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Crystal field and magnetic structure of UO2

Fei Zhou (��) and Vidvuds Ozoliņš
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The properties of UO2 result from rich f -electron physics, including electronic Coulomb interactions, spin-orbit
and crystal-field effects, as well as interionic multipolar coupling. We present a comprehensive theoretical study
of the electronic structure of UO2 using a combined application of self-consistent DFT + U calculations and
a model Hamiltonian. The �5 ground state of U4+ and the energies of crystal-field excitations �5 → �3,4,1

are reproduced in very good agreement with experiment. We also investigate competing noncollinear magnetic
structures and confirm 3k as the T = 0 K ground-state magnetic structure of UO2.
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I. INTRODUCTION

Uranium dioxide is an important and interesting material
from both technological and scientific perspectives. During
the past half-century, the electronic structure of UO2 has been
thoroughly characterized by various experiments1–12 (for a
recent review, see Ref. 13). UO2 is a semiconductor with a
2-eV band gap1 and localized 5f 2 electrons that retain strong
atomiclike properties. Due to significant Coulomb interactions
and spin-orbit (SO) effects, the ground state of a free U4+
ion is the 3H4 nonet [see Fig. 1(a)]. When the crystal field
(CF) of UO2’s fluorite structure is considered, 3H4 is split
into the ground-state �5 triplet and the excited �3 doublet,
�4 triplet, and �1 singlet, all approximately 0.15 eV above
�5

6,9 [see Fig. 1(b)]. When cooled below TN = 30.8 K, UO2

undergoes a first-order phase transition from a paramagnetic
to a transverse type-I antiferromagnetic (AF) phase,2 which
exhibits a Jahn-Teller (JT) distortion of the oxygen cage.5

Experimental studies now converge on the view that the
noncollinear magnetic structure and the oxygen distortion are
of the 3k type;7,9–11 that is, the moment and lattice distortion
are both along the 〈111〉 direction [see Fig. 1(c)], instead
of the previously proposed 1k (〈001〉)14 and 2k (〈110〉)5

structures.
On the theory side, the CF model of Rahman and

Runciman15 correctly predicted the �5 ground state of UO2

(Fig. 2). Recent CF calculations have obtained quantitative
agreement with experimental excitation spectra by fitting
model parameters to the measured data,16 by adding
corrections to the point charge model,17 or by extrapolating
from the fitted values for other actinide dioxides.18 Models
of magnetism in UO2, pioneered by the work of Allen,14 have
explored the delicate interplay between multipolar and JT
effects.13

First-principles calculations have to go beyond the local-
density or generalized-gradient approximations (LDA/GGA)
to the density functional theory (DFT) to correctly reproduce
the insulating character of UO2. Existence of an energy
gap was demonstrated in Refs. 19 and 20 using the hybrid
functional method,21 in Ref. 22 using the self-interaction-
corrected LDA,23 and in Ref. 24 using the DFT + U method.25

CF splitting in actinide compounds has been computed by
using constrained f states without full self-consistency26

or by analyzing band positions obtained from LDA/GGA
calculations.27 The 3k structure of UO2 was studied by

Laskowski et al. using DFT + U ,28 but their results showed
anomalous dependence on the U parameter and both the
calculated oxygen distortions and energy differences were
about an order of magnitude too large. Furthermore, the 3k
state was only stable with large U values and a formulation
of DFT + U that is usually only applied to metals. A
first-principles framework for self-consistently and accurately
accounting for all the different energy scales in Fig. 1 does not
yet exist.

In this paper, we present a unified DFT-based framework
for calculating the electronic spectra, magnetism, and lattice
distortions in UO2. Explicit f -f interactions and CF effects
are treated using a model Hamiltonian with parameters derived
from self-consistent DFT + U calculations. The ground-state
wave functions that are obtained by diagonalizing this Hamil-
tonian are used to set up initial conditions for self-consistent
DFT + U calculations of magnetism and lattice relaxations.
Our approach allows us to accurately reproduce all the different
energy scales in Fig. 1, including the �5 ground state, �3,4,1

excited states, as well as the energetics of competing magnetic
structures, including 3k, and their associated lattice distortions,
all within a unified self-consistent framework.

