
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 83, 081202(R) (2011)

Transient localization in crystalline organic semiconductors
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A relation derived from the Kubo formula shows that optical conductivity measurements below the gap
frequency in doped semiconductors can be used to probe directly the time-dependent quantum dynamics of
charge carriers. This allows to extract fundamental quantities such as the elastic and inelastic scattering rates,
as well as the localization length in disordered systems. When applied to crystalline organic semiconductors, an
incipient electron localization caused by large dynamical lattice disorder is unveiled, implying a breakdown of
semiclassical transport.
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Introduction. “Bad” conductors are systems presenting a
breakdown of the semiclassical Bloch-Boltzmann descrip-
tion of electronic transport. Known examples are found in
various classes of materials such as disordered systems,1

transition metal compounds,2 alkali-doped and charge-transfer
organic metals,3 and quasicrystals.4,5 In all these cases,
the electron motion is so much slowed down (by disor-
der, electronic correlations, polaronic effects, or by struc-
tural constraints) that the semiclassical assumption of well-
defined wave packets undergoing rare scattering events is not
valid.

An analogous situation is encountered in crystalline organic
semiconductors. There, a fundamental unsettled question is
whether the mechanism of charge transport can be ultimately
understood from the point of view of band electrons alone,
as suggested by the “band-like” temperature dependence of
the measured mobility. In these materials, the inherently large
thermal molecular motions act as strong electron scatterers,
leading to apparent electron mean-free paths comparable
or even smaller than the intermolecular distances. While
a generalization of semiclassical transport theory has been
recently proposed in Ref. 6 to deal with this situation, it
might well be that the very nature of semiclassical transport
is insufficient to appropriately describe the charge transport
mechanism in these materials. Indeed, recent numerical studies
have suggested a radically different point of view based on a
form of electron localization due to the dynamical disorder
caused by the thermal molecular motion.7,8 Accordingly, a
theory of electron transport in organic semiconductors would
require a proper account of quantum corrections to the electron
dynamics, not included in semiclassical treatments.

In this Rapid Communication we tackle this problem by
expressing the Kubo formula as a relation between the optical
conductivity and the time-resolved quantum dynamics of elec-
trons. We first consider a microscopic model with dynamical
lattice disorder that illustrates the characteristic behavior of
the quantum diffusion. A relaxation time approximation is
then introduced that treats the effect of inelastic scattering by
low-frequency lattice vibrations in an intuitive way. Finally
these concepts are used in the interpretation of experimental
data in crystalline rubrene, providing evidence for localization
effects.

Formalism. The quantum diffusion of electrons in a
given spatial direction can be measured via their quantum-
mechanical spread

�X2(t) = 〈[X̂(t) − X̂(0)]2〉, (1)

where X̂(t) = ∑N
i=1 x̂i(t) is the total position operator of

N electrons in the Heisenberg representation and 〈· · ·〉 =
Tr[e−βH (. . .)]/Z denotes the thermodynamic average. �X2(t)
is directly related to the symmetrized self-correlation function
of the velocity operator V̂X(t) = dX̂(t)

dt
, C(t) = 〈V̂X(t)V̂X(0) +

V̂X(0)V̂X(t)〉, via4,5

d�X2(t)

dt
=

∫ t

0
C(t ′)dt ′. (2)

On the other hand, the Kubo formula expresses the dissipative
part of the optical conductivity at ω �= 0 as

σ (ω) = e2

νh̄ω
Re

∫ ∞

0
eiωt 〈[V̂X(t),V̂X(0)]〉dt, (3)

where ν is the volume of the system. This can be exactly
related to the symmetrized C(t) of Eq. (2) and therefore to
the quantum diffusion �X2(t). Replacing the commutator in
Eq. (3) with the anticommutator of Eq. (2) can be absorbed
into a detailed-balance prefactor, yielding

σ (ω) = −e2ω2

ν

tanh(βh̄ω/2)

h̄ω
Re

∫ ∞

0
eiωt�X2(t)dt, (4)

with β = 1/kBT (see Refs. 9 and 10 for related aspects).
The above Eq. (4) is a restatement of the Kubo formula,
identifying the time-dependent quantum diffusion as the
physical quantity that is dual to the optical absorption in the
frequency domain. For independent nondegenerate electrons,
the formalism presented above acquires an intuitive meaning in
terms of the quantum spread of the electronic wave functions,
as in this case one has �X2(t) = N�x2(t), with �x2(t)
referring to each individual particle. Equation (4) can be
inverted to give

�x2(t) = 2h̄

πe2
Re

∫ ∞

0
(1 − e−iωt )

σ (ω)/n

ω tanh(βh̄ω/2)
dω, (5)

with n = N/ν the electron density.

