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Restoring the physical meaning of metamaterial constitutive parameters
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Metamaterial homogenization is often based on implicit assumptions inspired by natural material models.
However, retrieved permittivity and permeability frequently retain nonphysical values, especially near the
metamaterial resonances where most interesting features are expected. We explain here the nature of typical
homogenization artifacts, relating them to an inherent form of magnetoelectric coupling associated with the finite
phase velocity along metamaterial arrays. Our findings allow restoring the proper definition and physical meaning
of local constitutive parameters for metamaterials.
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Negative-index metamaterials (NIMs), ε-near-zero and ε-
very-large metamaterials,1 i.e., artificial materials supporting
negative refraction or anomalous values of permittivity, have
been theoretically shown to possess features not available
in nature and ideal for radiation, imaging, cloaking, and
waveguiding applications. From the theoretical standpoint,
such anomalous properties may revolutionize several applied
fields, but the same definition of metamaterial constitutive
parameters has proven to be challenging, in particular when
extreme (very large, very low, or negative) values are
considered.2,3 Several homogenization models have been put
forward to macroscopically describe the wave propagation in
metamaterials, with the goal of treating complex arrays of
resonant inclusions as bulk materials.3–11 The most common
definition of homogenized metamaterial parameters is based
on retrieval methods,12 which implicitly postulate that a
metamaterial may be described as a natural material, with
local effective permittivity and permeability, and aims at
extracting these parameters from scattering measurements.
This method cannot ensure that the extracted parameters have
a proper physical meaning, as it implicitly relies on the validity
of the chosen model. Indeed, the metamaterial parameters
retrieved from experiments within such schemes often do not
satisfy basic passivity and causality constraints12,13 required by
the second law of thermodynamics and by causality, energy
conservation, and the Kramers-Kronig relations14

Im[εeff] > 0, ∂εeff/∂ω � 0, ∂(ωεeff)/∂ω � 0, (1)

and similarly for the effective permeability μeff , under an e−iωt

time convention.
In particular, frequency bands in which one of the two

retrieved parameters experiences an unphysical “antiresonant
response” with a negative slope and a negative imaginary
part12 are common in metamaterial retrieval procedures. These
artifacts have often been justified with creative but unpersua-
sive arguments, generically associated with spatial dispersion,
influence of higher-order multipoles, neglected bianisotropic
effects in the inclusions, and other related issues.12 The
presence of these antiresonances has been verified in dozens
of papers on metamaterial characterization and experiments,
and it has been accompanied by serious doubts on whether
the same meaning of such extreme metamaterial parameters,
which go beyond what is commonly available in nature,
is acceptable. In particular, the same possibility to define

metamaterial parameters is doubted near the array resonances,
where the most interesting effects usually take place. In the
following, we thoroughly address this issue, showing that
these antiresonance artifacts may be traced back to a weak
form of spatial dispersion effects associated with the finite
phase velocity along the metamaterial array, which is usually
neglected in metamaterial homogenization. Properly taking
into account these effects, we put forward a way to restore
physically meaningful local metamaterial parameters that may
properly describe the exotic properties of metamaterials even
in regimes associated with extreme or anomalous parameters.

In Ref. 11, we have proposed a general analytical ho-
mogenization method that can rigorously describe the wave
interaction with periodic metamaterial arrays formed by
arbitrary magnetodielectric inclusions. For simplicity, let us
consider here the special situation in which the array is
formed by a cubic lattice with period d, much smaller than
the wavelength of operation λ0, made of center-symmetric
inclusions with no bianisotropic effects. In such case, the
inclusions may be effectively described by their electric and
magnetic scalar polarizabilities αe and αm, which relate the
electric and magnetic dipole moments to the local electric and
magnetic fields at their center. This is the most ideal situation
to homogenize metamaterial arrays, and it is widely believed
that a simple isotropic model based on scalar permittivity and
permeability should be accurate to describe a metamaterial
under these conditions. A rigorous analysis of the coupling
among the inclusions,11 however, shows that the effective
constitutive relations should be written, for an arbitrary eiβ·r
space variation, where β is the Bloch-wave vector, as