Before moving on to the details, we stress that extra
care should be taken in first-principles calculations of f

electrons. Several challenges are encountered in DFT calcu-
lations of UO2 (and other actinide compounds in general).
First, strong f -f interactions and a weak CF result in an
inherently complicated many-body problem. For instance,
since 5f 2 electrons hybridize weakly with the O 2p bands
and remain well localized, their true wave functions are in
general multideterminantal (see below for further discussions).
Second, the higly localized nature of f electrons tends to
magnify the inaccuracies of approximate exchange-correlation
functionals. We have previously shown that the self-interaction
(SI) error of f electrons is highly sensitive to the occupied
orbital, and its removal is nontrivial in both the DFT + U and
hybrid-functional methods.29 Therefore, an improved version
of DFT + U 29 is required to remove such errors (∼0.1 eV) and
access weak CF effects. Third, the existence of a multitude
of f states often leaves DFT + U calculations trapped in
local minima, leading to difficulties in reproducibly finding
the correct electronic ground state. As a consequence, it is
not uncommon for different authors to find inconsistent and
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FIG. 1. (Color online) Schematics of the 5f 2 ground states and
level splitting, in decreasing interaction strength, of (a) free U4+ ion,
(b) cubic CF, and (c) ordered 3k noncollinear magnetic structure
of bulk UO2: left, direction of magnetic moments on uranium,
designated by large arrows; right, distortion of oxygen (small arrows)
around a central U atom.

hard-to-interpret results with large errors (∼1 eV or even
larger) even when using identical electronic-structure methods
(see Refs. 29–36 and references therein). It is likely that this
issue contributed to the failure of previous studies to reliably
examine the 3k structure of UO2.28 Previously, we have shown
that the local minima issue is also present in hybrid functional
calculations.29 In this paper, we show that the multiple minima,
corresponding to different orbital states, contain valuable
physical information about f electrons that can be used to
help find the true ground state and excitation spectra.

II. METHOD

A. LDA + U calculations

All DFT calculations were carried out using the VASP

code,37 GGA-PAW potentials,38 a cutoff energy of 450 eV, and
without any symmetry constraints to allow symmetry-breaking
solutions. Crystal-field calculations were performed in the
primitive cell of one UO2 formula unit with a 6 × 6 × 6
k-point grid. The lattice and ionic positions were frozen at
the experimental fluorite structure for CF calculations. These
calculations, as discussed in Sec. III A, are ferromagnetic with
one uranium ion per cell. Magnetic structures were calculated
in the fcc supercell (four formula units) using a 4 × 4 × 4 grid,
first without and then with full relaxation. Spin-orbit coupling

FIG. 2. (Color online) Low-energy f n eigenstates of Hamiltonian
(2). (a) n = 1, �8 ground states and �7 doublet of the j = 5/2 sextet;
(b) n = 2, �5 ground states and the excited �3,4,1 of 3H4.

was self-consistently incorporated for realistic comparison
with experiment.

To remove the orbital-dependent components of SI errors
(SIEs) of f electrons, we use a formulation of the LDA + U

method29 by modifying only the exchange term, rather than
both Hartree and exchange, of the LDA:

ELDA+U = ELDA + EX − EdcX, (1)

where the orbital-dependent Hartree-Fock exchange EX con-
tains a term that approximately cancels the on-site SIE in the
Hartree energy of localized f electrons; the remainder of the
LDA Hartree energy is exact by definition and therefore left
unmodified in our approach. The exchange double-counting
term EdcX accounts for the LDA exchange energy and is
given by a linear combination controlled by the c parameter of
the exchange double-counting in the Liechtenstein39 scheme
and the on-site local-spin-density (LSD) exchange, conceptu-
ally similar to hybrid functional approaches and serves the
purpose of subtracting the orbital-dependence of the LDA
exchange energy. As a result, Eq. (1) is SI free to high
accuracy.

