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Anomalous Cherenkov spin-orbit sound
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The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing
through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward
light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons
and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound
cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound
there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we
demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the
Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental
tool for the measurement of the spin-orbit coupling strength.
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Purely electric manipulation of the electron spin is, no
doubt, the core idea of modern spintronics.1,2 Systems with
spin-orbit interaction (SOI) represent a distinct platform
for the practical implementation of this idea by way of
concrete spintronic devices such as a spin transistor.3 In
two-dimensional semiconductor heterostructures usually the
Bychkov-Rashba SOI (BRSOI),4 resulting from the structure
inversion asymmetry, and linear Dresselhaus5 SOI (DSOI),
resulting from the inversion asymmetry of crystal structure of
the bulk host material, are of most practical importance in the
spin dynamics. The cubic Dresselhaus term is less significant
but in exotic situations, when the coupling strengths of BRSOI
and DSOI are equal, it becomes the main term violating the
SU(2) symmetry and thus plays a crucial role in limiting the
electron spin lifetime as has been recently demonstrated in
the fascinating experiments on the persistent spin helix.6,7

Most works on systems with SOI focus on electron spin and
charge dynamics, in particular, on pure spin current generation:
by means of the intrinsic spin-Hall effect,8,9 polarized light,10

or spin ratchets.11 Also fundamental experimental research
on the spin-orbit coupling (SOC) strength mainly addresses
the electron degrees of freedom, through Shubnikov–de Haas
oscillations,12,13 photocurrents,14 or optical monitoring of the
angular dependence of the electron spin precession on the
electron motion direction with respect to the crystal lattice.15

This trend, which puts the electron degrees of freedom in
the center of the research, is clear. From one side it is explained
by the fact that exactly electron dynamics represents the source
of SOC. SOI is an outcome of special relativity where in the
reference frame of a moving electron electric fields transform
into magnetic ones. These magnetic fields interact with the
electron spin, removing the spin degeneracy. From the other
side it is explained by significant advances in experimental
techniques dealing with electrons.

However, in real systems the electron degrees of freedom
may interact with degrees of freedom of a different nature.
It is therefore challenging to study the traces of SOC on
the particles interacting with electrons. One possibility is
provided by the lattice vibrations of the heterostructure host
crystal. Indeed, the electron orbital degrees of freedom are
electrostatically coupled to the orbital degrees of freedom

of the crystal lattice. Since the electron orbital dynamics in
systems with SOI depends on spin, it is clear that the lattice
dynamics will be in a certain way modified by electron SOI.

The interaction between electrons and the crystal lattice is
described in terms of quantized lattice vibrations, referred to as
phonons, and it has been widely studied in systems with SOI.
However, the research mostly centered again on the impact
of phonons on the electron degrees of freedom, either charge
or spin. Examples date back to research on spin relaxation
due to the Dyakonov-Perel’16 mechanism involving electron
scattering on phonons with the corresponding momentum
relaxation time. More recent examples are phonon-induced
decay of the electron spin in quantum dots17,18 or phonon-
limited mobility in a two-dimensional electron gas (2DEG)
with SOC.19 Among other examples is the use of coherent
acoustic phonons to create dynamic quantum dots in SOC
systems.20

Here we take a different viewpoint on systems with SOI
and instead of electrons focus on phonons, in particular on the
consequences and fingerprints of SOI which could be observed
in the phonon dynamics. There are obviously various aspects of
the phonon dynamics in solids. In the present investigation we
will study one of them, an important and beautiful phenomenon
of the Cherenkov radiation.