Dav = ε0Eav + Pav = εeffEav − κeffβ × Hav,

Bav = μ0Hav + Mav = μeffHav + κeffβ × Eav,
(2)

where closed-form analytical expressions for the effective
constitutive parameters εeff , μeff , and κeff have been derived in
Refs. 11 and 15 and, in the present scenario, the average fields
are defined as Fav = 1

d3

∫
V

F(r)e−iβ·r dr, with V being the
unit-cell volume, in analogy with Ref. 10. Due to the array and
inclusion symmetries, the constitutive parameters are indeed
isotropic, but an inherent form of magnetoelectric coupling
at the lattice level, represented by κeff , arises despite the
assumed symmetries. This coupling, which is consistent with
recent homogenization studies,8,9 is related to the asymmetry
introduced by the finite phase velocity along the array
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vp = ω/β (Ref. 11) and represents a weak form of spatial
dispersion. These expressions may be generalized with proper
tensorial notation to anisotropic inclusions and lattices, and
to arbitrary propagation direction, still retaining this relevant
form of weak spatial dispersion; this goes, however, beyond
the scope of the present paper in which, for clarity, we limit our
analysis to the isotropic scenario. We will prove in the follow-
ing that the antiresonant and nonphysical artifacts associated
with retrieved parameters near the inclusion resonances may
be directly related to these second-order spatial-dispersion
effects, inherent to lattice propagation, and relevant even in
the long-wavelength regime d � λ0.

The improved constitutive model (2) has been proven in
Ref. 11 to be valid for any pair (β, ω), totally independent
of the local-field distribution along the array, of the possible
presence of external sources, and of the local impedance ratio
Eav/Hav, ensuring that three local parameters εeff, μeff , and κeff

are sufficient to properly describe the metamaterial properties
in the long-wavelength limit for any form of excitation.
In retrieval experiments, however, we usually extract the
eigenmodal response of the array, i.e., we operate in absence
of impressed sources inside the metamaterial. In such a case,
the average fields satisfy, using Eq. (2),

iβ × Eav = iω
μeff

1−ωκeff
Hav = iωμeqHav,

iβ × Hav = −iω εeff
1−ωκeff

Eav = −iωεeqEav,
(3)

which allows defining equivalent constitutive parameters εeq

and μeq (Ref. 11), related to the effective permittivity and
permeability through the normalization factor (1 − ωκeff).
The eigenmodal assumption forces a specific ratio Eav/Hav

in the metamaterial, i.e., the modal characteristic impedance,
which lets us write the constitutive relations as in a local
isotropic material, analogous to the assumption commonly
made in retrieval experiments. However, these equivalent
parameters inherently contain a hidden form of weak spatial
dispersion associated with a finite κeff , and for this reason
they cannot be considered local even in the long-wavelength
limit for which the effective parameters are. They are
expected to inherently depend on the excitation, on the
local ratio Eav/Hav, and on the direction of propagation. It
is not surprising, therefore, that their dispersion may not
satisfy basic physical constraints, as in Eq. (1), and their
same physical meaning, as an averaged electric or magnetic
polarizability of the array, is compromised for β,ω �= 0.

In order to see how these effects play an important role
in metamaterial homogenization, consider first the simple
metamaterial geometry formed by dielectric spheres with
permittivity ε = 120ε0, permeability μ = μ0, and normalized
radius a/d = 0.45 (an analogous array was considered in
Ref. 11 to analyze the spatial dispersion effects in the ho-
mogenization of resonant metamaterials). The idea of using a
dense array of high-index spheres to produce isotropic negative
effective parameters has been put forward in Refs. 6 and 16,
and it indeed provides an interesting venue to verify the effect
of κeff , even in cases for which ideal symmetries and isotropy
would suggest the absence of significant magnetoelectric
coupling effects in metamaterial homogenization.

Figure 1 shows the normalized αe and αm (dark solid
and dashed lines, respectively), as a function of k0d, with

FIG. 1. (Color online) Magnitude of the electric (solid) and
magnetic (dashed) polarizability coefficients for spheres with: ε =
120ε0, μ = μ0, a/d = 0.45 (darker, black); ε = (13.8 + i0.1)ε0,
μ = 11μ0, a/d = 0.4 (lighter, green).

k0 = 2π/λ0. Their value has been normalized to k3
0/(6π ),

ensuring that their peak magnitude (at resonance) is unity
in absence of Ohmic absorption. As expected, the magnetic
response is much weaker than the electric one for longer
wavelengths, but the first dipolar resonance is magnetic in
nature, arising at k0d = 0.63, followed by an electric one
at k0d = 0.9. The corresponding k0-β dispersion diagram is
reported in Ref. 17, highlighting the presence of a large band
gap around the magnetic resonance (shadowed region).