There is only one adjustable parameter, U , in our approach,
and the other parameters J and c can be determined at
given U . As done in Ref. 29, we choose up to seven f 2

SSD states of the U4+ ion that are analytically degenerate
without considering SO and calculate these states’ total energy
dependence on J and c. As shown in Fig. 3, optimal values
of J = 0.6 eV and c = 0.5 are obtained at U = 6 eV that
minimize the energy difference, that is, the orbital-dependent
SIE. These J and c values are used throughout the paper. We
use U = 6 eV in this paper and discuss the dependence of

FIG. 3. (Color online) LDA + U energy of U4+ ion as function
of J in different orbitals. SOC is not included.

085106-2



CRYSTAL FIELD AND MAGNETIC STRUCTURE OF UO2 PHYSICAL REVIEW B 83, 085106 (2011)

TABLE I. For different magnetization directions B, the ground states �8 quartet (f 1) and �5 triplet (f 2), their spin and total magnetic
moment in μB , and, for f 2, the dominant determinants in the corresponding f 1 basis.

n = 1 n = 2

B �8 μS μ �5 State μS μ

−0.54 1.57 0.97(1,2) −0.86 2.06

−0.13 0.43 0.69[(1,3) 0.00 0.00[001]

0.13 −0.43 +(2,4)]

0.54 −1.57 0.97(3,4) 0.86 −2.06

−0.48 1.40 0.92(1,2) −0.86 2.06

−0.28 0.83 0.69[(1,3) 0.00 0.00
[110]

0.28 −0.83 +(2,4)]

0.48 −1.40 0.92(3,4) 0.86 −2.06

−0.44 1.28 0.92(1,2) −0.86 2.06

−0.33 1.00 0.69[(1,4) 0.00 0.00[111]

0.33 −1.00 +(2,3)]

0.44 −1.28 0.92(3,4) 0.86 −2.06

the results on U in Sec. III B. In the rest of the paper SO is
included.

B. On-site model Hamiltonian for f

We consider the following single-ion model for f electrons:

H0 =
n∑

i=1

(f̂i + ζ l̂ i · ŝi) + V̂ee, (2)

where the summation runs over n electrons for the one-body
terms of cubic CF, f̂ , and SO coupling of strength ζ . The
electronic interaction V̂ee is parametrized by Slater’s integrals
Fk (k = 0,2,4,6).40 The matrix elements of f̂ between the
basis states indexed by projections of orbital (m) and spin (σ )
momenta are given by

〈mσ |f̂ |m′σ ′〉 = δσσ ′

∫
Ȳ l

m

[
16

√
π

3
V4

(
Y40 +

√
10

7
ReY44

)

+ 32

√
π

13
V6(Y60 −

√
14ReY64)

]
Y l

m′d�, (3)

where V4,6 are cubic CF parameters41 and Y l
m are complex

spherical harmonics. To study the magnetic properties, an
infinitesimal magnetization field B (B → 0) is applied:

H ′ = H0 −
n∑

i=1

B · (gL l̂ i + gS ŝi)μB/h̄, (4)

where gL = 1 and gS ≈ 2 are the orbital and spin g factors,
respectively.

We first discuss the general properties of solutions to
Eqs. (2)–(4) using the model parameters derived from DFT +
U calculations (which are discussed in detail in Sec. III A).
For n = 1, 14 eigenstates are obtained, the lowest being the
�8 quartet (Fig. 2 and Table I). For n > 1, the Hamiltonian
in Eq. (2) can be diagonalized via configuration interaction
of C14

n f n single Slater determinants (SSDs) based on the f 1

eigenstates. The �5 ground states of f 2 are shown in Table I,
together with their dominant determinants, designated as (i,j )
using the indices of f 1 states in the left column of Table I. For
magnetic moment along each of the [001], [110], and [111]
directions, the �8 quartet of f 1 includes states 1,4 (2,3) with
larger (smaller) spin and orbital magnetic momenta, while the
�5 triplet of f 2 consists of states a and c with |μ| = 2.06 μB

and one dominant determinant [(1,2) or (3,4)], as well as a
nonmagnetic state b dominated by two determinants (right
column of Table I). Note that the observed moment of the
ordered state is smaller at 1.75 μB .5 The moment μ = 2.06μB

of the �5(a,c) states is slightly larger than the saturated 2μB

characteristic of the 3H4 multiplet because exchange and SOC
interactions are all of comparable strength and other multiplets
slightly mix into the ground state and increase the effective
moment.15 In general, all the f 2 eigenstates, including �3,4,1

(Fig. 2) are composed of multiple determinants.

