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Efficient treatment of two-particle vertices in dynamical mean-field theory
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We present an efficient and numerically stable algorithm for calculation of two-particle response functions
within the dynamical mean-field theory. The technique is based on inferring the high-frequency asymptotic
behavior of the irreducible vertex function from the local dynamical susceptibility. The algorithm is tested on
several examples. In all cases rapid convergence of the vertex function toward its asymptotic form is observed.
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I. INTRODUCTION

Electronic correlations in materials has been one of the
central topics of condensed matter physics throughout its
history, encompassing topics such as high-temperature super-
conductivity, colossal magnetoresistance, and heavy fermion
physics. The introduction of dynamical mean-field theory
(DMFT) in early the 1990s1–3 marked a big step forward in
the theory of correlated electrons in providing an approximate,
but nonperturbative, computational method with several exact
limits. Moreover, numerical DMFT calculations are feasible
also for multiband Hamiltonians necessary for the description
of real materials.

In the past 20 years DMFT was applied, at first, to
models3 and, later, to real materials.4,5 Naturally, most of
the studies focused on single-particle quantities, featured
explicitly in the DMFT equations, which can be compared
to photoemission spectra and which can provide informa-
tion about the metal-insulator transitions. Also local two-
particle correlation functions, static as well as dynamical,
can be computed with little additional effort in most DMFT im-
plementations, providing information about the local response
to applied fields. Computation of the nonlocal response is a
more difficult venture, however, with great potential gains.
With the dynamical susceptibilities available it is possible
to compare to the experimental data from inelastic neutron,
x-ray, or electron-loss spectroscopies. Perhaps an even more
interesting possibility opens with the static susceptibilities.
Monitoring their divergencies as a function of temperature
and the reciprocal lattice vector allows investigation of the
second-order phase transitions and an unbiased determination
of the order parameters. So far only calculations for simple
models, such as the single-band Hubbard model,6,7 the periodic
Anderson model,8–10 or Holstein model,11 have been reported.
Similar calculations were also performed with cluster12 or
diagrammatic13 extentions of DMFT.

In this article, we present a scheme for computation of the
static two-particle response functions in the multiband Hub-
bard model within DMFT. The key development is splitting
the particle-hole irreducible vertex into low-frequency (LF)
and high-frequency (HF) parts and expressing the HF part
in terms of the local dynamical susceptibilities. This allows
reformulation of the Bethe-Salpeter equation in terms of the LF
quantities plus corrections, thus reducing the numerical cost of
the calculations and improving their stability. The procedure
is applied to the single-band Hubbard model at and away from
the half-filling and a two-band bilayer model. In all the studied

cases we find a rapid convergence of the vertex function toward
its asymptotic form, which leaves the size of the LF problem
rather small and manageable also for multiband systems.

The article is organized as follows. After a general introduc-
tion, the two-particle formalism is reviewed in Sec. II, followed
by the discussion of the numerical implementation. In Sec. III
applications to simple model systems are reported. Discussion
of the asymptotic behavior of the irreducible vertex and the
blocked form of the irreducible Bethe-Salpeter equation is left
to Appendices A and B.

II. THEORY

Our starting point is the multiband Hubbard Hamiltonian

H =
∑
〈RR′〉

t
ij

R−R′c
†
RicR′j + 1

4

∑
R

Uij,klc
†
Rlc

†
RicRj cRk, (1)

where t
ij

R−R′ is the hopping amplitude between orbital j on

site R′ and orbital i on site R, c
†
Ri (cR′j ) are the corresponding

creation (annihilation) operators, and Uij,kl is the antisym-
metrized local Coulomb interaction. Throughout the text we
do not distinguish between spin and orbital degrees of freedom.
Summation over repeated orbital indices is assumed.

The developments and calculations reported here fall within
the framework of dynamical mean-field theory. Detailed
discussion of the formalism and basic applications of DMFT
can be found in Ref. 3. The main feature of DMFT is that the
irreducible vertex functions (see below for details) are built
only from local propagators and thus can be obtained from
an effective quantum impurity problem. The DMFT equations
determine self-consistently the fermionic bath for the impurity
problem. Evaluation of the two-particle response functions can
be viewed as a postprocessing of their solution.