Figure 2 shows the calculated effective and equivalent
parameters for such an array as a function of frequency
for eigenmodal propagation, using the rigorous analytical
formulation (2) derived in Ref. 11. The shadowed region
highlights also here the magnetic band-gap region. In the
low-frequency regime, well below the first band gap and for
very small values of βd and k0d, equivalent and effective
parameters coincide; they are both positive and practically
constant with frequency. In this limit, classic homogenization
techniques apply very well, and the metamaterial behaves
as a regular mixture. Closer to the band gap, effective and
equivalent permeability both drastically increase, supporting
a typical Lorentzian dispersion associated with the magnetic
resonance of the inclusions. However, near this resonance the
equivalent permittivity experiences an anomalous antiresonant
dispersion, a typical feature of the permittivity retrieved near
a magnetic resonance with simple homogenization schemes.12

The effective permittivity, on the contrary, has positive slope
and a physical Lorentzian response. It is evident that the
effective permittivity describes a physical quantity, relating
the local Eav to Pav as in Eq. (2), without mixing in the effect
of Hav associated with the magnetoelectric coupling, contrary
to the corresponding equivalent parameter.

It is interesting to analyze the reasons behind the large
divergence between effective and equivalent permittivity in
this regime: at the lower edge of the band gap k0d = 0.59,
near the magnetic resonance of the spheres, the guided wave
number hits the Bragg condition β = π/d, which ensures the
exact relation Pav = 0, forcing the following conditions on the
equivalent parameters:

εeq = ε0, μeq = μ0π
2/(k0d)2. (4)
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FIG. 2. (Color online) Effective and equivalent parameters
(purely real, due to the absence of losses) for an array of dielectric
spheres with a/d = 0.45, ε = 120ε0, and μ = μ0. The insets show
the electric-field distribution in a unit cell in the E plane for k0d = 0.1
and k0d = 0.59 (brighter colors correspond to larger fields). Solid
(dashed) lines correspond to real (imaginary) parts. The shadowed
region indicates the array first (magnetic) band gap.

At the lower edge of the band gap, indeed the average
electric polarization is identically zero, as confirmed by the
field distributions shown in the inset of Fig. 2, calculated with
full-wave numerical simulations inside one unit cell of the
material at the two sample frequencies k0d = 0.1 and k0d =
0.59 (lower band-gap edge). At this second frequency, the
unit cell indeed supports a strong magnetic resonance, which
induces a rotating electric field inside the sphere, drastically
different from its lower-frequency response, which is typically
electric. The average electric polarization at k0d = 0.59 is
evidently zero and, not surprisingly, the equivalent permittivity
is exactly the same as the background, as predicted in Eq. (4).
However, it is important to realize that the cancellation of
electric response within the unit cell is not associated with
an inherent lack of polarization of the sphere, but rather to
the precise compensation of the strong electric polarization
(εeff − ε0)Eav by the magnetoelectric coupling κeffβ × Hav,
as predicted by Eq. (2) in this eigenmodal regime. If we
drop the eigenmodal assumption at this frequency and we
let an additional electric field polarize the unit cell, without
proportionally increasing Hav, the pure magnetic response of
the material would be modified, introducing a strong electric
response, as correctly described in Eq. (2) and by εeff . It is
evident that the isotropic model used in retrieval methods
is not sufficient to describe this effect, causing antiresonant

artifacts in the equivalent parameters. The introduction of
the magnetoelectric coupling in modeling the array ensures a
causal Lorentzian response for both effective permittivity and
permeability, accompanied by an analogous non-negligible
resonance of κeff . Even for frequencies well below the first
band gap, a significant divergence between equivalent and
effective parameters is evident in Fig. 2, proving that these
relevant magnetoelectric effects cannot be neglected even in
the long-wavelength regime. The simple introduction of κeff in
the metamaterial model completely restores the local nature of
permittivity and permeability and allows describing the meta-
material response as a bulk, even very close to the inclusion
resonance, where extreme parameters can be obtained.