C. Model parameters from LDA + U

The parameters for the model Hamiltonian in Eq. (2) are
obtained by analyzing the total energies and f wave functions
calculated with LDA + U . In this procedure, many self-
consistent LDA + U calculations are first carried out, yielding
solutions that are in general local minima rather than the global
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minimum of UO2. Next, we extract the f 2 Kohn-Sham wave
function |�f 〉, SSD by construction, from each solution, and
compute the expected energy according to Eq. (2),

〈�f |H0|�f 〉 = x1V4 + x2V6 + x3ζ + x4F
2 + U, (5)

where xi’s represent the solution-dependent coefficient
associated with model parameters. Since the Fk (k = 2,4,6)
contributions of V̂ee are heavily correlated,42 the following
approximation43 has been adopted in Eq. (5),

F 2 = F 4/0.668 = F 6/0.494, (6)

eliminating model parameters F 4 and F 6. Finally, expectation
values of H [Eq. (5)] of the obtained solutions are
fitted to the corresponding DFT + U total energies, yielding
self-consistent ab initio values of F 2, ζ , and the CF parameters
V4 and V6. We use the simple least-squares method to perform
the linear fitting. Here U in Eq. (5) can be regarded as a
constant in the fitting and bears no direct physical meaning.

III. RESULTS AND DISCUSSIONS

A. Crystal-field ground states and excitations

We carried out a series of 50 different self-consistent
calculations with randomly initialized f 2 states. Due to
the existence of multiple local minima in DFT + U , these
calculations resulted in a range of energies spread over almost
2 eV [solid circles in Fig. 4(a)]. It is seen that random
wave function initialization has generated only one low-energy
solution, while the remaining runs were trapped in metastable
high-energy states.

Obtained from the fitting procedure outlined in Sec. II C,
model parameters are applied in Eq. (2) to construct f 1

eigenstates and subsequently determine f 2 states by direct
diagonalization within the subspace of SSDs formed from
f 1 eigenstates. To further improve the quality of our fit and
provide data points in the low-energy region that was poorly
represented in the randomly initialized sample [solid circles in
Fig. 4(a)], we self-consistently calculate the DFT + U energies
of additional 15 two-electron SSD states that involve the

(1,2)
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FIG. 4. (Color online) (a) Fitting of DFT + U (Ref. 29) energy
to Eq. (2) for 50 runs with random initial states (solid circles) and 15
states with initial states constructed from f 1 solutions (open circles).
(b) Predicted f 2 CF levels �5,3,4,1 compared to measured CF splitting
(Ref. 9).

TABLE II. Fitted parameters (in eV) using Eqs. (2), (3), and (6),
compared with prior studies.

F 2 F 4 F 6 ζ V4 V6

U = 6 eV 5.649 (3.773) (2.790) 0.230 −0.093 0.0157
U = 4.5 eV 5.495 (3.670) (2.714) 0.209 −0.106 0.0163
U4+ ion (Ref. 44) 6.439 5.295 3.440 0.244
Ref. 16 Using Ref. 44 −0.112 0.024
Ref. 9 −0.123 0.0265
Ref. 18 −0.155 0.0333

6 low-energy f 1 orbitals (�8 and �7) for B//[001]; these
points are shown as open circles in Fig. 4(a). The (1,2) and
(3,4) states, which dominate the �5a and �5c ground states,
are also found to have the lowest energies in self-consistent
DFT + U calculations, demonstrating that our method can
reliably locate the electronic ground state. The other ground
state in Table I, �5b, has two dominant determinants and is
not directly accessible in DFT + U . Therefore, the data flow
between the model Hamiltonian and DFT + U calculations
is bidirectional: DFT + U provides model parameters, while
the model guides the DFT + U to the ground state and gives
access to multideterminant states.

