Ab initio study of larger Pb_n clusters stabilized by Pb₇ units possessing significant covalent bonding

Haisheng Li,¹ Yong Ji,¹ Fei Wang,^{1,2} S. F. Li,^{1,2} Q. Sun,^{1,2} and Yu Jia^{1,2,*}

¹Laboratory of Condensed Matter Theory and Computational Materials, Zhengzhou University, Zhengzhou 450052,

People's Republic of China

²Laboratory of Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University,

Zhengzhou 450052, People's Republic of China

(Received 4 October 2010; revised manuscript received 21 December 2010; published 24 February 2011)

First-principles calculations within the density-functional theory (DFT) have been carried out to study the geometric and electronic structures of Pb_n clusters with dimensions of up to 3 nm. As distinguished from prolate silicon, germanium, and tin clusters, amorphouslike lead clusters containing more independent pentagonal bipyramid Pb_7 units are more favorable than octahedral (O_h) fragments as n up to 147. On the other hand, covalently bonded Pb_7 units obstruct the electronic delocalization process, i.e., the transition from clusters to metallic bulk characters. The average bond length (charge density) within the Pb_7 unit is usually shorter (higher) than that among the Pb_7 units. By tracing two kinds of bond forms in the Pb_7 unit and between Pb_7 units, we find that the melting process begins from the weaker bond between the Pb_7 units. The existence of significant covalent bonding in metal clusters may also generally hold for explaining why some Sn and Pb clusters also remain solid above the bulk melting temperature as previously reported.

DOI: 10.1103/PhysRevB.83.075429

PACS number(s): 61.46.Bc, 73.22.-f, 31.15.A-, 36.40.-c

I. INTRODUCTION

Owing to the large surface-volume ratio and novel electronic structures, clusters usually show a lower melting temperature, a higher magnetic moment, and better catalysis than their bulk counterparts. These intriguing physical and chemical properties render cluster processes.^{1–3} From insulator to semiconductor and metal, group-IV elements are very special in the Periodic Table, and therefore, their clusters are also expected to exhibit unique properties, especially for their binding forms, growth patterns, and nonmetal-metal transitions. Previous studies revealed that the growth modes of silicon,⁴⁻¹⁰ germanium,¹¹⁻¹⁵ and tin¹⁶⁻²² clusters adopt prolate structures when cluster sizes are lower than 27, 40, and 35, respectively, owing to covalent bonding. However, for lead clusters, near-spherical structures have been predicted for all sizes.²³ On the other hand, both the stabilities and the electronic properties of Pb films on substrates are strongly dependent on the film thickness, owing to the strong quantum size effect.^{24–27} For the above reasons, the divergence between Pb clusters and the other group-IV elements together with the growth process from Pb clusters to its bulk is worth studying.

Experimentally, a photoionization mass spectroscopy analysis showed that Pb₇, Pb₁₀, Pb₁₃, and Pb₁₇ are magic clusters, while Pb₁₄ and Pb₁₈ are hard to be observed.^{28–30} Photoelectron spectroscopy and theoretical evidence also manifested that Pb₁₂^{2–} is a highly stable icosahedral (I_h) cage cluster and bonded by four delocalized radial π bonds and nine delocalized on-sphere σ bonds from the 6*p* orbitals of the Pb atoms.³¹ Lüder *et al.*³² also carried out photoelectron spectroscopy experiments to measure vertical detachment energies (VDEs) of Pb_n anions, showing that pronounced peaks are visible at Pb₇ and Pb₁₀. Peredkov *et al.*³³ suggested a method for determining the cluster size and determined core-level binding energies for free large lead clusters with values that approach infinite bulk. With strong deviation from the metallic droplet and jellium models, core-level photoelectron spectroscopy experiments showed reduced electronic shielding once the cluster size falls below ${\sim}20~{\rm atoms.}^{34}$

Theoretically, many studies have also been carried out on both the geometrical structures and electronic properties of Pb clusters. Wang et al.³⁵ studied the geometric and electronic structures of Pb_n (n = 2-22) clusters by using the Becke–Lee-Yang-Parr (BLYP) functional calculation combined with an empirical genetic algorithm simulation, and concluded that the Pb₁₃, Pb₁₅, Pb₁₇, and Pb₁₉ are less stable than their neighbors.^{23,29} Rajesh et al.^{36,37} studied the geometrical structures of neutral and charged Pb_n (n = 2-15) clusters based on ab initio molecular-dynamics (MD) simulations and concluded that Pb₄, Pb₇, Pb₁₀, Pb₁₃, and their corresponding cations are magic clusters with compact structures, in accordance with the experiments mentioned above.²⁸⁻³⁰ Li et al.³⁸ performed global structural optimizations for neutral lead clusters Pb_n (n = 2-20) by using a genetic algorithm (GA) coupled with a tight-binding (TB) potential, and found that Pb_n (n = 4, 7, 10, 13, 15, and 17) clusters are stable. Using a many-body glue potential for lead, Hendy et al.³⁹ identified two icosahedral series which have the lowest energies of any known structure in the size range from 900 to 15000 Pb atoms. However, few further studies showed the growth mode of mediumsized Pb clusters systematically. Interestingly, Pushpa et al.⁴⁰ recently suggested the melting point of small Pb clusters is higher than Pb bulk, in contrast to the common belief that clusters are more active than their bulk counterparts owing to surface effects, and Luo et al.⁴¹ showed that the surface freeenergy difference between solid and liquid phase is a decisive factor for the size-dependent melting of nanomaterials.