A. Linear response formalism

We review briefly the DMFT linear response formalism.
For details the reader is referred to Ref. 3. We are interested in
the response of a system controlled by Eq. (1) to static fields
which couple to the spin, charge, or a more general orbital
density described by the susceptibility

χij,kl(q) =
∫ β

0
dτ

∑
R

eiqR(〈T c
†
Rj (τ )cRi(τ )c†0k(0)c0l(0)〉

− 〈c†j ci 〉〈c†kcl 〉). (2)
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Here q is a vector from the first Brillouin zone and the site
indices were dropped in the local averages. In the DMFT
approximation the susceptibility (2) can be obtained from

χij,kl(q) = T
∑
m,n

χ̃ij,kl(q; ωm,ωn), (3)

where χ̃ij,kl(q; ωm,ωn) is the solution of coupled integral
equations3,6

χ̃ij,kl(q; ω1,ω2) = χ̃0
ij,kl(q; ω1,ω2) + T

∑
ω3,ω4

χ̃0
ij,mn(q; ω1,ω3)

×�mn,pq (ω3,ω4)χ̃pq,kl(q; ω4,ω2) (4)

χ̃ij,kl(ω1,ω2) = χ̃0
ij,kl(ω1,ω2) + T

∑
ω3,ω4

χ̃0
ij,mn(ω1,ω3)

×�mn,pq (ω3,ω4)χ̃pq,kl(ω4,ω2). (5)

The local and corresponding “lattice” quantities are dis-
tinguished by the presence of parameter q. The quantities
in the equations are functions of the discrete fermionic
Matsubara frequencies, which are at temperature T given by
ωn = (2n − 1)πT (n is an integer). The equations have the
form of the irreducible Bethe-Salpeter (IBS) equation, with
�mn,pq (ω3,ω4) being the particle-hole irreducible vertex at
zero energy transfer, in the diagrammatic expansion of which
the mn pair of external vertices cannot be separated from
pq pair by cutting two single-particle propagators. In the
DMFT approximation only the local diagrams contribute to
�mn,pq (ω3,ω4),14 which allows simplifying the IBS equation
for the full two-particle correlation function to Eq. (4) in
terms of the reduced quantity χ̃ij,kl(q; ω1,ω2) and k-integrated
particle-hole bubble

χ̃0
ij,kl(q; ω1,ω2) = −δω1ω2

N

∑
k

Gik(k; ω1)Glj (k + q; ω1), (6)

where Gik(k; ω1) is the single-particle propagator obtained
from the Dyson equation

Gik(k; ωn) = [iωn + μ − hk − 	(ωn)]−1
ik , (7)

where μ is the chemical potential, hk is the Fourier transform
of the single-particle part of the Hamiltonian (1), and 	(ωn) is
the local self-energy. Equation (5) is the IBS equation for the
impurity, relating the local two-particle correlation function

χ̃ij,kl(ω1,ω2) = T 2
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4e

iω1(τ1−τ2)

× eiω2(τ3−τ4)(〈T ci (τ1)c†j (τ2)cl (τ3)c†k(τ4)〉
− 〈T ci (τ1)c†j (τ2)〉〈T cl (τ3)c†k(τ4)〉) (8)

to the local particle-hole bubble

χ̃0
ij,kl(ω1,ω2) = −δω1ω2

N2

∑
kk′

Gik(k; ω1)Glj (k′; ω1). (9)

B. Numerical implementation

Although it is possible to eliminate the vertex function from
Eqs. (4) and (5), we evaluate �ij,kl(ω1,ω2) explicitly as an
intermediate step. The computation proceeds as follows. After

converging the DMFT equations we use the impurity self-
energy 	ij (ωn) to get χ̃0

ij,kl(q; ω1,ω2) and χ̃0
ij,kl(ω1,ω2) using

expressions (6), (9), and (7). The local two-particle correlation
function χ̃ij,kl(ω1,ω2) is obtained during the solution of the
impurity problem. Its calculation itself, which poses various
technical questions,15 is not subject of this article. Next, Eq. (5)
is inverted to obtain �ij,kl(ω1,ω2). Finally, equation (4) is
solved and the susceptibility χij,kl(q) obtained after summation
over the Matsubara frequencies (3).