The final fitted parameters are shown in Table II. Compared
to the values obtained by fitting the spectra of free ions,44 the
ionic parameters Fk , and ζ in the UO2 solid are somewhat
suppressed due to hybridization and screening effects. The
calculated cubic CF parameters V4 and V6 are slightly smaller
than those fitted to experimental data or extrapolated from
other actinide oxides.9,16,18 The Hamiltonian in Eq. (2) can
now be diagonalized. The predicted energies of the three
lowest excited CF levels �3,4,1 are in reasonable agreement
with experiment9 with errors of approximately 10–20 meV
[Fig. 4(b)]. A notable deviation is overestimation of the
splitting between these levels.

Finally, we note that the input J = 0.6 eV used in
our DFT + U calculation differs from the fitted value of
J ′ = (286F 2 + 195F 4 + 250F 6)/6435 in Table II. This is
because the role of the former is to minimize the SIE in
DFT + U , while the latter represents on-site exchange, and
some difference between them is expected when used with an
approximate XC functional. A perfect XC functional would
make the input U or J unnecessary and predict physically
meaningful output J ′ or Fk .

B. Dependence on input U

To illustrate the effect of the only adjustable variable in
our approach, U , the same calculations were repeated using
U = 4.5 eV. As shown in Table II and Fig. 4(b), the results
change only slightly and remain in good agreement with
experiment. Note that when U , which controls the degree of
electron localization, is decreased, the ionic parameters Fk and
ζ also decrease, that is, away from the free ion values, while
the CF parameters increase, suggesting that the f electrons
become more delocalized. Such a picture of opposite influence
of electron localization on free ion and CF parameters is
consistent with the observed trend that increase of the CF
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TABLE III. Energy (in meV per UO2) for different magnetic
structures, without and with ionic relaxation.

Static Relaxed

Configuration Es Es − Ed |μ|/μB Er Er − Ed |μ|/μB

[001] FM 0 (ref) 3.3 2.11 −57.3 −54.0 2.20
[001] AAF −6.5 −3.3 2.11 −61.9 −58.6 2.35

[110] FM −8.2 2.1 2.15 −65.5 −55.2 2.33
[110] AAF −12.4 −2.1 2.15 −71.8 −61.5 2.22

[111] FM −8.5 2.4 2.22 −70.3 −59.5 2.22
[111] AAF −13.2 −2.4 2.21 −76.3 −65.5 2.27
3k −13.8 −3.0 2.21 −81.1 −70.3 2.39

interaction results in a reduction in the free-ion parameters for
the same ion in different chemical environment.45

C. Magnetic properties

Finally, we discuss the effects of interionic interactions
and magnetic properties of UO2. Various magnetic structures
within a cubic supercell of four formula units were calculated,
first without and then with lattice relaxation. The previous
approximation of representing the �5 ground state with the
(1,2),(3,4) SSDs was adopted. Table III shows the energies
Es (static lattice), Er (after full relaxation), and the total
magnetic moments μ assuming ferromagnetic (FM) and type-
A antiferromagnetic (AAF) configurations along the [001]
(reference), [110], and [111] directions. In all cases, the
calculated μ of ∼2.1–2.2 μB is close to the saturated value
2.06 μB in Table I and larger than the measured 1.74 μB

2.
The reduction of the ordered moment is a topic of considerable
interest, but the mechanisms, such as the dynamical JT effect,46

are beyond the scope of this work. Given that the (1,2)/(3,4)
states are the CF ground states within our computational ap-
proach and the calculated moment is not too far from 1.74 μB ,
we continue to use these settings for noncollinear magnetic
calculations.

Table III shows that for each magnetization direction, the
AAF configuration is always lower than the FM configura-
tion, in agreement with experiment. The energy differences
Es(FM) − Es(AAF) are in the 4-to-6-meV range, suggesting
that multipolar interactions and anisotropy are weak. These
weak, mostly isotropic interactions underlie the success of the
simple fitting procedure of Sec. II C (root-mean-square error
= 35 meV) in FM configurations of 15 〈001〉 solutions and
50 solutions with random magnetic moment directions. We
also find that the different magnetization directions differ in
energy by less than 9 meV, suggesting that our procedure
for removing the orbital-depedent SIE is highly accurate.
Indeed, the f 2 wave functions differ considerably for the
three principle directions (see Table I), which would result in
SIEs of 0.1–0.2 eV using the unmodified DFT +U approach.
Nevertheless, we take additional care to remove any remaining
SIEs, however small they they appear to be, by subtracting a

reference energy Ed for each principle magnetization direction
d = 〈001〉, 〈110〉, or 〈111〉: Ed = [Es(FM) + Es(AAF)]/2.