Originally the Cherenkov effect was discovered by
Cherenkov in the electrodynamics of fast charged particles
passing through transparent media21 and it was later theo-
retically explained by Tamm and Frank.22 It consists in the
appearance of a forward light cone emitted by a given medium
under the impact of a charged particle moving with a velocity
larger than the speed of light in this medium. This Cherenkov
effect, also referred to as the normal optical Cherenkov effect,
is qualitatively different from the well-known deceleration
radiation because in the latter case the radiation is emitted
by the particle itself.23

With the appearance of photonic crystals the optical
Cherenkov effect was rediscovered and an anomalous optical
Cherenkov radiation with a backward-pointing cone was
predicted.24 Here the anomalous radiation is the result of
strong inhomogeneity of the medium, leading to complex
Bragg scattering.

081308-11098-0121/2011/83(8)/081308(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.081308


RAPID COMMUNICATIONS

SERGEY SMIRNOV PHYSICAL REVIEW B 83, 081308(R) (2011)

It turns out that the normal Cherenkov effect has an
acoustic counterpart. In a three-dimensional (3D) medium an
electron whose velocity is larger than the sound velocity of
the medium excites a forward sound Cherenkov cone. The
sound intensity I (3D)

s is located inside a three-dimensional
cone and its azimuthal angular distribution25 is I (3D)

s (θ ) =
�(θc − θ )[(v/c) cos(θ ) − 1]2 sin(θ ), where 0 < θ < π is the
azimuthal angle, the angle between the incident electron
momentum p (chosen as the direction of the z axis; p = mv,
where m is the particle mass and |v| = v) and the phonon
momentum q, c is the sound velocity (c < v), θc = arccos(c/v)
is the Cherenkov cone angle, and �(x) is the Heaviside step
function.

In two dimensions (2D) the sound intensity I (2D)
s is located

inside a two-dimensional Cherenkov cone with the polar an-
gular distribution I (2D)

s (φ) = �(φc − |φ|)[(v/c) cos(φ) − 1)],
where −π < φ < π is the polar angle (here p is the direction of
the x axis) and the Cherenkov angle φc of the two-dimensional
cone is given by the same expression as θc in three dimensions.

The essential difference between I (3D)
s and I (2D)

s is that in 2D
the strictly forward (φ = 0) sound emission is allowed while
in 3D the phonons with θ = 0 are dimensionally forbidden.

The characteristic feature of the normal acoustic Cherenkov
effect (ACE) is that in both the 3D and 2D cases the sound
does not exist out of the Cherenkov cone. However, as we
demonstrate below, this situation radically changes as soon as
the spin and orbital degrees of freedom of the incident electron,
exciting the Cherenkov sound, are coupled by a certain SOI
mechanism. In this case it is shown that one obtains an acoustic
counterpart of the anomalous optical Cherenkov radiation.
However, what is remarkable is that this anomalous ACE does
not require any inhomogeneity of the medium at all, in contrast
with the optical version of the effect in photonic crystals.24

To study the essential physics we consider a 2DEG with
BRSOI. The Bychkov-Rashba Hamiltonian is Ĥ0 = p̂2/2m +
(α/h̄)[σ̂ × p̂] · n. Here n is the unit vector perpendicular to
the 2DEG plane, m is the electron effective mass, p̂ is the
momentum operator, σ̂ is the Pauli matrix vector, and α ≡
h̄pso/m is the SOC strength. In the following we choose the
direction of n to be the direction of the z axis.

The Hamiltonian Ĥ0 lifts the twofold spin degeneracy at
momenta p �= 0 and results in a spin-orbit band splitting. The
spin is not a good quantum number anymore. It is well known
that the chirality operator R̂ ≡ [σ̂ × ê ] · n, with ê ≡ p̂/|p̂|
being the operator of the momentum direction, commutes with
the Hamiltonian Ĥ0 and momentum operator. Its eigenvalues
λ = ±1 characterize the electron energy spectrum εp λ =
p2/2m + λpso|p|/m, and the normalized eigenspinors of Ĥ0,
〈rσ |pλ〉 = exp(ipr/h̄)(1/

√
2)[1,λi exp(−iϕp)], where ϕp is

the angle between the electron momentum p and the x axis
and r is the 2D coordinate.