The above program faces two numerical challenges. First,
the inputs to the IBS equations, χ̃ij,kl(ω1,ω2) in particular,
are known accurately only for a limited range of frequencies.
Second, χ̃ij,kl(ω1,ω2), χ̃0

ij,kl(q; ω1,ω2), χ̃ij,kl(q; ω1,ω2), and
χ̃0

ij,kl(q; ω1,ω2) decay as 1/ω2, which makes straightforward
inversion of (4) and (5) numerically unstable. We have been
using the Hirsch-Fye quantum Monte Carlo impurity solver,16

but these issues are general and apply to other methods as well.
Our computational procedure relies on splitting the problem
into low- and a high-frequency parts, which are treated in
numerically different ways.

1. Asymptotic behavior of the vertex function

Separation of low- and high-frequency parts of a given
problem is common in theoretical physics. In the DMFT
practice it is widely used in calculation of the self-energy,
where the numerical solution of the Dyson equation at low
frequencies is augmented by a high-frequency asymptotic ex-
pansion obtained from the moments of the spectral function.17

In Appendix A we start by considering the HF asymptotic
expansion for the self-energy, which serves a precursor for the
HF expansion of the vertex function �ij,kl(ω1,ω2).

Unlike the self-energy, where a separate equation exists for
each frequency and so the LF and HF parts are decoupled, in
case of Eqs. (4) and (5) we are dealing with matrices in the
Matsubara frequencies and have to solve coupled equations
for the HF and LF blocks. The key ingredient of our procedure
is replacing the vertex function outside the LF block by its
asymptotic form

�∞
ij,kl(ω1,ω2) = Uij,kl + Uim,knχ

ph
mn,pq(ω1 − ω2)Upj,ql

+ 1
4Uim,nlχ

pp
mn,pq (ω1 + ω2)Upj,kq

for |ω1| > ωc ∨ |ω2| > ωc, (10)

where χph(ν) and χpp(ν) are the local dynamical suscep-
tibilities in the particle-hole and particle-particle channel,
respectively, as functions of bosonic Matsubara frequency ν,
and ωc is the cut-off frequency defining the LF block

χ
ph
ij,kl(ν) =

∫ β

0
dτ exp(iντ )(〈T c

†
j (τ )ci (τ )c†k(0)cl (0)〉

− 〈c†j ci 〉〈c†kcl 〉) (11)

χ
pp
ij,kl(ν) =

∫ β

0
dτ exp(iντ )〈T ci (τ )cj (τ )c†k(0)c†l (0)〉 (12)

Derivation of expression (10) is given in Appendix A.
Viewed as a function of variables ω1 and ω2, �∞

ij,kl is a constant,
Uij,kl , plus two ridges along the main and the minor diagonal,
a structure observed in earlier numerical studies.18 The cross
section of these ridges is given by the local dynamical
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susceptibility, typically, with a fast decay away from ν = 0.
The asymptotic form (10) is used in the numerical treatment
of both Eqs. (4) and (5) as described below.

2. Blocked IBS equations

The relations (4) and (5) can be viewed as equations
between matrices indexed by the Matsubara frequencies and
pairs of the orbital indices. We use the following arrangement
of the matrices⎛
⎜⎜⎜⎜⎝

χ (−ω1, − ω1) χ(−ω1, + ω1) χ (−ω1, − ω2) · · ·
χ (+ω1, − ω1) χ(+ω1, + ω1) χ (+ω1, − ω2) · · ·
χ (−ω2, − ω1) χ(−ω2, + ω1) χ (−ω2, − ω2) · · ·

...
...

...

⎞
⎟⎟⎟⎟⎠ ,

where each element χ is itself a matrix in pairs of orbital
indices

11 21 · · · 12 · · ·

χ =

11

21
...

12
...

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ11,11 χ11,21 · · · χ11,12 · · ·
χ21,11 χ21,21 · · · χ21,12 · · ·

...
...

. . .
...

χ12,11 χ12,21 · · · χ12,12 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In this representation the LF block is located in the upper left
corner of the matrix and the ω-dependent part of �∞

ij,kl(ω1,ω2)
(10) proportional to χph and χpp has a band diagonal form.

