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Integral quantum Hall effect in graphene: Zero and finite Hall field
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We study the influence of a finite Hall field EH on the Hall conductivity σyx in graphene. Analytical expressions
are derived for σyx using the Kubo-Greenwood formula. For vanishing EH , we obtain the well-known expression
σyx = 4(N + 1/2)e2/h. The inclusion of the dispersion of the energy levels, previously not considered, and their
width, due to scattering by impurities, produces the plateau of the n = 0 Landau level. Further, we evaluate the
longitudinal resistivity ρxx and show that it exhibits an oscillatory behavior with the electron concentration. The
peak values of ρxx depend strongly on the impurity concentration and their potential. For a finite EH , the result
for σyx is the same as that for EH = 0, provided EH is not strong, but the values and positions of the resistivity
maxima are modified due to the EH -dependent dispersion of the energy levels.
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I. INTRODUCTION

The crystal structure of graphene, a single atomic layer
of graphite, can be viewed as two interpenetrating triangular
sublattices.1 Charge carriers in a wide single-layer graphene
behave like “relativistic,” chiral massless particles with a “light
speed” equal to the Fermi velocity and possess a gapless
spectrum that is linear in the wave vector near the K and
K ′ points. One major consequence is the perfect transmission
through arbitrarily high and wide barriers, referred to as Klein
tunneling (see a recent review in Ref. 1).

When a doped graphene sheet is sufficiently clean and
is subject to high magnetic fields, it exhibits a half-integer
quantum Hall effect (IQHE), σyx = 4(N + 1/2)e2/h, that is
very different from the conventional one in Si or GaAs/AlGaAs
heterostructures, σyx = 2(N + 1)e2/h, with N being the
largest integer contained in EF /h̄ωc, EF the Fermi energy, and
h̄ωc the cyclotron energy. This can be attributed to massless
Dirac fermions in this material, as theoretically predicted
by several authors.2–4 It should be mentioned, however, that
the existence of this quantum state in planar and gapless
semiconductors was previously suggested by Schakel5 by
studying quantum electrodynamics in (2 + 1) dimensions at
finite density and temperature. It was first observed in 2005
at low temperatures,6,7 and later even at room temperature,
due to the high cyclotron energy h̄ωc compared to thermal
energy kBT .8 Since then several experiments have confirmed
not only the existence of this quantum state in graphene,9–11

but also the appearance of additional plateaus at very high
fields12,13 due to the lifting of the degeneracy of the spectrum.
On the other hand, the precision of the quantization of the
first two plateaus was determined7 to be 1 in 104 for the Hall
resistivity ρxy .

To date, there have been several theoretical treatments14–19

devoted to the IQHE in graphene. Apparently, the IQHE can
be attributed to several causes; see especially Refs. 17 and 18,
and references cited therein. One of the possible causes,
consistent with many experimental observations, is scattering
by impurities; another one is electron-electron interaction.
According to Ref. 17, scattering by long-range disorder,
e.g., Coulomb impurities, is supported by experimental
observations (see also Refs. 2, 3, and 20). However, to date
there is no definitive answer as to what the cause of the IQHE

is, and other treatments emphasizing smooth, random scalar
potentials, percolation of the guiding center, valley mixing,
dislocations, etc., have appeared.17,18,20

A simple and general approach to the IQHE in graphene is
to evaluate the Kubo formula (see, e.g., Refs. 2, 3, and 20) in the
self-consistent Born approximation. Although this approxima-
tion fails for smooth, random potentials,21 the simplicity of the
formula is attractive and gives results in line with experimental
observations. In this paper, using Kubo formulas expressed
explicitly in terms of one-particle eigenstates, we investigate
the influence of both a finite and a negligible Hall field EH on
the Hall conductivity in graphene, and show that the plateau
of the n = 0 Landau level can be accounted for by the
dispersion of the energy levels due to scattering by impurities.
In addition, we evaluate the longitudinal resistivity ρxx for
scattering by short- and long-range impurities.

The influence of a finite Hall field EH follows a treatment
previously applied to the breakdown of the usual IQHE22 by
including EH in the one-electron Hamiltonian. It was justified
in Ref. 23 and accounts for electron-electron interactions
in the Hartree approximation.24 The result is the analytical
expressions for the eigenvectors and eigenvalues in crossed
electric and magnetic fields in graphene given in Refs. 25 and
26. We use these results to evaluate the relevant conductivities.