The physics of the ACE comes from the electron coupling
to acoustic phonons. The phonon Hamiltonian has the stan-
dard second quantized expression26 Ĥph = ∑

q h̄ω(q)(b†qbq +
1/2), where b

†
q and bq are the phonon creation and an-

nihilation operators, and the acoustic phonon spectrum is
h̄ω(q) = c|q| with c being the sound velocity. The Hamil-
tonian of the electron-phonon interaction reads27 Ĥel-ph =
g

∑
σ

∫
drψ̂†

σ (r)ψ̂σ (r)ϕ̂(r), where g is the electron-phonon

FIG. 1. (Color online) The Feynman diagram of ACE describing
the process of the acoustic phonon excitation by an incident electron
with momentum p and energy ε. The phonons with momentum q are
emitted in the normal forward sound cone and, for SOC systems, in
the anomalous forward and backward outward sound cones.

coupling strength, ψ̂†
σ (r) and ψ̂σ (r) are the electronic

field operators, and ϕ̂(r) = i
∑

q

√
h̄ω(q)/2V [exp(iqr/h̄)bq −

exp(−iqr/h̄)b†q].
Since the ACE is an effect of the electron propagation

through a medium, the natural mathematical language to
describe this physical phenomenon is the language of the
Feynman propagators or the Green’s functions. In the present
case the Green’s functions containing the physics of the ACE
are defined with respect to physical vacuum.25

The corresponding self-energy diagram is shown in
Fig. 1. The analytic expression corresponding to this diagram
is obtained according to the standard analytic reading rules27

and leads to the following expression:

�pλ(ε) = ig2

16π3h̄2

∑
λ′

∫ [
c2q2

h̄2ω2 − c2q2 + iη

× 1 + λλ′ cos(ϕp−q − ϕp)

ε − h̄ω − εp−q λ′ + iη

]
dωdq, (1)

where η is a positive infinitesimal. The frequency integration
is performed using the residue theorem. There is one pole in
the lower half plane, ω0 = c|q|/h̄ − iη̃. Thus

�pλ(ε)= g2c

16π2h̄3

∑
λ′

∫
1+λλ′ cos(ϕp−q − ϕp)

ε − c|q| − εp−q λ′ + iη
|q|dq. (2)

The sound intensity is obtained from the imaginary part of
Eq. (2) taken on the mass surface, ε = εp λ,

Im�p λ(ε = εp λ)

= − g2c

16πh̄3

∑
λ′

∫ kD

0

∫ 2π

0
[1 + λλ′ cos(ϕp−q − ϕp)]

× δ
(
Ep λ;q λ′

)|q|2d|q|dφ, (3)

where kD is the Debye momentum and Ep λ;q λ′ ≡ εpλ −
εp−q λ′ − c|q|. It is enough to consider the Cherenkov sound
excited only by an electron in the chiral branch with λ = +1
since it contains all the essential physics of the ACE while the
Cherenkov sound excited by an electron with λ = −1 may be
obtained in a similar way and does not lead to new phenomena.
Using the expression δ[f (x)] = ∑

n[1/|f ′(rn)|]δ(x − rn),
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where rn are the roots of the equation f (x) = 0, we
find Im�p +(ε = εp +) = −(g2m2c2/2πh̄3)

∫ π

−π
Is(φ)dφ. Here

the dimensionless Cherenkov sound intensity, Is(φ) =
I (intra)
s (φ) + I (inter)

s (φ), consists of two contributions coming
from intra- and interchiral electronic transitions,

I (intra)
s (φ) = �(φc − |φ|)[

1 + 1 − (c/v)q1(φ) cos(φ)√
1 + (c/v)2q2

1 (φ) − 2(c/v)q1(φ) cos(φ)

]
q2

1 (φ)

|h1(φ)| ,

(4)

I (inter)
s (φ)

=
[
1− 1 − (c/v)q2(φ) cos(φ)√

1 + (c/v)2q2
2 (φ) − 2(c/v)q2(φ) cos(φ)