However, the underlying essential physical mechanism of the above intriguing phenomena^{40,41} in Pb clusters is still open, and some key questions should be further elucidated: (1) What are the geometric structures and the growth modes of the medium-sized Pb_n clusters; (2) what is the characteristic bonding mode in these clusters? To answer the above questions, we performed the density-functional theory (DFT)

calculations on both the geometric and electronic properties of Pb_n clusters up to a very large size. We find that the Pb_7 cluster can be regarded as a fundamental unit in larger clusters, and Pb₇ unit-based clusters are more energetically favorable than O_h fragments as the cluster size is up to 80 atoms. For larger cluster Pb_{147} (Pb₃₀₉), the I_h structure is more (less) stable than its corresponding O_h isomer. The analyses of electronic density of states and charge density difference, together with other properties, show that the covalent bonding in the Pb₇ units not only enhances the stabilities of larger clusters, but also reduces the electronic delocalization and suspends the transition from clusters to metallic bulk characters. Correspondingly, these findings may support the bond stiffening theoretical prediction that Pb_n nanoclusters possess a higher melting point than that of their bulk counterparts,⁴⁰ and the underlying physical picture of the existence of significant covalent bonding in metal clusters may also hold for explaining why some Sn and Pb clusters also remain solid above the bulk melting temperature.^{42–44}

II. DETAILS OF CALCULATION METHODS

Our calculations are based on the DFT with the spinpolarized generalized gradient approximation (GGA)⁴⁵ implemented in the VASP code.^{46,47} The interactions between the valence electrons and the ionic cores are described by the projector augmented wave (PW91) method.^{48,49} The wave function is expanded in a plane-wave basis with an energy cutoff of 98 eV. The geometric structures are optimized by the conjugated gradient (CG) method.⁵⁰ We choose a simple cubic supercell with a side size of 25 Å in periodic boundary conditions to simulate an isolated Pb_n cluster for *n* ranging from 2 to 80. The larger simple cubic unit cells are used for larger cluster calculations to make sure that there is at least 10 Å between clusters in the neighboring cells. The Brillouin zone is only represented by the gamma point, the total energy is converged up to 10^{-4} eV for the electronic structure relaxations, and the convergence criterion for the force on each ion is taken to be 0.02 eV/Å. The spin polarization calculation is also considered for cluster sizes of less than 40 atoms. The calculated bond length of the Pb2 dimer and the lattice constant of Pb bulk are 2.93 and 5.03 Å, respectively, which are in good agreement with the calculated values of 2.91 and 5.05 Å,^{36,51} respectively.

To search for the most stable cluster structures, three different methods are adopted to obtain the initial input structures in our calculations. First, we take many available configurations as the initial input structures, as reported in previous literatures,^{4–22} including some highly symmetric configurations, such as I_h and O_h -bashed fragments, and low symmetries as well. In this line, we obtained some stable low-lying structures. Second, Pb_{n-m} (Pb_{n+m}) can be obtained by randomly removing (adding) *m* atoms from (on) the low-lying isomers of the Pb_n cluster obtained in the first step, which provides a rapid way to obtain as many initial structures as possible. Finally, to break the limitations of the above two methods, we carry out the ab initio MD simulations on some low-lying isomers to produce random structure seeds, which was verified as a powerful method to determine the ground states of nanoclusters in our previous work.⁵² In our MD simulations, the time of each step is taken to be 1 fs and the total simulation time lasts 5 ps, with the temperature rangning from 1000 to 0 K, including constant temperature annealing.

III. THE STABILITY OF Pb_n CLUSTERS: Pb₇ AS A FUNDAMENTAL UNIT IN LARGER CLUSTERS

To elaborate on the stabilities of Pb_n clusters, we give the average binding energy of a given cluster,

$$E_b = -[E(Pb_n) - nE(Pb_{atom})]/n.$$
(1)

 $E(Pb_{atom})$ and $E(Pb_n)$ are the total energies of a single Pb atom and Pb_n cluster from our DFT calculations, respectively. As a test, the properties of ground-state Pb_n (n = 2-15) are in good agreement with those reported in Ref. 36, except that Pb_n (n=2, 3, 5) has a $2\mu_B$ magnetic moment, and the other Pb_n clusters studied in this paper are uniformly nonmagnetic. From Pb_7 to Pb_{13} , the stable clusters prefer to form a complete I_h structure as soon as possible, except for Pb₁₀. In detail, the stable Pb₇ (D_{5h}) is a pentagonal bipyramid with a binding energy of 2.62 eV/atom. For Pb₈ and Pb₉ (C_{2v}), an edgeatom-capped bipyramid (Pb₇) and the coupling of two Pb₇ (with five common atoms) are favored, respectively. The Pb_{10} cluster prefers a capped trigonal prism. The $Pb_{11}(C_{2v})$ can be obtained by adding four atoms on the neighboring facets of the Pb₇, the Pb₁₂ is a distorted I_h hollow cage, and the Pb₁₃ favors a perfect I_h structure. The stable Pb₁₄ is an edge-capped Pb₁₃ and the Pb₁₅ is an encapsulated hexagonal antiprism. Although the binding energy of our results is larger than that in Ref. 36, the oscillation trend and the second-order difference of energies, together with the configurations of low-lying isomers of Pb_n (n = 2-15), are in good agreement with those of Rajesh et al.^{36,37} and the experimental results.^{23,29}