In Sec. II we present the model and evaluate the Hall
conductivity σyx and the longitudinal conductivity σxx for a
finite Hall field EH . We then present results for a negligible
field EH in Sec. III, discuss the lifting of degeneracies due to
scattering in Sec. IV, and make concluding remarks in Sec. V.

II. FINITE HALL FIELD

The one-electron Hamiltonian for a graphene layer in the
presence of a magnetic field B perpendicular to the layer, while
the Hall field EH is in the plane, reads

H = vF σ (p + eA) − eEHy1, (1)

where 1 is the unit 2 × 2 matrix. The Hamiltonian given by
Eq. (1) is written in (2 + 1) dimensions. We adopt the Landau
gauge A = (−By,0), with the magnetic field oriented along
the positive z axis. The Zeeman splitting is justifiably neglected
for moderate values of the field B. The dimensionless
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parameter η = EH/vF B characterizes the strength of the Hall
field. The problem of the crossed electric and magnetic fields
has been solved analytically by Lukose et al.25 and by Peres
et al.26 Here the electric field is the Hall field EH and the
eigenvectors are

|�〉± =
√

η

4

⎛
⎝−√

C+�n−1 ∓ √
C−�n

√
C−�n−1 ± √

C+�n

⎞
⎠ eikxx, (2)

where C± = (1 ± √
γ )/η; �n = �n(ξ ′) are the usual oscilla-

tor functions, with

ξ ′ = [
y − l2

c kx − s
√

2nlcη/γ 1/4
]
γ 1/4/lc; (3)

lc is the magnetic length lc = √
h̄/eB; and γ = 1 − η2.

The center of the orbit is yc = l2
c kx + s

√
2nlcη/γ 1/4. The

eigenvalues of the Hamiltonian (1) are

Esnkx
= s

√
nh̄ωcγ

3/4 − eEH l2
c kx, (4)

where s takes values s = +1, − 1 for the π and π∗ band,
respectively, and ωc = √

2vF /lc. However, the n = 0 level
must be treated separately. Its eigenvalue is the second term
in Eq. (4) and its eigenvector, corresponding to the Dirac
point, is

|�〉0 =
√

η

2

⎛
⎝−√

C−
√

C+

⎞
⎠ �0 eikxx . (5)

We now consider linear responses to a weak source-to-drain
electric field. With linear response theory, the corresponding
Hall conductivity (μ = x,y; ν = x, y; μ �= ν) is given by27

σnd
μν = ih̄e2

S0

∑
ζ �=ζ ′

fζ (1 − fζ ′)vνζζ ′vμζ ′ζ

× 1 − eβ(Eζ −Eζ ′ )

Eζ − Eζ ′
lim
ε→0

1

Eζ − Eζ ′ + iε
. (6)

Here S0 is the area, vν,μζζ ′ are the matrix elements of the
velocity operator vν , and fζ = f (Eζ ) is the Fermi-Dirac distri-
bution function. If we use the identity fζ (1 − fζ ′ ) exp[β(Eζ −
Eζ ′)] = fζ ′(1 − fζ ), and replace ε by the level width �ζ ,
Eq. (6) becomes the well-known Kubo-Greenwood formula,

σnd
μν = ih̄e2

S0

∑
ζ,ζ ′

(fζ − fζ ′)vνζζ ′vμζ ′ζ

(Eζ − Eζ ′)(Eζ − Eζ ′ + i�ζ )
. (7)

The sum is over all quantum numbers |ζ 〉 = |s,n,kx〉 and
|ζ ′〉 = |s ′,n′,k′

x〉, with |ζ 〉 �= |ζ ′〉. If the broadening �ζ is the
same for all states |ζ 〉, it can be proven that the imaginary
part of the whole expression in Eq. (7) vanishes identically.
Then the denominator in Eq. (7) can be replaced by (Eζ −
Eζ ′)2 + �2

ζ (see Appendix A). In what follows, though, we
first take �ζ = 0. Later we will assume �ζ ≈ �, and estimate
the resulting corrections. The broadening � is much larger
than in conventional semiconductors and depends relatively
weakly on the temperature.