Beyond the first band gap, a region of near-zero perme-
ability is also obtained, for which inherent spatial dispersion
effects were highlighted in Ref. 3. Also here the deviation

FIG. 3. (Color online) Effective and equivalent parameters for
a/d = 0.4, ε = (13.8 + i0.1)ε0, and μ = 11μ0. Solid (dashed) lines
correspond to real (imaginary) parts.
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between equivalent and effective permittivity is rather large,
due to the finite value of κeff , and εeq has a nonphysical
negative dispersion. The introduction of κeff can evidently
restore physically meaningful local constitutive parameters
also in low-index metamaterials. Finally, at the second band
gap k0d � 0.9, dual considerations apply. Now μeq = μ0, and
once again the effective parameters can considerably deviate
from the equivalent ones.

As a second relevant example, consider an array of mag-
netodielectric spheres with ε = (13.8 + i0.1)ε0, μ = 11μ0,
and a/d = 0.4. A similar geometry was considered in Ref. 7
to realize negative-index quasi-isotropic metamaterials, ex-
ploiting closely spaced electric and magnetic resonances
achieved in commercially available magnetodielectric mate-
rials at microwave frequencies. Here, we also consider the
presence of small Ohmic losses in the particles to verify the
passivity conditions on the imaginary parts of the constitutive
parameters in a NIM scenario.

The magnitude of the polarizability coefficients is shown in
Fig. 1 (lighter green lines), showing a combined electric and
magnetic resonance in the k0d = 0.83 range, which supports
negative-index propagation in the band k0d = 0.8 to 0.9, as
confirmed in Ref. 17. The presence of small losses helps to
close the small band gap that would be present between the
two resonances in the ideal lossless regime. Figure 3 compares
effective and equivalent parameters extracted in this range
(a more extended frequency range is reported in Ref. 17).
The equivalent parameters (darker black lines) present all the
nonphysical features typical of retrieved parameters in NIMs:
antiresonant response, discontinuities, and blatant violation
of passivity and causality requirements [Eq. (1)], showing
that indeed these artifacts are inherently associated with
the weak form of spatial dispersion highlighted here and
associated with κeff . Indeed, the simple introduction of the
magnetoelectric coefficient κeff in the constitutive model is
seen to totally restore the continuity of the effective constitutive
parameters, a strictly positive imaginary part, and clean
Lorentzian resonances at the electric and magnetic closely
spaced resonances of the array, as required by Kramers-Kronig

relations. The divergence between the equivalent and effective
parameters in Fig. 3 is quite striking, and indeed it confirms
the necessity to consider this simple correction, as in Eq. (2),
which can totally restore the physical meaning of constitutive
parameters even for negative index operation.

We have verified that the analytical results presented here,
based on the analytical model introduced in Ref. 11, agree very
well with full-wave simulations of these arrays, including the
presence of higher-order multipoles, for arbitrary direction
of propagation β̂ in the array, supporting a quasi-isotropic
response. Reference 17 shows the comparison between the
predicted value of eigenmodal β = ω

√
εeqμeq, as predicted by

this theory using the polarizability coefficients to describe the
wave interaction with the spheres, and full-wave simulations,
ensuring that the dipolar approximation is very accurate and
not at the basis of the artifacts pointed out here. In this paper,
we have purposefully limited our analysis to purely isotropic
inclusions and arrays, which allows us to isolate the inherent
weak spatial dispersion effects at the basis of the presence
of κeff in a proper homogenization model. More complex
metamaterial geometries, including bianisotropic inclusions
and asymmetric lattices, require considering a tensorial no-
tation, but analogous second-order spatial-dispersion effects
similarly arise and should be properly taken into account
for the definition of physically meaningful homogenization
parameters. It is relevant to stress that for larger values of k0d

and βd higher-order spatial-dispersion effects are generally
present, making even the effective parameters defined here
possibly nonlocal. The aim of this paper is to show that, even
in the long-wavelength regime for which local metamaterial
parameters are expected, magnetoelectric coupling stemming
from the finite phase velocity along the lattice should be
considered to obtain a physically meaningful macroscopic
description of metamaterial arrays.
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