In the following we split the set of Matsubara frequencies
into the LF block |ωn| < ωc, denoted with a block index 0, and
HF block |ωn| � ωc, denoted with a block index 1. Expansion
of a matrix equation of the forms of Eqs. (4) and (5) into
the LF and HF blocks is given in Appendix B. The impurity
IBS equation (5) is used to compute the LF part of the vertex
function, the �00 block. We assume to know the LF (00) part
of χ̃ij,kl(ω1,ω2) (8) from the solution of the impurity problem
and to have a complete information about χ̃0

ij,kl(ω1,ω2) (9). In
practice we use a numerical representation of χ̃0

ij,kl(ω1,ω2) up
to a HF cutoff �c (typically much larger that the LF cutoff
ωc) and the analytic − 1

ω2
n

tail up to infinity for the χ̃0
ij,ij

elements, while the remaining elements involving off-diagonal
Gij (9) are neglected above �c. The LF part of the vertex �00

is obtained from (B4), which amounts to inverting equation
(5) restricted to the LF block and subtracting a correction.
For χph(ν) and χpp(ν) sharply peaked around ν = 0 the
correction reduces to a constant shift everywhere except the
vicinity of ωc.

Once we have computed �00 we proceed to solve
Eq. (4) for χ̃ij,kl(q; ω1,ω2) assuming the full knowledge of
χ̃0

ij,kl(q; ω1,ω2) and �ij,kl(ω1,ω2). We use the same partitioning
into the LF and HF blocks and take advantage of the fact
that only ω-summed susceptibility χij,kl(q) is of interest. This
allows partial ω summations in the HF block to be preformed at
an earlier stage of the calculation and to replace matrix-matrix
operations with matrix-vector ones; see Appendix B. Further
speed-up comes from treating the ω-dependent (B12) and
the constant (B13) parts of �11 in two subsequent steps,

which reduces the most demanding part of the HF problem
to a repeated band-matrix–vector multiplication. The same
procedure, including partial ω summations in the HF block,
can be used in case that full frequency dependence of
χ̃ij,kl(q; ω1,ω2) is desired, since its interesting ω dependence
is typically limited to the LF block.

III. NUMERICAL RESULTS

A. 2D Hubbard model

In the following we present our results for 2D Hubbard
model on a square lattice with the nearest-neighbor hopping.
In particular, we compute the Néel temperature as a function of
U (measured in the units of bandwidth) and doping. This is an
academic example since it is well known that no magnetic
order is possible in this model at finite temperature and
the magnetic oder studied here is an artifact of the DMFT
approximation. Nevertheless, we find it a useful benchmark
since (i) a comparison to other studies is possible and (ii) the
model exhibits a crossover from a nesting-driven instability
at small U to the Heisenberg model with local moments at
large U .

First, we report the results obtained at half-filling. After
converging the DMFT equations, a finer QMC run of 5 × 106

to 107 sweeps is performed to obtain the local two-particle
correlation function χ̃ij,kl(ω1,ω2) and local susceptibilities
χ

ph
ij,kl(ν), χ

pp
ij,kl(ν). It is possible to separate the charge and

the spin-longitudinal channels from the beginning, but we
perform the calculation in the upup, updn, dnup, and dndn
basis, as would be the case for general orbital indices, and
separate the two channels only in the final result. Expression
(6) is evaluated on a 20 × 20 grid of q points (66 irreducible
points) using a fine k mesh of 551 × 551 points, which is more
than enough to ensure that the uncertainties associated with k
points sampling as much smaller than other sources of error.

The IBS equations were solved for several LF cutoffs
ωc leaving the 5 to 20 lowest Matsubara frequencies for
temperatures above 1/20 and 15 to 30 Matsubara frequencies
for lower temperatures. In all studies cases, the relative
variation of the susceptibility with the LF cutoff was less than
1%. We have also tested the sensitivity to the HF cutoff �c.
When neglecting the contributions from above �c completely,
a slow convergence of the susceptibilities close to the AFM
instability was observed. The error essentially followed the
1/�c dependence which may be expected when truncating a
sum over 1/ω2

n series. The dominant contribution to the error
came from the �01X11�10 term in Eq. (B6). Introduction of
an analytic summation of the 1/ω2

n tails to infinity lead to the
converged results already for lowest HF cutoffs corresponding
to the 80–100 lowest Matsubara frequencies.