In the spirit of Refs. 23 and 22, we assume that a finite field
EH affects only the scattering of electrons by collisions with
impurities and not the Fermi functions that enter Eq. (7); that
is, we assume equilibrium electron distributions, at least for

a relatively weak EH . After all, we consider linear responses
to a weak, source-to-drain electric field and the approach is
previously justified.22,23,28

In graphene there are two unequivalent points (K,K ′) in the
Brillouin zone due to the two sublattices and, with negligible
Zeeman splitting, the degeneracy is fourfold, gs = 4. This
degeneracy is lifted only at very high magnetic fields13

B > 20 T; this case will not be considered in this work. The
matrix elements of the velocity operator between the states
|snkx〉 and |s ′n′k′

x〉 are diagonal in kx (∝ δkxk′
x
). With kx and

k′
x suppressed, they read

〈sn|vx |s ′n′〉 = −vF

2
[(1 + ss ′)δn,n′ + s ′δn−1,n′ + sδn,n′−1],

(8)

〈s ′n′|vy |sn〉 = −i(vF /2)
√

γ (−s ′δn−1,n′ + sδn,n′−1). (9)

Their product is

P ss ′
nn′ = i

(
v2

F /4
)√

γ (−δn−1,n′ + δn,n′−1). (10)

However, the matrix elements between the zeroth state (n = 0
or n′ = 0) and any other state should be evaluated separately.
For example,

〈0|vx |s ′n′〉 = −(vF /
√

2) δ0,n′−1. (11)

Note that the boundary condition restricts kx in
the range −Ly/2l2

c − k0 � kx � Ly/2l2
c − k0, where k0 =

s
√

2nη/γ 1/4lc. After summation over kx and k′
x , the general

term of the sum in Eq. (7), denoted as Ass ′
nn′ , reads

Ass ′
nn′ = e2gs

8hγ

f s
n − f s ′

n′

(s
√

n − s ′√n′)2
(δn−1,n′ − δn,n′−1), (12)

where f s
n = f s

n (Esn0) is the Fermi-Dirac distribution function.
On the other hand, to determine the position of the Fermi level
EF , one needs the density of states, which for the case of
graphene subject to perpendicular magnetic and electric fields
reads

D(E) = gs

h

eB

VH

∑
n,s

[θ (E+ − E′
sn0)θ (E− + E′

sn0)], (13)

with θ the Heaviside function, E± = VH/2 ± E, and E′
sn0 =

Esn0 + eEH l2
c k0. When the Hall field approaches zero (EH →

0), the density of states turns into a series of δ functions
centered at E0

sn0 = s
√

nh̄ωc, with the factor gseB/h as the
kx degeneracy. However, in this paper, we will adopt the
commonly used14 Gaussian-like density of states, with a
constant width �, to account for the broadening due to
impurities.

We proceed with the evaluation of σnd
yx , i.e., with the

summation of the terms Ass ′
nn′ in Eq. (7). In order to arrive at neat

expressions, one may notice that grouping terms such as A++
nn′

and A+−
nn′ together that contain f +

n leads to the cancellation
of 2

√
n(n + 1) factors. The same holds for the A−−

nn′ and A−+
nn′

terms. At this point, special care should be taken for the n = 0
level, since its degeneracy with respect to a particular electron
or hole component is twice as small as that of other Landau
levels. On the other hand, the matrix elements of the velocity
operators that involve the n = 0 level are larger by a factor
of

√
2 for both vx and vy , which compensates for the smaller
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degeneracy of the zeroth level. It means the term n = 0 can
easily be included in the final sum that runs over all values of
n and s. This yields the Hall conductivity

σnd
yx = 4e2

hγ

∑
n

(
n + 1

2

)
(f +

n − f +
n+1 + f −

n − f −
n+1). (14)

Taking into account the identity tanh[β(E − EF )/2] = 1 −
2f (E), one easily arrives at the same expression for the Hall
conductivity for vanishing Hall field as derived in Ref. 14.
Further, at small temperatures and large magnetic fields, one
may take, for an n-type sample, all f +

i (i = 0,1,. . .,N ) equal
to unity, while f +

N+1 ≈ 0 for a certain N (where all hole states
are occupied, f −

i = 1). Then Eq. (14) yields the well-known
result

σnd
yx = 4e2

h

(
N + 1

2

)
. (15)

Notice, however, that the plateaus are not simply determined
by the Fermi functions and their thermal broadening—the role
of disorder is shown to be very important (see Refs. 17 and
20). An approximate treatment is to assess its influence on
the Hall conductivity through the level broadening � due to
scattering by impurities given below in Eq. (17). One can
expand the denominator in Eq. (7) in powers of �/h̄ωc (see
Appendix B). The first �-dependent term in the expansion is
evaluated following the procedure outlined above and gives
the correction �σnd

yx [cf. Eq. (B5)]. Then the relative deviation
of the Hall conductivity is

�σnd
yx

σ nd
yx

∼= − 4

γ 3/2

(
�

h̄ωc

)2
N2 + N + 1/8

N + 1/2
. (16)

On the other hand, the level width �, obtained in the self-
consistent Born approximation,2 is given by

� =
√

2/Ah̄ωc, (17)

where the dimensionless parameter A depends on the density
of impurities and their potential. When the scattering is weak,
i.e., when the sample is clean, its value2 is A ≈ 100. Then the
deviation from the � = 0 case, for B = 14 T and γ ≈ 1, is
about 2% for the N = 0 level.