081202-11098-0121/2011/83(8)/081202(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.081202


RAPID COMMUNICATIONS

S. CIUCHI, S. FRATINI, AND D. MAYOU PHYSICAL REVIEW B 83, 081202(R) (2011)

Microscopic description of lattice disorder. To set the
concepts clearly we apply the quantum diffusion formalism
to the following Hamiltonian6,7

H = −J
∑

i

[1 − α(ui − ui+1)](c+
i ci+1 + c+

i+1ci) + Hph.

(6)

In this model, electrons in a one-dimensional tight-binding
band have their intermolecular transfer integrals modulated
by molecular vibrations of frequency ω0, represented by

Hph = ∑
i

Mω2
0u

2
i

2 + p2
i

2M
. Equation (6) captures the effects of

strong dynamical lattice disorder that seem to be crucial in
crystalline organic semiconductors. The phonon frequency
ω0 is small due to the large molecular weight, so that the
lattice fluctuations can be treated classically (kBT > h̄ω0).
Their coupling to electrons is governed by the dimensionless
parameter λ = α2J/(2Mω2

0).
To calculate the electron diffusion �x2(t) in the presence

of lattice dynamics we employ mixed quantum-classical
simulations based on the Ehrenfest coupled equations7 on
a 1024-site chain. We solve the Schrödinger equation and
average over up to 12800 initial conditions, with the initial
displacements ui obeying a thermal distribution P (ui) ∝
exp(−Mω2

0u
2
i /2kBT ). The case of a frozen disordered lattice is

treated by averaging over the same set of disorder realizations
(see Ref. 6). In the latter case, the results are cross checked
via an exact diagonalization of the electronic problem on 256
sites, allowing for a direct verification of Eqs. (4) and (5).

Figure 1 shows the electron spread �x(t) ≡
√

�x2(t) and
the time-dependent diffusivity D(t) = d�x2(t)

2dt
for a representa-

tive choice of microscopic parameters: λ = 0.25, J = 0.11eV,
T = 0.235J = 300K, and different values of ω0. The dashed
line in Fig. 1(a) is the result for static disorder ω0 = 0, showing
a finite localization length L = 3.6a. The corresponding D(t)
in Fig. 1(b) increases at short times in the ballistic regime, then
exhibits oscillations. At subsequent times the oscillations are
damped and D(t) steadily decreases and vanishes. Following
Eq. (2), 2(dD/dt) = C(t) is precisely the velocity correlation
function: a negative slope is therefore signaling the occurrence
of backscattering underlying the phenomenon of Anderson
localization [in a classical picture, C(t) < 0 implies that the
velocity at time t is opposite to its value at time t = 0]. This
occurs, as expected, at times greater than the elastic scattering
time,1 which is given by τel = (πλT )−1 = 5.4 in the present
units.6

The results in the presence of lattice dynamics (ω0 �= 0)
closely follow the localized behavior at short and intermediate
times. However, upon reaching the time scale of lattice vibra-
tions, 1/ω0 (indicated by arrows), localization is destroyed and
�x(t) starts increasing indefinitely. The existence of a transient
localization phenomenon at times τel � t � 1/ω0 is one of
the main results of this work. It indicates that the electronic
transport mechanism is markedly nonsemiclassical, the final
outcome being determined by the characteristic time scale of
lattice disorder.