To check the consistency of our calculations we have solved
Eq. (4) also for χ̃0

ij,kl(ω1,ω2) in place of χ̃0
ij,kl(q; ω1,ω2), i.e.,

we went from χ̃ij,kl(ω1,ω2) to �ij,kl(ω1,ω2) and back and
compared the result with the local susceptibility obtained
directly from the QMC simulation. For all reported parameters
we have found a relative deviations of less than 2% close to the
AFM instability and less than 0.5% deeper in the paramagnetic
phase. As a side remark we mention that in the insulating phase
for U > 1 it is important that χ̃0

ij,kl(ω1,ω2) entering Eqs. (4)
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FIG. 1. (Color online) The Néel temperature of the 2D Hubbard
model in the DMFT approximation (squares), shown together with
the mean-field value of the Heisenberg model (red, large U) and the
RPA results obtained with the noninteracting (dotted blue line) and
dressed (triangles) propagators. The inset shows the decrease of the
Néel temperature on doping away from half-filling at U = 1.

and (5) are exactly the same (e.g., obtained with the same
k point sampling) since in this parameter range the results
are extremely sensitive to differences between χ̃0’s entering
Eqs. (4) and (5).

Due to the SU(2) symmetry of the model the transverse
and the longitudinal spin susceptibilities are identical in
principle. This symmetry is not explicitly enforced in the QMC
calculation, where the identity is obeyed only approximately
within the stochastic error of the simulation. For U < 1 we
have found relative deviations between the transverse and
longitudinal spin susceptibilities of 0.2–0.5%. For larger U ’s
(especially at lower temperatures) the transverse susceptibility
rapidly becomes useless due to increasingly large error bars.
This problem is specific to the Hirsch-Fye QMC solver and the
way the transverse susceptibility is measured in the simulation.
We have used the longitudinal susceptibility to determine TN

in this parameter range.
In Fig. 1 we show the Néel temperature as a function of

U . On the large U side TN approaches the static mean-field
value of the corresponding Heisenberg model reflecting the
insulator with well-defined local moments. On the small U

side the magnetic order arises from the Fermi surface nesting.
For comparison, we show also TN for the RPA condition for the
instability, χ0(TN ) = 1/U , obtained by replacing the vertex
with a constant and taking χ0(T ) of the noninteracting electron
gas or χ0(T ) obtained with the dressed propagators.

In Fig. 2 we show the LF block of the real part of
the transverse spin vertex �12,12 for large and small U as
a function of the fermionic Matsubara frequencies, which
exhibits the two-ridge structure and a rapid convergence
toward its asymptotic form. At small U the ridges are
only weakly T dependent and their absolute value is small
compared to the constant part of the vertex. At large Us the
ridges grow as 1/T and thus become dominant at low-enough
temperatures. In Fig. 3 we show the same vertices at fixed
ωm (still in the LF block) together with the corresponding
asymptotic tails �∞

12,12. We find a good match between the two
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12
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ω2

FIG. 2. (Color online) The real part of the transverse spin vertex
�1212(ωm,ωn) as a function of the indices m, n for U = 0.4 (left) and
1 (right) obtained at T = 1/15.

dependencies. The remaining mismatch is mainly due to the
time-discretization error inherent to the Hirsch-Fye impurity
solver, which shows up in a spurious curvature of the �(ωm,ωn)
for larger ωs (not really visible in the present plots). Using
the semianalytic asymptotic tail �∞ can efficiently remove
this spurious curvature. The discretization error arises from
performing Greens function convolutions on a discrete time
grid and should not be confused with the so-called Trotter error,
which is another consequence of discretizing the imaginary
time and which cannot be removed be restricting oneself to the
low frequencies (see Fig. 4). Impurity solvers using continuous
time approaches are not expected to have this problem.

Finally, the spin susceptibility throughout the Brillouin
zone is shown in Fig. 5. The plots clearly show that the
magnetic instability takes place at (π,π ) as expected. The
behavior of the vertices reveals that the origin of the instability
differs markedly for small and large Us. While for large Us
the main T dependence in the problem is in the vertex, related
to 1/T behavior of the local susceptibility, for small Us the
main T dependence is in the “bubble,” namely the thermal
smearing of the nesting related peak.