In Fig. 1 we show the Hall resistivity ρxy versus magnetic
field for constant electron concentration ne = 1012 cm−2. Only
results for EH = 0 are shown since, for appropriate (nonzero)
values of EH � 20 kV cm−1 and magnetic field B > 2 T, the
EH �= 0 results differ from those shown by less than 0.1%.

Next we proceed with the evaluation of the longitudinal
conductivity σxx in graphene under crossed magnetic and
electric fields. It has been shown29 that, only if the scat-
terers are assumed to be screened, charged impurities, one
may expect the conductivity in graphene (without magnetic
field) to increase linearly with the electron concentration, in
agreement with experimental data.30 However, at very small
concentrations, the conductivity σxx does not vanish, but
bottoms at a value close to 4e2/h. Still the value and the
physical origin of the conductivity minimum σmin is somewhat
a matter of open debate in the literature. Early theoretical
work31,32 predicted σmin = 4e2/πh for vanishing disorder. In
the presence of charged impurities, however, the value σmin =
4e2/h is predicted.33,34 More recent experimental work35

FIG. 1. Hall resistivity ρxy vs magnetic field B for electron
density ne = 1012 cm−2.

suggests that the conductivity minimum is not determined by
the physics of the Dirac-point singularity, but rather by carrier-
density inhomogeneities induced by charged impurities. All
this discussion applies to the case when the magnetic field is
absent. In this work, we will adopt the view presented in Ref. 35
and evaluate the longitudinal conductivity σxx assuming it
is governed by carrier collisions with charged impurities. In
a normal magnetic field, the diffusive contribution σ dif

xx to
this conductivity usually vanishes36 and only the collisional
contribution σ col

xx is important. This is given by27

σ col
xx = βe2

S0

∑
ζ,ζ ′

f (ε)[1 − f (ε′)]Wζζ ′(ε,ε′)(yζ − yζ ′ )2, (18)

where yζ = 〈ζ |y|ζ 〉, and Wζζ ′(ε,ε′) is the transition rate in the
presence of impurities. If scattering by impurities is assumed
to be elastic, with NI being their density, the transition rate
Wζζ ′ acquires the form

Wζζ ′(ε,ε′) = 2πNI

h̄S0

∑
q

|U (q)|2|Fζζ ′(u)|2

× δ(ε − ε′)δkx,k′
x+qx

, (19)

where u = l2
c (q2

x + q2
y )/2γ 1/2. U (q) is the Fourier transform

of the screened impurity potential U (r) = (e2/4πε0ε)e−ksr/r ,
where ε is the static dielectric constant, ε0 is the dielectric
permittivity, and ks is the screening wave vector. Fζζ ′(u) are
the form factors, 〈ζ |eiq·r|ζ ′〉. The values of the screening length
range from37 10 nm to 100 nm, depending on the quality of the
sample; the corresponding (extremal) value of ks = 107 m−1

will be mostly used in this work. With U0 = e2/4πε0ε, the
transform of U (r) is U (q) = U0/(q2 + k2

s )1/2, where q2 =
q2

x + q2
y . It can be proven that the expectation value of the

y coordinate, i.e., 〈ζ |y|ζ 〉, is

〈ζ |y|ζ 〉 = yc + sη
√

n/2 lc/γ
1/4. (20)

Due to the presence of the δ function and the Kronecker δ

in Eq. (19), transitions are possible only between different
levels n �= n′. The form factors |Fζζ ′(u)|2 can be evaluated
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analytically if one neglects the dependence of the center of the
orbit on n and s,

∣∣F ss
nn−1(u)

∣∣2 ≈ η2e−u

4

{√
u

η

[
L1

n−2(u)√
n − 1

+ L1
n−1(u)√

n

]

−s

[
Ln−1(u) + uL2

n−2(u)√
n(n − 1)

]}2

, (21)

with Ln and Lm
n the Laguerre and associated Laguerre

polynomials, respectively. The expression for |F ss
nn+1|2 is

∣∣F ss
nn+1(u)

∣∣2 = ∣∣F ss
nn−1(u)