One intriguing discovery is that Pb_n clusters usually contain more independent pentagonal bipyramid Pb7. The structures and binding energies of the most stable Pb_n (n = 16-37) isomers are presented in Fig. 1. For convenience, we classify the atoms in Pb clusters as surface and inner atoms. To guide the eyes, the inner atoms belonging (not belonging) to Pb7 units are pictured in red (yellow), while inner atoms in O_h fragments are also in red in Fig. 2. From Fig. 1, one can find that larger Pb_n clusters consist of significant Pb7 units, with the inner atom (in red) acting as the cap atom of the pentagonal bipyramid structure. For example, as indicated in Fig. 1, from Pb_{20} to Pb_{25} , Pb_n contains two isolated Pb_7 units, which are coupled with six (for Pb_{20}) to 11 (for Pb_{25}) glue atoms, while smaller Pb clusters (n = 16-19) can be viewed as consisting either of one intact Pb₇ unit or more Pb7 blocks sharing the same capping atom. For larger Pb_n clusters, n = 28-32 and n = 33-37, three and four isolated integral Pb7 units are identified, respectively. We also note that from Pb_{19} to Pb_{20} , the structure transforming from a one-atom-centered configuration to a two-atom-centered structure is also supported by a core-level photoelectron spectroscopy experiment, which showed reduced electronic shielding once the cluster size falls below ~ 20 atoms.³⁴ Coincidently, our results are in good agreement with the work published recently.⁵³ Note also that the prolate growth modes of Si_n, Ge_n, and Sn_n (Refs. 4–22) are unfavorable for Pb_n (12 < n < 45) clusters.

To check the stabilities of the Pb_7 unit-based growth mode mentioned above, we further carried out studies on larger Pb_n

FIG. 1. (Color online) The structures and binding energies of the ground state of Pb_n (n = 16-37) isomers. The average binding energies E_b (eV/atom) with respect to the isolated Pb atom defined by $E_b = -[E(Pb_n) - nE(Pb_{atom})]/n$. Inner atoms forming (not forming) Pb₇ units are pictured in red (yellow), respectively.

clusters up to n = 85. In Fig. 2(a), the binding energies of Pb₇ unit-based clusters (line with hexagons) are higher than O_h fragments (line with triangle) up to n = 85. Under the triangle symbols are the structures of O_h fragments. For convenience, we describe the Pb₇ unit-based clusters and the O_h fragments of a given Pb_n cluster as Na and Nb, respectively. 38a has five Pb7 units and the binding energy is 2.76 eV/atom, which is more stable by 0.03 eV/atom than the truncated O_h 38b (with six center atoms). 41a can form four Pb₇ units and the surface atoms connect each other with triangles, making it a magic cluster. Owing to the coupling of five stable Pb7 units, the cluster 44*a* lies higher in the binding energy than that of the six-atom-centered 44b (O_h) by 0.03 eV/atom. The four stable Pb₇ unit-coupled structure 52a is (0.01 eV/atom) more stable than the ten-atom-centered structure 52b. As the cluster size increases, this trend can be clearly seen in Fig. 2(a). Once again, we show that the Pb7 unit can be regarded as a block in larger clusters. Interestingly, if we take the I_h symmetry as an initial structure, the Pb₅₅ will relax to a low-symmetry configuration, which has four independent Pb7 units. This is an unexpected result as it is well known that a closely packed I_h structure is usually regarded as the ground-state structure of many metal clusters. In fact, the most stable structure of Pb₅₅ [in Fig. 2(a)] can contain six independent Pb₇ units, which is the coupling of two magic clusters Pb_{28} (in Fig. 1). Exactly speaking, we cannot guarantee that the obtained most stable structures are absolutely the ground-state configurations, and some of them may be merely some low-lying isomers in the whole potential space, especially for n > 20 in the current computational levels. However, our results can solidly

FIG. 2. (Color online) The structures and binding energy as a function of $n^{-1/3}$. Inner atoms forming (not forming) Pb₇ units are pictured in red (yellow), while inner atoms of O_h fragments are also in red. The red hexagons (circles) and black triangles correspond to the Pb₇ based clusters and O_h fragments, respectively.

support that larger Pb_n clusters favor morphology structures composing Pb_7 units.

As well known, bulk Pb possesses a closely packed fcc structure, so it is meaningful to study the critical size at which the phase transition from Pb₇ unit-based structures to fcc occurs. With the most compact atom arrangement in plane and the largest spacing between planes, the (111) surface of fcc metals is usually favorable for crystal and cluster growth. Using variable-temperature scanning tunneling microscopy, Thürmer *et al.*⁵⁴ grew the micrometer-sized Pb(111) crystallites on the top of the Ru(0001). A flattop Pb(111) single-crystal island grown on Si(111)-(7×7) was also observed by a scanning tunneling microscopy (STM) image.⁵⁵ Recently, Kumar *et al.*² showed that O_h isomers were favorable for Pt clusters. For perfect O_h isomers, their layers are all squares ($n \times n$) and all eight surfaces are fcc (111) type. In general, the number of atoms for perfect O_h clusters is

$$N = 12 + \dots + n2 + (n+1)2 + n2 + \dots + 12.$$
 (2)

On the other hand, I_h structures were also found to be favored for some metal clusters.^{56–59} In addition, some quasicrystalline approximant crystals are based on icosahedral clusters.⁶⁰ For a perfect I_h structure, their 20 surfaces are all fcc (111) type. The total number of atoms within the *n*th shell of perfect I_h structure is

$$N = [10(n+1)^3 + 15(n+1)^2 + 11(n+1) + 3]/3.$$
 (3)

In the following, we will compare the binding energies of the stable I_h isomers with those of O_h structures in Fig. 2(b). In Fig. 2(b), the binding energies of I_h isomers (line with circles) and O_h fragments (line with triangles) are shown. Under the lines are the structures of O_h fragments. From Fig. 2(b), the binding energy of truncated O_h Pb₁₄₀ and Pb₁₄₇ (seven atoms on one surface of O_h Pb₁₄₀) can compare with that of I_h Pb₁₄₆ (removing the center atom from I_h Pb₁₄₇) and Pb_{147} , while perfect $O_h Pb_{146}$ lies lower in the binding energy. Compared with O_h isomer Pb₃₄₄, Pb₃₃₈ (remove six vertexes from O_h Pb₃₄₄), Pb₃₁₄ (remove six squares from O_h Pb₃₃₈), Pb₃₀₉ (remove six $1 + 2^2 + 3^2 + 4^2$ pyramids from O_h Pb₄₈₉), and Pb₂₆₀ (remove six 3×3 squares from O_h Pb₃₁₄), I_h Pb₃₀₉ lies lower in the binding energy, showing that the I_h structure is not favored at this size. From the slope of the curves, we conclude that I_h Pb₅₆₁ may be less stable than that of the O_h structure.