As a side remark, Fig. 1(b) illustrates a fundamental draw-
back of the Ehrenfest method, which makes it inadequate to de-
termine asymptotically the electron diffusion: The diffusivity
does not apparently tend to a constant value but rather exhibits
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FIG. 1. (Color online) (a) Quantum spread obtained from the
microscopic model Eq. (6) for static (gray, dashed) as well as
dynamical disorder (red, full lines: from bottom to top, h̄ω0/J =
0.01,0.0435,0.1). Times are in units of h̄/J . (b) The corresponding
instantaneous diffusivity D(t) = (d�x2/dt)/2. The inset shows the
optical conductivity obtained via Eq. (4).

an upward drift at long times. The total energy of the system
(not shown) is conserved in the simulation with a relative
precision of 2 · 10−7, which rules out possible integration
errors. The origin of this spurious phenomenon rather lies in
the fact that the Ehrenfest equations do not properly conserve
the Maxwell-Boltzmann statistical distribution:11 The repeated
action of the lattice vibrations (an external, time-dependent
potential) eventually drives the electrons to an arbitrarily high
effective temperature, a fact that could be at the origin of the
T −2 temperature dependence of the mobility obtained by this
method.7,12,13

The inset of Fig. 1(b) shows the optical conductiv-
ity σ (ω) calculated by applying Eq. (4) to the data of
Fig. 1(a), neglecting the spurious superdiffusive behavior
at long times. The result of the static disorder problem
(ω0 = 0) is shown for reference (gray, dashed). We see
that the dynamical nature of the lattice only modifies the
low frequency region of the spectrum ω � ω0. It does
not affect substantially the localization peak at ωloc 	 0.4J

as long as ω0 
 ωloc, nor the absorption band at higher
frequencies.

Relaxation time approximation. To understand how lo-
calization features can actually coexist with a diffusive
behavior at long times, we now implement the relaxation time
approximation (RTA) as a simple scheme bridging between
localization and diffusion. The idea underlying the RTA is to
express the dynamical properties of the actual system in terms
of those of a suitably defined reference system, from which
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it decays over time. Specifically, defining C0 as a reference
velocity correlation function, the relation

CRTA(t) = C0(t)e−t/τ , (7)

describes the damping of velocity correlations caused by
relaxation processes with a characteristic time τ .4,5,14 In the
semiclassical theory of electron transport, one starts from
a perfectly periodic crystal and describes via Eq. (7) the
momentum relaxation due to the scattering of Bloch states. In
that case C0 = 2v2

avg is a constant (twice the thermal average
of the squared band velocity) and the resulting diffusivity,
DRTA(t) = v2

avgτ [1 − e−t/τ ], is a monotonically increasing
function of time.

One can alternatively take a localized system with static
disorder as the reference state, as suggested by Fig. 1. At times
shorter than the typical time scale of the lattice motion, τin ∼
1/ω0, the molecular lattice appears to the moving electrons
as an essentially frozen, disordered landscape. In this case,
nothing prevents the buildup of quantum interferences that lie
at the origin of Anderson localization. The velocity correlation
function C(t) then initially coincides with that of a system
with static disorder C0(t). However, quantum interferences are
destroyed at longer times because, due to the lattice dynamics,
the electrons encounter different disorder landscapes when
moving in the forward and backward directions:1 Eq. (7) is
the simplest form that is able to capture such a decay process.
From Eqs. (2) and (4) it is easy to see that, starting from a
localized system [i.e., one with a vanishing diffusion constant,∫ ∞

0 C0(t)dt = 0], Eq. (7) restores a finite diffusion constant
DRTA = L2

0(τin)/(2τin), which is analogous to the Thouless
diffusivity of Anderson insulators.15 This value is essentially
equal to the diffusivity of the reference localized system at
a time t ≈ τin. The quantity L2

0(τin) = ∫
e−t/τin�x2

0 (t)dt/τin

represents the typical electron spread achieved at a time τin,
before diffusion sets back in. It therefore acquires the meaning
of a transient localization length. The emerging physical
picture is that of electrons prone to localization, but that can
take advantage of the lattice motion to diffuse freely over a
distance L0(τin), with a trial rate 1/τin.

From Eqs. (4) and (7) we obtain a mobility

μ(T ) 	 e

kBT

L2
0(τin)

2τin
. (8)

Although a systematic study of the electron mobility of
organic semiconductors is beyond the scope of this work,
we note here that under quite general assumptions Eq. (8)
implies a power-law temperature dependence μ ∼ T −α , even
though the microscopic transport mechanism is far from a
conventional band transport (the exponent α depends on how
the transient localization length varies with the thermal lattice
disorder).