B. Effect of doping

We use doping to break the particle-hole symmetry in the
above model. The calculations were performed in the crossover
regime between the metallic and insulating phases at U = 1.
We have found that the magnetic instability survives doping
up to about 0.2 electrons (or holes) per site. For dopings
less or equal to 0.14 the instability appears at [π,π ]. For
dopings of 0.16 and 0.18 we have noticed that the maximum
of χs(q) moved slightly away from [π,π ] as the temperature

-10 0 10
n - index

-0.6

-0.5

-0.4

-0.3

Γ
12

12
 (
ω

7,ω
n)

-10 0 10
n - index

-4

-3

-2

-1

Γ
12

12
 (
ω

8,ω
n)

FIG. 3. (Color online) The real part of the transverse spin
vertex �1212(ωm,ωn) for fixed ωm in the asymptotic range for U =
0.4 (left) and 1 (right) at T = 1/15. Full diamonds mark the numerical
data from LF block, the crosses denote the HF tail obtained from
expression (10).
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12
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Γ
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12
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Γ(ωn,-ωn)

Γ(ωn,ωn)
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FIG. 4. (Color online) The �(ωn,ωn) and �(ωn, − ωn) (cuts along
the ridges of �) (symbols) and the corresponding asymptotic values
(lines) for the vertices shown in Fig. 2. The imperfect matching for
the largest frequencies shown is mostly due to time-discretization
errors discussed in the text and can be improved on by using more
time slices in the QMC simulation.

was lowered. Similar behavior was observed also in a model
with the next-to-nearest-neighbor (diagonal) hopping.19 The
Néel temperature as a function of doping is shown in the inset
of Fig. 1. In Fig. 6 we show the detail of the spin susceptibility
in the vicinity of [π,π ] for the highest studied doping of 0.18.
While at high temperatures the susceptibility exhibits a flat
maximum at [π,π ], at lower temperatures the maximum moves
to [1.04π,π ], eventually giving rise to an incommensurate
order.

C. Bilayer model

As a last example we study a bilayer Hubbard model.20 We
choose this model because (i) it has two bands and the lattice
bubble χ̃ij,kl(q; ω1,ω2) has a nontrivial orbital structure and
(ii) it exhibits a nontrivial temperature dependence of the
uniform spin susceptibility characterized by an exponential
decrease at low temperatures. In our previous work on a more
general version of this model (model of covalent insulator)21

we have used a different numerical approach to compute the
uniform susceptibility without an explicit use of the vertex
function and its HF tail, an approach which could not be
used for more general models and q-dependent susceptibilities.
Obtaining the exponential decay at low temperatures proved
numerically challenging. Therefore we find this model to
provide a good test of the performance of the present method.
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FIG. 5. (Color online) The longitudinal spin susceptibility as a
function of q at various temperatures for U = 0.4 (left) and U = 1
(right).

 20

 30

 40

S
pi

n 
su

sc
ep

tib
ili

ty

[π,π]

[1.1π,π]

[1.1π,1.1π]

FIG. 6. (Color online) The detail of the q-dependent spin sus-
ceptibility in the vicinity of [π,π ] at T = 1/60 (larger values) and
T = 1/30 for the doping of 0.18.

The model is obtained by taking two Hubbard sheets from
the previous section (with opposite signs of the in-plane hop-
ping) and adding an interplane hopping of 0.2. The different
signs of the in-plane hoppings on the two sheets ensures
that any nonzero inter-plane hopping opens a hybridization
band gap. The interplane hopping was chosen such that the
interesting temperature range can be easily covered with
the QMC simulations. As in the other cases studied so far we
were not primarily interested in the physics of the model, but
in the performance of the computational method. Therefore
we omit the fact that the system actually exhibits an AFM
instability and focus on the uniform susceptibility only. While
the AFM instability can be removed by introducing an in-plane
frustration, the T dependence of the uniform susceptibility is
a generic feature independent of the band-structure details.21