The differences of the average binding energy (E_b) , the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap (E_g) , the average bond length (R), the nearest-neighbor atom number (NN), and the *s-p* hybridization index (H_{sp}) between the Pb₇ unit-based isomers and the O_h fragments have been presented in Table I. In Table I, the average binding energy and the HOMO-LUMO gaps of the Pb_n isomers comprising Pb₇ units lie higher than those of the O_h fragments up to n = 147, again explaining why Pb₇ unit-based isomers are more stable. Although the Pb₇ unit-based clusters have less average NN atoms than those of O_h fragments, the average bond length is usually smaller than that of O_h fragments up to n = 147. In addition, we compare the *s-p* hybridization indices of Pb_n defined by

$$H_{sp} = \sum_{I=1}^{n} \sum_{i=1}^{\text{occ}} w_{i,s}^{(I)} w_{i,p}^{(I)}, \tag{4}$$

TABLE I. The differences of the average binding energies E_b (eV/atom), the HOMO-LUMO gap E_g (eV), the average bond length R (Å), the average nearest-neighbor atom numbers (NN), and the *s*-*p* hybridization (H_{sp}) index between the Pb₇ unit-based isomers and the O_h fragments.

Size	E_b (eV)	E_g (eV)	<i>R</i> (Å)	NN	H_{sp}
38	0.025	0.224	-0.022	-0.263	0.022
44	0.030	0.196	-0.001	-0.364	0.020
48	0.017	0.071	-0.020	-0.270	0.016
52	0.008	0.236	-0.005	-0.423	0.004
54	0.007	0.151	0.003	-0.259	0.007
62	0.008	0.009	-0.016	-0.387	0.000
66	0.007	0.105	-0.022	-0.394	0.009
70	0.005	0.057	-0.007	-0.486	0.010
79	0.006	0.214	-0.035	-0.937	0.026
146	0.014	0.113	-0.001	0.329	-0.003
147	0.018	0.077	-0.002	-0.170	0.011
309	-0.010	0.014	0.018	0.117	0.000

where $w_{i,s}^{(I)}(w_{i,p}^{(I)})$ is the square of the projection of the *i*th Kohn-Sham orbital onto the *s* (*p*) spherical harmonics centered at atom *I*, integrated over a sphere of radius equal to approximately half of the shortest NN distance in each cluster. The spin index is implicit in the sum of orbitals *i* in Eq. (4). In Table I, H_{sp} of Pb₇ unit-based isomers are usually larger than those of O_h fragments, and thus the Pb₇ unit-based clusters are energetically favored from Pb₇ to I_h Pb₁₄₇, and then the O_h isomers become more favorable gradually.

IV. THE PROPERTIES OF Pb_n CLUSTERS

A. Radial distribution function

Because most Pb_n clusters are based on the building block of the Pb_7 unit, it is natural to remind us that the properties of Pb_n clusters may have a relationship with the Pb_7 cluster. To reveal this point, we give the radial distribution function (RDF) in Fig. 3, in which the red solid line at 3.56 Å is the distance between the nearest atoms in Pb bulk and the two dotted lines denote the borderlines 3 and 4 Å. The RDF shows the change of bond numbers with their corresponding bond lengths. By measuring the nearest atom distance, we find that less coordinated atoms (such as the vertexes of Pb_7) always relate to a smaller bond length. Taking Pb_7 , for example, the peak at 3.19 Å represents the 15 edge bonds, and the shorter

FIG. 3. (Color online) The changes of bond number (relative units) with bond-length distribution. The two dotted lines denote bond length 3 and 4 Å, while the red solid line 3.56 Å (the distance between the nearest atoms in Pb bulk), respectively.

line at 3.35 Å stands for the single bond in the pentagonal axis. For Pb_{13} , the peak at 3.42 Å corresponds to the surface bonds. For Pb_{15} , the peak at 3.30 Å is the bond number between the two regular hexagons, and the peak at 3.60 Å relates to the bond number connecting the two surface atoms at the hexagonal axis. For Pb_{17} , the peak at 3.25 Å is the bond number between the atoms in two squares and the other surface atoms, the line at 3.18 Å is the eight bonds between the eight outermost atoms, and the line at 3.37 Å is the eight bonds in two squares. Compared with unstable Pb_{19} , Pb_{20} has a narrower bond-length distribution and a shorter average bond length. For Pb_{24} , the bond length that is smaller than 3.20 Å is in the top hexagonal and the bottom triangle atoms, and the line at 3.37 Å is the bond number with the bottom distorted hexagon. For Pb₂₈ (C_{3v}) , the bond number distribution is relatively narrow and three inner atoms form an equilateral triangle, with a side length of 3.43 Å. The bond number distribution of Pb_{41} has some peaks beyond 3.56 Å, showing its large structure. Compared with the truncated $O_h Pb_{140}$ and I_h isomer Pb_{147} , the bond-length distribution of less stable isomers O_h Pb₁₄₆ and I_h Pb₃₀₉ becomes more spread, manifesting a larger structure relaxation. For truncated O_h Pb₃₁₄ and Pb₃₃₈, the bonds begin to accumulate at the bulk lattice constant 3.56 Å. The peaks of the I_h isomer Pb₁₄₇ and Pb₅₆₁ accumulate at both sides of the bulk lattice constant, indicating different binding forms. In conclusion, the bond length in the Pb₇ unit is usually smaller than that between Pb₇ units, the peak of bond length density approaches a bulk value as the cluster size increases, and a distinct bond number distribution usually corresponds to more symmetric and more stable structures.