With this correction, the AAF configurations in the three
directions, as well as the 3k structure [magnetic moment along
〈111〉, see Fig. 1(c)], are essentially degenerate before lattice
relaxation.

The magnetic transition temperature of UO2 is estimated
with a classical Heisenberg model on an fcc lattice:

H = −JH

∑
〈ij〉

	si · 	sj , (7)

where the summation is over all nearest-neighbor sites 〈ij 〉
with unit spin 	s. The FM/AAF energy difference per UO2 is
	E = 6JH − (−2JH ) = 8JH . As shown in Table III, 	E ≈
6 meV, corresponding to TN = 3.18JH /kB ,47 or about 28 K,
in excellent agreement with the experimental value 30.8 K.2

After relaxation without symmetry constraints, we obtain
the energies listed in the right column of Table III. The
computed moments μ become slightly larger than the static
values. The relaxation energy Er and the corrected Er − Ed are
large (>50 meV) due to differences between the static (fixed
to experimental a = 5.47 Å) and relaxed lattice parameters.
The energy differences between competing magnetic configu-
rations increases to ∼10 meV; these values are consistent with
the Néel temperature of TN = 30.8 K .2 The relaxed structures
with μ//〈111〉 are clearly more stable than 〈001〉 and 〈110〉.
We have enumerated all AF 〈111〉 structures within the fcc
unit cell and found that the 3k structure indeed has the lowest
energy. The associated oxygen lattice distortion (amplitude
0.024 Å) is also of the 3k type, though slightly larger than the
measured 0.014 Å.5

IV. CONCLUSIONS

In summary, we have studied the electronic structure of UO2

using an aspherical-SI free DFT + U method coupled with a
model Hamiltonian. The �5 CF ground states, as well as the
CF excitation energies are reproduced in good agreement with
experiment. Various magnetic structures are investigated with
careful initialization of the orbital and magnetic states. The in-
terionic interactions are found to be weak and largely isotropic.
When SIEs are accounted for, the 3k structure is essentially
degenerate with other antiferromagnetic configurations and
becomes the ground state only when lattice relaxations
are considered. Our work demonstrates the usefulness of
electronic structure calculations for f compounds with proper
treatment of SIEs and multiple self-consistent local minima
corresponding to different orbital states; this approach can be
readily applied to defect supercells and other f compounds.
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FEI ZHOU AND VIDVUDS OZOLINŅŠ PHYSICAL REVIEW B 83, 085106 (2011)

1J. Schoenes, Phys. Rep. 63, 301 (1980).
2B. C. Frazer, G. Shirane, D. E. Cox, and C. E. Olsen, Phys. Rev.
140, A1448 (1965).

3B. T. M. Willis and R. I. Taylor, Phys. Lett. 17, 188 (1965).
4R. A. Cowley and G. Dolling, Phys. Rev. 167, 464
(1968).

5J. Faber, G. H. Lander, and B. R. Cooper, Phys. Rev. Lett. 35, 1770
(1975).

6S. Kern, C. K. Loong, and G. H. Lander, Phys. Rev. B 32, 3051
(1985).

7P. Burlet, J. Rossatmignod, S. Quezel, O. Vogt, J. C. Spirlet, and
J. Rebizant, J. Less-Common Met. 121, 121 (1986).

8R. Osborn, A. D. Taylor, Z. A. Bowden, M. A. Hackett, W. Hayes,
M. T. Hutchings, G. Amoretti, R. Caciuffo, A. Blaise, and J. M.
Fournier, J. Phys. C 21, L931 (1988).

9G. Amoretti, A. Blaise, R. Caciuffo, J. M. Fournier, M. T. Hutchings,
R. Osborn, and A. D. Taylor, Phys. Rev. B 40, 1856 (1989).