Real time dynamics from experiment. We now show how
optical conductivity experiments can provide direct informa-
tion on the relevant time and length scales of the problem.
Figure 2 reports the instantaneous diffusivity D(t) in the
direction of highest conduction of rubrene, obtained via Eq.
(5) by direct integration of the data of Ref. 16 (analogous
results are obtained from Ref. 17). D(t) increases first, reaches
a maximum, and then decreases by a factor of 3 before
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FIG. 2. (Color online) Time-dependent electron diffusivity D(t)
extracted via Eq. (4) from the experimental optical conductivity of
Ref. 16 in the direction of highest conduction. The absolute value is
fixed by the measured mobility μ 	 7 cm2/V s. The inset shows the
same quantity as a function of the instantaneous electron spread. The
dashed line is the weak localization extrapolation.

stabilizing to a constant value. The shape of the diffusivity
curve is remarkably similar to the theoretical result of Fig. 1
and hardly compatible with the semiclassical picture discussed
after Eq. (7) in which D(t) = v2

avgτ [1 − e−t/τ ] increases
and directly saturates. This suggests that, as in the model
calculation, the decrease of D(t) is due to localization effects
occurring at times shorter than the lattice dynamics. An elastic
scattering time of the order of τel ≈ 10−14s can be tentatively
identified with the region of negative slope in Fig. 2. According
to the arguments given above, a diffusive regime [D(t) =
constant] sets up at time scales beyond the inelastic scattering
time. This is what Fig. 2 reveals with τin ≈ 5 · 10−14s.

The inset shows a plot of D(t) as a function of �x(t)
and gives access to the relevant length scales. We find for
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FIG. 3. (Color online) The experimental diffusivity of Fig. 2 (red,
continuous line) is compared with the result of the RTA (black, dash-
dotted line) and the localization ansatz defined in the text (gray, dashed
line). The inset shows the experimental optical conductivity of Ref. 16
together with the RTA and the localization ansatz (arb. units).
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the elastic and inelastic mean-free paths �el ≈ a and �in ≈ 3a,
respectively, with a = 7.2 Å the intermolecular distance. In
addition, this inset suggests that without inelastic scattering
(i.e., for a fixed set of disordered molecular positions) the
diffusivity D(t) would extrapolate to zero at a localiza-
tion length of the order of 3–5 intermolecular distances.
Note that the linear extrapolation of diffusivity with the
log of the length is a standard approximation for two-
dimensional systems.1 Yet rubrene should be considered as
intermediate between one- and two-dimensional due to its
highly anisotropic character.18 For a one-dimensional system
localization sets in more efficiently therefore the above
extrapolation should be an upper bound to the true localization
length.

We finally show in Fig. 3 how the RTA can be used to extract
quantitative microscopic information from the optical data.
One first constructs an ansatz for the reference conductivity
σ0(ω) representing the ideal case with frozen disorder (i.e.,
no inelastic scattering). This can be done starting from the
experimental optical absorption (inset: red, full line), by
enforcing the condition σ0(ω → 0) = 0 appropriate for a
localized system (gray, dashed line). The RTA result (black,
dash-dotted line) is then obtained by applying Eq. (7) to
fit the experimental curve. The optical conductivity and the
resulting diffusivity both nicely agree with the experimental

data. The fitting procedure yields τin = 5.1 · 10−14s, corre-
sponding to a frequency ωin = 104 cm−1, consistent with the
relevant intermolecular phonon frequencies in rubrene.19,20

From the same fit, the estimated transient localization length
in the direction of highest conduction is L0(τin) 	 2a [the
localization length of the static ansatz is L0(t → ∞) 	 3a].
The present analysis shows that the finite frequency absorption
peak observed in rubrene16,17 should be ascribed to transient
localization effects (i.e., occurring before the dynamics of the
lattice set in) and constitute a signature of an unconventional
transport mechanism.

Concluding remarks. The relation between the quantum
dynamics of electrons and the optical conductivity that stems
from the Kubo formula appears to be a powerful tool to analyze
the charge dynamics in semiconductors with unconventional
transport properties. When applied to experimental data on
crystalline organic semiconductors, it provides evidence for
the role played by localization phenomena in the charge
transport mechanism. The scenario emerging from the above
analysis is indicative of a prominent role of the dynamical lat-
tice disorder, which is supported by a microscopic calculation
on a one-dimensional model.
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