]
q2

2 (φ)

|h2(φ)| ,

(5)

where q1,2(φ) are the positive solutions of the equations

2
vsov

c2
+ 2

(
v

c
cos(φ) − 1

)
q1,2 − q2

1,2

∓2
vsov

c2

√
1 +

(
c

v

)2

q2
1,2 − 2 cos(φ)

c

v
q1,2 = 0, (6)

with vso ≡ pso/m, and h1,2(φ) are the following functions:

h1,2(φ) = 4

[
2

(
v

c
cos(φ) − 1

)
− 2q1,2(φ) ∓ vsov

c2

× 2q1,2(φ)(c/v)2 − 2(c/v) cos(φ)√
1+(c/v)2q2

1,2(φ)−2 cos(φ)(c/v)q1,2(φ)

]
.

(7)

FIG. 2. (Color online) The intra- and interchiral contributions
to ACE for v = 5 × 103 m/s in a 2DEG with BRSOI in InAs
structures with the following parameters: c = 4.2 × 103 m/s, α =
0.15 × 10−11 eV m.

FIG. 3. (Color online) The total intensity of the Cherenkov sound
for v = 5 × 103 m/s in a 2DEG with BRSOI in InAs structures
with c = 4.2 × 103 m/s. The black (lower) curve corresponds to the
absence of SOI, α = 0.0 eV m. The lilac (intermediate) curve shows
the situation for α = 0.1 × 10−11 eV m, while the red (upper) one is
for α = 0.15 × 10−11 eV m.

The solution of Eqs. (6) may be obtained numerically. It
follows that regardless of the existence of SOI the positive
solutions q1(φ) are located inside the Cherenkov cone with an
angle φc. This is reflected by the presence of the Heaviside
step function in Eq. (4). Therefore, the intrachiral contribution
contains only the normal ACE. For vso � c the Cherenkov
cone angle is φc = arccos[c/(v + vso)], which assumes that the
inequality c < v + vso must be satisfied. In the limiting case
vso = 0 one obtains from Eqs. (6) q1,2 = 2[(v/c) cos(φ) − 1].
This leads to the condition (v/c) cos(φ) − 1 > 0 (requiring
v > c). Therefore the well-known result I (2D)

s is reproduced.
What is surprising is that for nonvanishing SOI (vso �= 0)

the positive solutions q2(φ) exist in the whole interval [−π,π ].
Therefore, the interchiral contribution to the Cherenkov

FIG. 4. (Color online) The same as in Fig. 3 but for v = 3.1 ×
103 m/s and for α1 = 0.1 × 10−11 eV m (black, lower curve) and
α2 = 0.125 × 10−11 eV m (red, upper curve).
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FIG. 5. (Color online) The curves from Fig. 4 in polar coordi-
nates: blue (internal) for α1, red (external) for α2.

sound contains both normal (inside the Cherenkov cone) and
anomalous (outside the Cherenkov cone) ACE as is shown in
Fig. 2.

One can see from Eqs. (4) and (5) that because of the
Heaviside step function the first derivative of the total sound
intensity Is(φ) has a singularity at the Cherenkov angle φc.
This singularity can be seen in Fig. 3 where v > c and in a
more striking form in Fig. 4 where v < c. The two curves in
Fig. 4 are plotted in Fig. 5 using the polar coordinates in the
2DEG plane.

Clearly, the detection of those acoustic singularities is an
experimental challenge because it gives φc in a SOC system,
cos(φc) = c/(v + vso), and thus the SOI strength.

In conclusion, the acoustic Cherenkov effect in a two-
dimensional electron gas with the Bychkov-Rashba spin-orbit
interaction has been considered. It has been shown that in this
system in addition to the normal Cherenkov sound inside the
Cherenkov cone there also exists an anomalous Cherenkov
sound outside this cone. The singular transition from the
normal to anomalous sound at the Cherenkov angle provides
an alternative experimental measurement of the spin-orbit
coupling strength.
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