10K. Ikushima, S. Tsutsui, Y. Haga, H. Yasuoka, R. E. Walstedt,
N. M. Masaki, A. Nakamura, S. Nasu, and K. Onuski, Phys. Rev.
B 63, 104404 (2001).

11E. Blackburn, R. Caciuffo, N. Magnani, P. Santini, P. J. Brown,
M. Enderle, and G. H. Lander, Phys. Rev. B 72, 184411
(2005).

12S. B. Wilkins, R. Caciuffo, C. Detlefs, J. Rebizant, E. Colineau,
F. Wastin, and G. H. Lander, Phys. Rev. B 73, 060406 (2006).

13P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and
G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).

14S. J. Allen, Phys. Rev. 166, 530 (1968); 167, 492 (1968).
15H. U. Rahman and W. A. Runciman, J. Phys. Chem. Solids 27, 1833

(1966).
16H. U. Rahman, Phys. Lett. A 240, 306 (1998).
17Z. Gajek, M. P. Lahalle, J. C. Krupa, and J. Mulak, J. Less-Common

Met. 139, 351 (1988).
18N. Magnani, P. Santini, G. Amoretti, and R. Caciuffo, Phys. Rev. B

71, 054405 (2005).
19K. N. Kudin, G. E. Scuseria, and R. L. Martin, Phys. Rev. Lett. 89,

266402 (2002).
20I. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. B 76,

033101 (2007).
21A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
22L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, and G. M. Stocks,

Phys. Rev. B 81, 045108 (2010).
23J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

24S. L. Dudarev, D. N. Manh, and A. P. Sutton, Philos. Mag. B 75,
613 (1997).

25V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44,
943 (1991).

26M. Colarieti-Tosti, O. Eriksson, L. Nordstrom, J. Wills, and M. S.
S. Brooks, Phys. Rev. B 65, 195102 (2002).

27P. Novak and M. Divis, Phys. Status Solidi B 244, 3168
(2007).

28R. Laskowski, G. K. H. Madsen, P. Blaha, and K. Schwarz, Phys.
Rev. B 69, 140408 (2004).

29F. Zhou and V. Ozolins, Phys. Rev. B 80, 125127 (2009).
30A. B. Shick, W. E. Pickett, and A. I. Liechtenstein, J. Electron

Spectrosc. Relat. Phenom. 114-116, 753 (2001).
31P. Larson, W. R. L. Lambrecht, A. Chantis, and M. van Schilfgaarde,

Phys. Rev. B 75, 045114 (2007).
32G. Jomard, B. Amadon, F. Bottin, and M. Torrent, Phys. Rev. B 78,

075125 (2008).
33B. Amadon, F. Jollet, and M. Torrent, Phys. Rev. B 77, 155104

(2008).
34E. R. Ylvisaker, W. E. Pickett, and K. Koepernik, Phys. Rev. B 79,

035103 (2009).
35B. Dorado, B. Amadon, M. Freyss, and M. Bertolus, Phys. Rev. B

79, 235125 (2009).
36B. Meredig, A. Thompson, H. A. Hansen, C. Wolverton, and A. van

de Walle, Phys. Rev. B 82, 195128 (2010).
37G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
38P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
39A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52,

R5467 (1995).
40B. R. Judd, Operator Techniques in Atomic Spectroscopy

(McGraw-Hill, New York, 1963).
41D. Newman and B. Ng, Crystal Field Handbook (Cambridge

University Press, Cambridge, 2000).
42W. T. Carnall, J. Chem. Phys. 96, 8713 (1992).
43M. T. Berry, C. Schwieters, and F. S. Richardson, Chem. Phys. 122,

105 (1988).
44C. H. H. Van Deurzen, K. Rajnak, and J. G. Conway, J. Opt. Soc.

Am. B 1, 45 (1984).
45G. K. Liu, J. Solid State Chem. 178, 489 (2005).
46D. Ippolito, L. Martinelli, and G. Bevilacqua, Phys. Rev. B 71,

064419 (2005).
47S. McKenzie, C. Domb, and D. L. Hunter, J. Phys. A 15, 3899

(1982).