B. Electronic oscillation and energy gap

To exhibit the relative stabilities of Pb_n (n = 6-33) clusters, we display the second-order difference of energies,

$$\Delta^2 E = E_{n+1} + E_{n-1} - 2E_n, \tag{5}$$

in Fig. 4(a), from which Pb_n (n = 7, 10, 13, 15, 17, 20, 24,and 28) exhibits peaks in the $\Delta^2 E$ curve, indicating a higher stability than their neighbors. With more neighbor atoms, the inner atoms are usually the vertexes of the Pb₇ units, which cause us to study the electronic properties as the inner atoms increase. As shown in Fig. 4(b), the inner atom number in the Pb_n (n = 6-33) clusters increases steadily, and such changes in geometrical structures can also be reflected from the s and p electron oscillation by projecting the valence charge in the Wigner-Seitz sphere (1.81 Å) onto an atomic orbital, as shown in Figs. 4(c) and 4(d), respectively, in which hollow (solid) circles are the average electrons per atom (inner atom). Although the space division is somewhat arbitrary, the obtained results are almost Wigner-Seitz-sphere independent and can qualitatively provide important information about the electronic structures of Pb clusters. In Figs. 4(c) and 4(d), the inner atoms usually have more electrons and stronger oscillation, explaining why they are usually one of the vertexes of Pb7 units and have more neighbor atoms. In addition, the electronic oscillation is mainly contributed by p electrons, showing p electrons are extranuclear electrons. From the smallest to the largest N atom-centered clusters, p electrons per inner atom decrease rapidly, while one inner atom of Pb₃₀

FIG. 4. (a) Second-order difference of energies, $\Delta^2 E = E_{n+1} + E_{n-1} - 2E_n$. (b) Inner atom number with respect to the cluster size. (c) Open (solid) circles are the *s* electrons per atom (inner atom). (d) Open (solid) circles are the *p* electrons per atom (inner atom). (e) Energy gap (eV), which is the energy difference between the lowest unoccupied and the highest occupied energy levels.

is not the vertex of the Pb_7 unit, making it an exception. Figure 4(e) shows that HOMO-LUMO gaps decrease (with some oscillations) as cluster size increases. In most cases, more stable clusters have larger HOMO-LUMO gaps. Also, the HOMO-LUMO gaps at the smallest (largest) *N* atom-centered clusters always show smaller (larger) values, indicating they are more (less) compact.

C. Electronic density of states

The electronic density of states (DOS) is usually considered as a tool connecting the experimental and theoretical results. In Fig. 5, the total electronic DOS for the ground states of Pb_n clusters and bulk Pb have been shown by expanding the eigenvalues in Lorentz form, in which the Fermi level has been shifted to zero. The discrete spectra of small Pb_n (n = 13, 1517, 24 and 28) clusters resemble those of Pb7. Beginning from Pb_{41} , the spectrum becomes more continuous, showing some metallic characters. The spectra of I_h Pb₁₄₇ isomers still show strong discrete peaks, indicating some common features with small Pb₇ unit-based clusters. Larger O_h isomers Pb₃₃₈, Pb₄₈₉, and Pb₅₆₁ begin to manifest bulk spectrum features, however, by the Fermi level, the difference from the bulk spectrum is significant, as almost all the faces of $O_h(I_h)$ clusters are fcc (111) type, and atoms at the edges and vertices have less neighbor atoms.²

FIG. 5. (Color online) Electronic DOS (arbitrary units) for Pb_n clusters by expanding the eigenvalues in Lorentz form. The Fermi energies (E_F) have been shifted to zero.

V. COVALENT BINDING CHARACTER

A. Charge density of a covalently bonded Pb_7 unit in Pb_n clusters

To elaborate on the relationship between the geometrical structures and the binding characters of Pb_n clusters, we show the atom distribution and the electronic charge difference,

$$\Delta \rho = \rho(\text{SC}) - \rho(\text{SP}),\tag{6}$$

of Pb₇ in Figs. 6(a) and 6(b). Here, $\Delta \rho$ is the averaged charge-density difference along the axis of the bonds shown in a normalized scale, $\rho(SC)$ is obtained by a self-consistent calculation, and $\rho(SP)$ is the superposition of the atomic charge for the same structure. As presented in Fig. 6(b), electrons accumulate considerably at the center of atoms 1 and 2 (in purple circles), revealing a strong covalent binding character between the nearest pentagonal atoms. Electrons accumulate less densely at the center of atoms 1 and 3 (in blue squares) but deplete between atoms 3 and 4 (in orange pentagons). Figure 6(c) gives the charge difference of the plane containing number 1, 3, and 4 atoms, in which significant electron accumulation between atoms 6 and 7 is shown in red at the right-hand side and electrons depleting between atoms 3 and 4 are shown in blue zones. Figure 6(d)gives the charge difference of the plane containing number 1, 2, and 5 atoms, in which obvious electron accumulation is

FIG. 6. (Color online) (a) The atom distribution of Pb₇. (b) Averaged charge-density differences, $\Delta \rho$, along the axis of the bonds of two atoms, with the bond lengths shown in normalized scale. (c) Averaged charge-density differences of the plane containing number 1, 3, and 4 atoms. (d) Averaged charge-density differences of the plane containing number 1, 2, and 5 atoms.

shown between the nearest pentagonal atoms. In fact, Kirihara *et al.*⁶⁰ found a covalent binding character in α -Al(Mn,Re)Si (quasicrystalline approximant alloy crystals) and attributed it to the enhancement of the electron DOS pseudogap near the Fermi level. Recently, we have also found strong covalent bonds in Ru_n (n = 14-42) clusters and associated them with strong *s*-*d* hybridization.⁶²

Owing to the unequal neighbor atoms, Pb₇ units in larger clusters will undergo distortion. The atom distribution and the electronic charge difference of Pb₂₈ (the same structure as in Fig. 1, from another viewing angle) are shown in Figs. 7(a) and 7(b), in which $\Delta \rho$ in the Pb₇ unit is smaller than that in the isolated Pb₇ cluster, showing that the covalent binding character weakens as cluster size increases. In addition, the bond between surface atoms in different Pb₇ units (atoms 6 and 7) also shows a covalent character, which may stabilize Pb_n clusters and increase their melting point.