In Fig. 7 we show the local and uniform spin susceptibilities
together with the uniform charge susceptibility, which is
inversely proportional to the compressibility of the electron
liquid. The calculated spin susceptibilities closely resemble
those of Ref. 21. The decay of the uniform susceptibilities
at low temperatures reflects an evolution toward a band-
insulator-like state, characterized by a finite excitation gap
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FIG. 7. (Color online) The uniform spin (circles) and charge
(squares) susceptibility of the bilayer model as a function of
temperature. The diamonds mark the local spin susceptibility, which
clearly shows the evolution of local moment above T = 0.1.
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JAN KUNEŠ PHYSICAL REVIEW B 83, 085102 (2011)

for both charge and spin excitations (for more information see
Ref. 20). In the present calculations we have not encountered
any numerical problems in reproducing the low values of the
susceptibility at low T .

IV. CONCLUSIONS

An efficient numerical procedure for calculation of the static
two-particle response functions within the DMFT formalism
was presented. The main development is the identification
of the asymptotic form of the two-particle irreducible vertex
function and implementation of a block algorithm for solution
of the irreducible Bethe-Salpeter equations. We have studied
several test cases including the single-band Hubbard model at
and away from half-filling and a bilayer Hubbard model at half-
filling using Hirsch-Fye quantum Monte Carlo impurity solver.
In all cases we have observed a rapid convergence of the vertex
function toward its asymptotic form and a very good numerical
stability of the computations. This means that the numerical
effort can be efficiently reduced by choosing a relatively small
low-frequency cutoff, which makes calculations for multiband
systems feasible. Besides the susceptibility calculations the
described procedure may be useful in diagrammatic extensions
of DMFT, which employ the IBS formalism and two-particle
vertices.18,22–24
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APPENDIX A: HIGH FREQUENCY EXPANSION OF
THE VERTEX FUNCTION

Following Baym and Kadanoff25 and Baym26 the self-
energy 	 can be viewed as a functional of the dressed
Green function G and the vertex function � can be obtained
as a variation δ	[G]

δG
. The self-energy itself can be obtained

as a variation of the Baym-Kadanoff functional 	 = δ�[G]
δG

.
Diagrammatically this means that 	 is obtained from � by
cutting a single Green function line and � = δ2�[G]

δGδG
is obtained

by cutting two Green function lines.
We are interested in the high-frequency behavior of 	(ω)

and �(ω1,ω2). The expansion of 	(ω) to the order 1
ω

is
well known from the moments of the spectral function.17

Diagrammatically the zeroth-order term of 	 is the Hartree-
Fock contribution, in which the external frequency does not
enter any of the internal lines [Fig. 8(a)]. The first-order
contribution, 1/ω, comes from diagrams with external vertices

(a) (b)

FIG. 8. The form of the diagrams for the self-energy 	(ω), which
contribute to the zeroth (a) and first (b) order in 1

ω
.

connected by single Green function line [Fig. 8(b)]. Their
contribution has the form

T
∑

ν

Uχ (ν)UG(±ω − ν) (A1)

with χ (ν) being the dynamical susceptibility, where the plus
sign in front of ω applies for particle-hole and the negative
sign for particle-particle susceptibility. Expanding G in (A1)
in the powers of 1

(ω−ν) = 1
ω

+ ν
ω(ω−ν) and taking the leading 1

ω

term we get the corresponding contribution to the self-energy.
The remaining free summation over ν leads to an equal-time
correlator of the 〈c†c c†c 〉 type.

Our main interest here lies in the high-frequency behavior
of �(ω1,ω2). In particular, we are interested in the zeroth-order
contribution, which remains finite in the limit or large ω1

and/or ω2. It is not possible to develop the high-frequency
expansion by keeping one of the frequencies fixed since the
limit ω1,ω2 → ∞ is not uniform, i.e., it depends on the way in
which infinity is approached. By inspecting the diagrams for
�(ω1,ω2) we have identified two nonvanishing contributions.
The first one, obtained from the variation of the zeroth-order
term in the self-energy [Fig. 8(a)] is simply the bare vertex
Fig. 9(a). The other nonvanishing terms are obtained by cutting
the Green function line in Fig. 8(b), which leads to Fig. 9(b)
and Fig. 9(c). The corresponding expression for �∞ reads