085106-6

http://dx.doi.org/10.1016/0370-1573(80)90158-1
http://dx.doi.org/10.1103/PhysRev.140.A1448
http://dx.doi.org/10.1103/PhysRev.140.A1448
http://dx.doi.org/10.1016/0031-9163(65)90474-9
http://dx.doi.org/10.1103/PhysRev.167.464
http://dx.doi.org/10.1103/PhysRev.167.464
http://dx.doi.org/10.1103/PhysRevLett.35.1770
http://dx.doi.org/10.1103/PhysRevLett.35.1770
http://dx.doi.org/10.1103/PhysRevB.32.3051
http://dx.doi.org/10.1103/PhysRevB.32.3051
http://dx.doi.org/10.1016/0022-5088(86)90521-7
http://dx.doi.org/10.1088/0022-3719/21/26/003
http://dx.doi.org/10.1103/PhysRevB.40.1856
http://dx.doi.org/10.1103/PhysRevB.63.104404
http://dx.doi.org/10.1103/PhysRevB.63.104404
http://dx.doi.org/10.1103/PhysRevB.72.184411
http://dx.doi.org/10.1103/PhysRevB.72.184411
http://dx.doi.org/10.1103/PhysRevB.73.060406
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1103/PhysRev.166.530
http://dx.doi.org/10.1016/0022-3697(66)90114-4
http://dx.doi.org/10.1016/0022-3697(66)90114-4
http://dx.doi.org/10.1016/S0375-9601(98)00054-1
http://dx.doi.org/10.1016/0022-5088(88)90017-3
http://dx.doi.org/10.1016/0022-5088(88)90017-3
http://dx.doi.org/10.1103/PhysRevB.71.054405
http://dx.doi.org/10.1103/PhysRevB.71.054405
http://dx.doi.org/10.1103/PhysRevLett.89.266402
http://dx.doi.org/10.1103/PhysRevLett.89.266402
http://dx.doi.org/10.1103/PhysRevB.76.033101
http://dx.doi.org/10.1103/PhysRevB.76.033101
http://dx.doi.org/10.1063/1.464304
http://dx.doi.org/10.1103/PhysRevB.81.045108
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1080/13642819708202343
http://dx.doi.org/10.1080/13642819708202343
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.65.195102
http://dx.doi.org/10.1002/pssb.200642512
http://dx.doi.org/10.1002/pssb.200642512
http://dx.doi.org/10.1103/PhysRevB.69.140408
http://dx.doi.org/10.1103/PhysRevB.69.140408
http://dx.doi.org/10.1103/PhysRevB.80.125127
http://dx.doi.org/10.1016/S0368-2048(00)00394-7
http://dx.doi.org/10.1016/S0368-2048(00)00394-7
http://dx.doi.org/10.1103/PhysRevB.75.045114
http://dx.doi.org/10.1103/PhysRevB.78.075125
http://dx.doi.org/10.1103/PhysRevB.78.075125
http://dx.doi.org/10.1103/PhysRevB.77.155104
http://dx.doi.org/10.1103/PhysRevB.77.155104
http://dx.doi.org/10.1103/PhysRevB.79.035103
http://dx.doi.org/10.1103/PhysRevB.79.035103
http://dx.doi.org/10.1103/PhysRevB.79.235125
http://dx.doi.org/10.1103/PhysRevB.79.235125
http://dx.doi.org/10.1103/PhysRevB.82.195128
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1063/1.462278
http://dx.doi.org/10.1016/0301-0104(88)87264-1
http://dx.doi.org/10.1016/0301-0104(88)87264-1
http://dx.doi.org/10.1364/JOSAB.1.000045
http://dx.doi.org/10.1364/JOSAB.1.000045
http://dx.doi.org/10.1016/j.jssc.2004.09.023
http://dx.doi.org/10.1103/PhysRevB.71.064419
http://dx.doi.org/10.1103/PhysRevB.71.064419
http://dx.doi.org/10.1088/0305-4470/15/12/039
http://dx.doi.org/10.1088/0305-4470/15/12/039