FIG. 7. (Color online) (a) The atom distribution of Pb₂₈. (b) Averaged charge-density differences, $\Delta \rho$, along the axis of the bonds of two atoms, with the bond lengths shown in normalized scale.

FIG. 8. (Color online) (a) Structure of I_h Pb₁₄₇: The green (yellow) atoms stand for the surface atoms belonging (not belonging) to Pb₇ units and the red atoms are the inner atoms. (b) The atom distribution of the middle section of I_h Pb₁₄₇. (c) Averaged charge-density differences of the middle section. (d) Averaged charge-density differences, $\Delta \rho$, along the axis of the bonds between different atoms.

As mentioned above, the bond length in covalently bonded Pb₇ units is usually shorter. Pb₇ units not only stabilize Pb clusters but also obstruct the electronic delocalization process. Besides the basic building block Pb₇ units, there should be some "glue" atoms to combine Pb₇ units. For Pb₇-based Pb₁₉ (C_{5v}) , three independent Pb₇ units are connected weakly by two common inner atoms, making it (0.06 eV/atom) less favorable than that of the ground state (in Fig. 1). If the core of I_h Pb₅₅ retains the same proportion as I_h Pb₁₃ and all the surface atoms belong to Pb₇ units, the distance between the nearest surface atoms may be more than 3.5 Å. But owing to the covalent binding character of Pb₇ units, some surface atoms cluster to form four Pb₇ units and cause I_h Pb₅₅ to break.

The atom distribution and the electronic charge difference of Pb_{147} are shown in Figs. 8(a) and 8(b). Figure 8(a) shows that 72 surface atoms (in green) of I_h Pb₁₄₇ belong to 12 independent Pb7 units, leaving 20 surface atoms (in yellow) on the center of 20 surfaces. Figure 8(b) gives the atom distribution of one middle section, in which the atoms in black and red rectangles belong to the inner I_h Pb₁₃ and Pb₅₅ atoms, respectively. The surface bond lengths of the inner 13 and 55 atoms are 3.50 and 3.53 Å, respectively, while they are 3.34 Å for the surface atoms in Pb₇ unit and 3.84 Å between Pb₇ units. The geometrical properties can also be reflected from electronic structures in Fig. 8(c) [Fig. 8(d)], which show obvious electron accumulation in covalently bonded Pb7 units. I_h Pb₃₀₉ is not that symmetric: Its 72 surface atoms belong to 12 Pb7 units and 90 surface atoms scatter loosely on the center of 20 surfaces, making it less stable than O_h isomers. Similar to I_h Pb₁₄₇, I_h Pb₅₆₁ shows significant Pb₇ units, whose 72 surface atoms belong to 12 Pb7 units and 180 surface atoms can form some quaternary clusters on the center of 20 surfaces. To the best of our knowledge, such covalent characters were never reported for other metal clusters up to that large size. We also test I_h isomers of Al₁₄₇ and find its atoms (charge density) distribute evenly on each surface, showing metallic characters. In addition, we also find such a covalent binding character in the I_h Sn₁₄₇ cluster.

B. Relationship between covalent bond and thermal stabilities

To study the relationship between the covalent binding character and thermal stabilities, we carried out the ab initio MD simulations on some low-lying isomers. Figure 9(a) shows the changes of bond length (BL) (Å) in Pb₂₈ with the MD steps (1 fs/step). The red squares (black triangles) stand for the BL between atoms 6 and 7 (atoms 1 and 2) at constant temperature 700 K. Figure 9(b) is the same as Fig. 9(a), with T = 750 K. The structures in Figs. 9(a) and 9(b) are the initial state for both temperatures and the optimized final state after 2500 MD steps at 750 K, respectively. At 700 K, the BL of atoms 6 and 7 can fall back to the initial value and, selecting the structures at random steps for Pb_{28} [the same structure as in Fig. 7(a)] as the initial configuration to relax, we can always obtain the initial structure. For MD simulation at 750 K, the BL of atoms 6 and 7 can be larger than 6 Å, and selecting the structure at 2500 steps to relax, we get the final structure in Fig. 9(b), which is 0.66 eV less stable than the initial structure, while choosing the structure at 5000 steps to relax, we get the initial structure again. The oscillation of BL between atoms 1 and 2 is weaker, showing the covalent bond in the Pb₇ unit is stronger than that between the Pb₇ units.

FIG. 9. (Color online) (a) The changes of bond length (Å) in Pb₂₈ vary with the MD steps (1 fs/step). The red squares (black triangles) stand for the BL between atoms 6 and 7 (atoms 1 and 2) at constant temperature 700 K. (b) The same as (a), with T = 750 K. The structure in (a) is the initial state and (b) is the optimized final state after 2500 MD steps at 750 K.

