth direction).
A correlated inhomogeneous mean-field approach has
been developed to analyze the effects of electron-lattice
antiadiabatic fluctuations and strain. We have shown that a
metallic ferromagnetic interface is a quite robust feature of
these systems for a large range of the electron-lattice couplings
and strain strengths. Furthermore, we have found that the size
of the interface region depends on the strength of electron-
phonon interactions. At low temperature, the general structure
of our solutions is characterized by three phases running along
the growth z direction: antiferromagnetic phase with localized
and/or delocalized charge carriers inside the LMO block,
ferromagnetic state with itinerant carriers at the interface, and
localized polaronic G-type antiferromagnetic phase inside the
SMO block. The type of antiferromagnetic order inside LMO
depends on the strain induced by the substrate.

Spectral and optical properties have been discussed
for different parameter regimes. Due to the formation of
the metallic interface, even in the intermediate to strong
electron-phonon coupling regime, the density of states never
vanishes at the chemical potential. Finally, in-plane and
out-of-plane optical conductivities are sharply different: the

former shows a metallic behavior, the latter a transfer of
spectral weight at high frequency due to the effects of the
electrostatic potential well trapping electrons in the LMO
block. The in-plane response provides a signature of the
formation of the metallic ferromagnetic interface.

The approach proposed in this paper is accurate for the cal-
culation of static properties. With regard to dynamical quanti-
ties, the role of the electron-phonon coupling is properly taken
into account, while the effect of Coulomb interactions is con-
sidered only within mean field. To this aim, it could be interest-
ing to improve the treatment of electron-electron interactions,
for example, by using the random-phase approximation.27 It
is clear that the random-phase treatment is quite complex in
heterostructures due to the lack of translational invariance
along one direction. Moreover, the dynamical screening is
poor due to the presence of large insulating antiferromagnetic
blocks in the system. For this reason, the self-consistent
mean-field approach is reasonable, simple, and able to grasp
the main features of the effects of the Coulomb interactions.

In this paper, we have emphasized the role of polaron
quasiparticles since they represent one of the main ingredients
for the interpretation of the data in manganites.4 Within our
approach, the main contribution to the polaron formation
comes from the local interaction. Other effects, such as
those relative to cooperative interactions between vibrational
modes, could make a contribution to the polaron formation.
Moreover, coupling between Jahn-Teller modes on different
sites could also improve the analysis of strain effects in
the system. However, it is important to point out that our
treatment of electron-phonon interaction is based on an
inhomogeneous approach. Therefore, through kinetic-energy
terms, correlations between different sites are assured.

Finally, we have focused on static and dynamic properties at
very low temperature. The approach used in the paper is valid
at any temperature. Therefore, it could be very interesting to
analyze not only single interfaces but also superlattices with
different unit cells at finite temperature. Work in this direction
is in progress.

APPENDIX

In this Appendix, we give some details about the effective
electronic Hamiltonian derived within our approach. After the
Hartree approximation for the long-range Coulomb interac-
tions, the mean-field electronic Hamiltonian reads

H el
test = −t

∑
i||

Nz∑
iz=1

∑
δ||

γize
−Viz c

†
i||,iz ci||+δ||,iz

− t
∑
i||

Nz∑
iz=1

∑
δz

ηiz,iz+δz
e−Wiz,iz+δz c

†
i||,iz ci||,iz+δz

+
∑
i||

Nz∑
iz=1

[φ(iz) − μ]c†i||,iz ci||,iz + NxNy(T1 + T2)

+NxNyg
2ω0

∑
iz

�iz +
∑
i||

Nz∑
iz=1

Ciz (g
2ω0)c†i||,iz ci||,iz .

(A1)
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The self-consistent Hartree potential is given by

φ(iz) = e2

ε

( ∑
jz>iz

χ (jz)S(iz − jz) +
∑
jz<iz

χ (jz)S(iz − jz)

+ S1(0)χ (iz) − S2(iz)

)
, (A2)

where the quantity T1 is

T1 = −e2

2ε

(
Nz∑

iz=1

Nz∑
jz>iz

χizχjz
S(iz − jz)

+
Nz∑

jz<iz

χizχjz
S(iz − jz) + S1(0)

Nz∑
iz

χ2
iz

)
, (A3)

and T2 is

T2 = e2

2ε

(
NLa∑
Iz=1

NLa∑
Jz>Iz

S(Iz − Jz) +
NLa∑

Jz<Iz

S(Iz − Jz) + NLaS1

)
,

(A4)

with S(nz), S1(0), and S2(nz) obtained by adding the Coulomb
terms on the in-plane lattice index. The summations have been

made modulating the Coulomb interaction with a screening

factor: e2

|�ri−�rj | → e2e
−ηS |�ri−�rj |
|�ri−�rj | , where 1

ηS
is a fictitious finite

screening length in units of the lattice parameter a. Therefore,
S(nz) is

S(nz) =
∑

mx,my

exp
(− ηS

√
m2

x + m2
y + n2

z

)
√

m2
x + m2

y + n2
z

, (A5)

S1(0) is given by

S1(0) =
∑

mx,my

exp
(− ηS

√
m2

x + m2
y

)
√

m2
x + m2

y

, (A6)

with (mx,my) �= (0,0), and S2(iz − jz) is

S2(nz) =
∑

mx,my

lz∑
iz=1

exp
(− ηS

√
h2

x + h2
y + h2

z

)
√

h2
x + h2

y + h2
z

, (A7)

with lz the number of planes of the LMO block, hx = mx −
0.5, hy = my − 0.5, and hz = nz − iz − 0.5.
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