�∞
ij,kl(ω1,ω2) = Uij,kl + Uim,knχ

ph
mn,pq(ω1 − ω2)Upj,ql

+ 1
4Uim,nlχ

pp
mn,pq (ω1 + ω2)Upj,kq . (A2)

The factor 1/4 accounts for the exchanges of the external
points of the two vertices. Note that the second-order diagram
[obtained by replacing the susceptibility in Fig. 8(b) with a
simple bubble] contributes to both Fig. 9(b) and Fig. 9(c).
As a function of ω1 and ω2 the high-frequency part of the
vertex function �∞ has a structure of a constant plus two
ridges along the main and minor diagonals, the cross section of

ph 1 2
)

+ +

pp 1 2
)

1

1

1

1

1

1

2

2

2

2

2

2

(a) (c)(b)

1/4

FIG. 9. The diagrams for the irreducible vertex, which remain
nonzero in the limit of large ω1 and ω2.
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)c()a( (b)

FIG. 10. The diagrams in the Baym-Kadanoff functional �[G],
which contribute to �∞.

which is determined by the particle-hole and particle-particle
dynamical susceptibilities.

In terms of the Baym-Kadanoff functional, the constant
term in �∞ derives from the first-order, Hartree-Fock, diagram
[Fig. 10(a)] and the diagrams containing at least one particle-
hole or particle-particle bubble Figs. 10(b) and 10(c) by cutting
the Green function lines corresponding to the same bubble.

APPENDIX B: BLOCKED IBS EQUATIONS

In the following we present the IBS equation written in
terms of small-ω and large-ω sectors denoted by indices 0 and
1, respectively. The IBS equation has the form

A = B + B�A, (B1)

where A, B, and � are matrices indexed by the discrete
Matsubara frequencies. Matrix B is diagonal in the Matsubara
frequencies.

First, solving Eq. (5) for �00, we assume that A00, B00,
B11 are known as well as �11, �01, and �10, which are
approximated by their asymptotic form. Starting from

A00 = B00 + B00�00A00 + B00�01A10, (B2)

A10 = B11�10A00 + B11�11A10, (B3)

we express A10 in terms of A00 and substitute to the first
equation to obtain

A00 = B00 + B00(�00 + �01X11�10)A00, (B4)

where X11 fulfills the equation

X11 = B11 + B11�11X11. (B5)

Thus �00 can be obtained by inverting IBS equation truncated
to the 00 block and adding a correction term.

In the second step, solving Eq. (4), we assume full
knowledge of � and B and want to compute A. Importantly,
we are interested only in the sum over the matrix elements
(Matsubara frequencies) of A. To this end we use a set of
block equations

A00 = B00 + B00(�00 + �01X11�10)A00 (B6)

A10 = X11�10A00 (B7)

A01 = A00�01X11 (B8)

A11 = X11 + X11�10A00�01X11. (B9)

The advantage of the blocked scheme is that Eq. (B5) does not
have to be inverted in practice. This is thanks to three factors:
(i) only the sum of elements of X11 (or a weighted sum in case
of X11�10) is needed, (ii) B11 is small due to 1/ω2

n decay, and
(iii) �11 is a constant (in frequencies) plus a band matrix

�11 = U ⊗ 1 + �band. (B10)

Here, U is the bare interaction (matrix in orbital indices)
and 1 is a matrix in frequencies with all elements equal to
1. The simplification is demonstrated on the computation of
the frequency-summed quantity

X•• =
∑
i,j

Xij . (B11)

The calculation of X11�10 is analogous. First, we solve
iteratively Eq. (B5) taking only the band part of �11

X̃i• = Bii + Bii

∑
k

�band
ik X̃k•, (B12)

where the block indices 11 were dropped for simplicity. The
iterative procedure converges fast due to the smallness of
B (= B11). After X̃i• is computed the summation over the
remaining index is performed to obtain X̃••. Next, we should
solve Eq. (B5) taking the constant part of �11 and X̃ in place of
B11. This is not necessary, since there is a simple, well-known,
relationship between X•• and X̃••

X•• = (I − X̃••U )−1X̃••. (B13)

Note that quantities in this equation should be viewed as
noncommuting matrices in the orbital indices.
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