The above descriptions may demonstrate that Pb₂₈ favors its ground state when the temperature is 100–150 K higher than its bulk melting point (588 K for DFT calculations of Lindemann melting temperature⁴⁰ and 600 K for experiment). With the same standard in our calculations, the Pb_n (n = 12, 13, 15, 16,18, 20, 21, 23, and 25) cluster favors its ground state when the temperature is higher than 750 K, the Pb_n (n = 14, 17, 22, 30) cluster prefers its ground state between 700 and 750 K, and the Pb_n (n = 26, 27, 29) favors its ground state between 650 and 700 K. Pb₂₄ prefers its ground state between 600 and 650 K, while Pb_{19} is unstable when the temperature is higher than 600 K. Choosing the structures at a random step of constant MD simulation 650 K for Pb₃₆ (with Pb₇ units), we can always obtain the initial structure. These findings may support the bond stiffening⁴⁰ theoretical prediction that Pb_n nanoclusters possess a higher melting point than that of their bulk counterparts, and the existence of significant covalent bonding in metal clusters may also hold for explaining why some Sn and Pb clusters remain solid above the bulk melting temperature.42-44

VI. SUMMARY

In summary, we have systematically studied the geometric and electronic characters of Pb_n clusters from dimer to nanoparticles with diameters up to 3 nm. As distinguished from prolate Si, Ge, and Sn clusters, amorphouslike Pb_n clusters with more independent Pb7 units are magic and relatively stable, which are more favorable than O_h fragments up to n = 147. Although the Pb₇ unit-based clusters have less average NN atoms than those of O_h fragments, the average bond length $(E_g \text{ and } H_{sp})$ is usually smaller (larger) than that of the O_h fragments. Owing to the covalent binding characters of the Pb7 unit, the charge density in the Pb7 unit is usually higher than that between Pb7 units. Covalently bonded Pb7 units not only stabilize the Pb cluster, but also obstruct the electronic delocalization. The spectrum character of I_h Pb₁₄₇ isomers still shows strong discrete peaks, indicating some common features with small Pb7 unit-based clusters, while larger isomers begin to manifest bulk spectrum features. Owing to the bond stiffness of the Pb₇ unit, Pb_n (n < 31) clusters are usually favored when the temperature is higher than the melting point of bulk. By tracing two bond lengths in the Pb₇ unit and between the Pb₇ units, we find that the melting process begins from the bond between Pb₇ units, which again manifests the existence of covalent bonding in Pb_n clusters.

ACKNOWLEDGMENTS

This work was support by the NSF of China (Grant No. 10974182) and the Outstanding Young Foundations in Henan Province.

*jiayu@zzu.edu.cn

- ¹M. Schmidt, R. Kusche, W. Kronmüller, B. von Issendorff, and H. Haberland, Phys. Rev. Lett. **79**, 99 (1997).
- ²V. Kumar and Y. Kawazoe, Phys. Rev. B 77, 205418 (2008).
- ³P. J. Roach, W. H. Woodward, A. W. Castleman Jr., A. C. Reber, and S. N. Khanna, Science **295**, 99 (2002).
- ⁴M. F. Jarrold and V. A. Constant, Phys. Rev. Lett. **67**, 2994 (1991).
- ⁵V. E. Bazterra, O. Oña, M. C. Caputo, M. B. Ferraro, P. Fuentealba, and J. C. Facelli, Phys. Rev. A **69**, 053202 (2004).
- ⁶W. Hellmann, R. G. Hennig, S. Goedecker, C. J. Umrigar, B. Delley, and T. Lenosky, Phys. Rev. B **75**, 085411 (2007).
- ⁷P. L. Tereshchuk, Z. M. Khakimov, F. T. Umarova, and M. T. Swihart, Phys. Rev. B **76**, 125418 (2007).
- ⁸R. L. Zhou and B. C. Pan, J. Chem. Phys. 128, 234302 (2008).
- ⁹R. L. Zhou, L. Y. Zhao, and B. C. Pan, J. Chem. Phys. **131**, 034108 (2009).
- ¹⁰S. J. Peppernick, K. D. D. Gunaratne, S. G. Sayres, and A. W. Castleman Jr., J. Chem. Phys. **132**, 044302 (2010).
- ¹¹J. M. Hunter, J. L. Fye, M. F. Jarrold, and J. E. Bower, Phys. Rev. Lett. **73**, 2063 (1994).
- ¹²J. L. Wang, G. H. Wang, and J. J. Zhao, Phys. Rev. B **64**, 205411 (2001).
- ¹³S. Yoo and X. C. Zeng, J. Chem. Phys. **124**, 184309 (2006).
- ¹⁴W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho, J. Chem. Phys. **131**, 124507 (2009).
- ¹⁵W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho, J. Chem. Phys. **132**, 214509 (2010).
- ¹⁶A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. A **60**, 1235 (1999).
- ¹⁷T. Bachels, R. Schäfer, and H.-J. Güntherodt, Phys. Rev. Lett. **84**, 4890 (2000).

- ¹⁸C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B 64, 233405 (2001).
- ¹⁹C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B **71**, 035401 (2005).
- ²⁰L. F. Cui, L. M. Wang, and L. S. Wang, J. Chem. Phys. **126**, 064505 (2007).
- ²¹E. Oger, R. Kelting, P. Weis, A. Lechtken, D. Schooss, N. R. M. Crawford, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. **130**, 124305 (2009).
- ²²A. Lechtken, N. Drebov, R. Ahlrichs, M. M. Kappes, and D. Schooss, J. Chem. Phys. **132**, 211102 (2010).
- ²³A. A. Shvartsburg and M. F. Jarrold, Chem. Phys. Lett. **317**, 615 (2000).
- ²⁴M. M. Özer, Y. Jia, B. Wu, Z.Y. Zhang, and H. H. Weitering, Phys. Rev. B 72, 113409 (2005).
- ²⁵P. Czoschke, H. Hong, L. Basile, and T.-C. Chiang, Phys. Rev. B **72**, 075402 (2005).
- ²⁶Y. Jia, B. Wu, H. H. Weitering, and Z. Y. Zhang, Phys. Rev. B **74**, 035433 (2006).
- ²⁷J. H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer, and J. Osterwalder, Phys. Rev. Lett. **101**, 266802 (2008).
- ²⁸Y. Saito, K. Yamauchi, K. Mihama, and T. Noda, Jpn. J. Appl. Phys. 21, L396 (1982).
- ²⁹K. L. Hing, R. G. Wheeler, W. L. Wilson, and M. A. Duncan, J. Chem. Phys. 87, 3401 (1987).
- ³⁰K. Sattler, J. Mühlbach, O. Echt, P. Pfau, and E. Recknagel, Phys. Rev. Lett. 47, 160 (1981).
- ³¹L. F. Cui, X. Huang, L. M. Wang, J. Li, and L. S. Wang, J. Phys. Chem. A **110**, 10169 (2006).
- ³²C. H. Lüder and K. H. Meiwes-Broer, Chem. Phys. Lett. **294**, 391 (1998).

- ³³S. Peredkov, S. L. Sorensen, A. Rosso, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, W. Pokapanich, S. Svensson, O. Björneholm, N. Märtensson, and M. Tchaplyguine, Phys. Rev. B 76, 081402(R) (2007).
- ³⁴V. Senz, T. Fischer, P. Oelßner, J. Tiggesbäumker, J. Stanzel, C. Bostedt, H. Thomas, M. Schöffler, L. Foucar, M. Martins, J. Neville, M. Neeb, Th. Möller, W. Wurth, E. Rühl, R. Dörner, H. Schmidt-Böcking, W. Eberhardt, G. Ganteför, R. Treusch, P. Radcliffe, and K.-H. Meiwes-Broer, Phys. Rev. Lett. **102**, 138303 (2009).
- ³⁵B. L. Wang, J. J. Zhao, X. S. Chen, D. N. Shi, and G. H. Wang, Phys. Rev. A **71**, 033201 (2005).
- ³⁶C. Rajesh, C. Majumder, M. G. R. Rajan, and S. K. Kulshreshtha, Phys. Rev. B **72**, 235411 (2005).
- ³⁷C. Rajesh and C. Majumder, J. Chem. Phys. **126**, 244704 (2007).
- ³⁸Xiao-Ping Li, Wen-Cai Lu, Qing-Jun Zang, Guang-Ju Chen, C. Z. Wang, and K. M. Ho, J. Phys. Chem. A **113**, 6217 (2009).
- ³⁹S. C. Hendy and J. P. K. Doye, Phys. Rev. B 66, 235402 (2002).
- ⁴⁰R. Pushpa, U. Waghmare, and S. Narasimhan, Phys. Rev. B 77, 045427 (2008).
- ⁴¹W. H. Luo, W. Y. Hu, and S. F. Xiao, J. Chem. Phys. **128**, 074710 (2008).
- ⁴²A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. Lett. **85**, 2530 (2000).
- ⁴³K. Joshi, D. G. Kanhere, and S. A. Blundell, Phys. Rev. B **67**, 235413 (2003).
- ⁴⁴F. C. Chuang, C. Z. Wang, S. Öğüt, J. R. Chelikowsky, and K. M. Ho, Phys. Rev. B **69**, 165408 (2004).

- ⁴⁵J. P. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992).
- ⁴⁶G. Kresse and J. Furthmüller, Phys. Rev. B **54**, 11169 (1996).
- ⁴⁷G. Kresse and J. Furthmüller, Comput. Mater. Sci. **6**, 15 (1996).
- ⁴⁸P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ⁴⁹G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- ⁵⁰M. P. Teter, M. C. Payne, and D. C. Allan, Phys. Rev. B **40**, 12255 (1989).
- ⁵¹Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, and Z.-K. Liu, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 28, 79 (2004).
- ⁵²S. F. Li, H. S. Li, J. Liu, X. L. Xue, Y. T. Tian, H. He, and Y. Jia, Phys. Rev. B **76**, 045410 (2007).
- ⁵³Xiao-Ping Li, Wen-Cai Lu, C. Z. Wang, and K. M. Ho, J. Phys. Condens. Matter 22, 465501 (2010).
- ⁵⁴K. Thürmer, J. E. Reutt-Robey, E. D. Williams, M. Uwaha, A. Emundts, and H. P. Bonzel, Phys. Rev. Lett. 87, 186102 (2001).
- ⁵⁵C. Brun, I-Po Hong, F. Patthey, I. Y. Sklyadneva, R. Heid, P. M. Echenique, K. P. Bohnen, E. V. Chulkov, and W. D. Schneider, Phys. Rev. Lett. **102**, 207002 (2009).
- ⁵⁶D. Y. Sun and X. G. Gong, Phys. Rev. B **57**, 4730 (1998).
- ⁵⁷V. Kumar and Y. Kawazoe, Phys. Rev. B **63**, 075410 (2001).
- ⁵⁸V. G. Grigoryan, D. Alamanova, and M. Springborg, Phys. Rev. B **73**, 115415 (2006).
- ⁵⁹R. Singh and P. Kroll, Phys. Rev. B **78**, 245404 (2008).
- ⁶⁰K. Kirihara, T. Nagata, K. Kimura, K. Kato, M. Takata, E. Nishibori, and M. Sakata, Phys. Rev. B 68, 014205 (2003).
- ⁶¹C. M. Chang and M.Y. Chou, Phys. Rev. Lett. 93, 133401 (2004).
- ⁶²S. F. Li, H. S. Li, X. L. Xue, Y. Jia, Z. X. Guo, Z. Y. Zhang, and X. G. Gong, Phys. Rev. B 82, 035443 (2010).