∣∣2∣∣
n→n+1. (22)

As usual, the form factors |F ss
01 (u)|2 should be treated

separately; the result is

∣∣F ss
01 (u)

∣∣2 ≈ η2e−u
[
L0(u) − (s/η)

√
uL1

0(u)
]2/

2. (23)

Finally, the form factors between the ± bands are

|F+−
nn (u)|2 ≈ e−u

[
L−1

n (u)
]2/

4. (24)

With these form factors, Eq. (18) takes the form

σ col
xx = e2

h

βU 2
0 NIγ

1/2

2πh̄ωc

∑
s,s ′,n,n′

f (Esn0)[1 − f (Esn0)]

×
∫ ∞

0
du

u |F ss ′
nn′ (u)|2

u + ucs

, (25)

where ucs = l2
c k

2
s /2γ 1/2 and n′ = n ± 1. Since the gaps be-

tween the Landau levels in graphene are of the order of 103 K,
the product βf (Esn)[1 − f (Esn)] in Eq. (25) can be replaced,
at low temperatures, by the Dirac δ function, δ(E − EF ). The
corresponding longitudinal resistivity is shown in Fig. 2 (black
solid curve) and will be discussed after Eq. (30).

FIG. 2. (Color online) Longitudinal resistivity ρxx of graphene
as a function of the electron concentration ne for Hall field EH =
1 kV cm−1 (black solid curve) and for EH = 0 (red dashed curve).
The other parameters are A = 40, the screening wave vector ks =
107 m−1, and the impurity concentration ni = 5 × 1010 cm−2.

III. ZERO HALL FIELD

When EH is absent, the eigenvectors take the form

|�〉 = 1√
2

(
�n−1

±�n

)
eikxx, (26)

and the eigenvalues become Esn = s
√

nh̄ωc. Moreover, the
Fermi functions appearing in Eq. (7) are the equilibrium ones,
and repeating the procedure of Sec. II leads directly to the
result given by Eq. (15).

As for the evaluation of σ col
xx , now there are no restrictions on

the intralevel scattering, i.e., n′ = n is allowed, while n′ �= n

is forbidden for elastic scattering, since the eigenvalues do not
depend on kx . The form factors are∣∣F ss

nn(u)
∣∣2 = e−u

[
L−1

n (u)
]2/

4. (27)

The form factors for the n = 0 level must be considered sepa-
rately; the result is |F ss

00 |2 = e−u. For δ-function impurities, or
ks � q in U (q) = U0/(q2 + k2

s )1/2, the conductivity σ col
xx can

be evaluated analytically. We have

σ col
xx = e2

h

βNIU
2
0

8ucsh̄ωc

∑
s,n

6n f (Esn)
[
1 − f (Esn)

]
, (28)

where we use the relation∫ ∞

0
ue−u

[
L−1

n (u)
]2

du = 6n (29)

that can be derived using the orthogonality of the Laguerre
polynomials and their recurrence relation,38 (n + 1)Ln+1(u) −
(2n + 1 − u)Ln(u) + nLn−1(u) = 0.

The main difference with the usual IQHE in semiconductors
is the presence of the factor 6n instead of 2n + 1 in Eq. (28)
(see Ref. 39). At low temperatures, the product βf (Esn)

[
1 −

f (Esn)
]

in Eq. (28) can be replaced by a δ function or
a Lorentzian; we adopt the former case and evaluate the
longitudinal resistivity ρxx from

ρxx = σxx

/[
σ 2

xx + σ 2
yx

]
. (30)

In Fig. 2 we show the longitudinal resistivity ρxx as a
function of the electron concentration ne for finite Hall field
EH = 1 kV cm−1 (black solid curve) and for EH = 0 (red
dashed curve). The other parameters are A = 40, screening
wave vector ks = 107 m−1, and impurity concentration ni =
5 × 1010 cm−2. The magnetic field strength is B = 14 T.
The resistivity oscillates with the electron concentration as
expected. A finite Hall field affects mainly the position of the
peaks, while the values of the peaks are comparable for n > 1.

In the left panel of Fig. 3, we show σxx as a function
of the electron concentration ne for E = 1 kV cm−1. The
Fermi level is determined from ne. The impurity concentration
ni = 5 × 1010 cm−2, the screening wave vector ks = 107 m−1,
and the parameter A = 40 were chosen to obtain values of
ρxx compatible with the experiments.1 The absence of the
peak, when the Fermi level is at the Dirac point (ne ≈ 0),
may probably be explained by a breakdown (of the QHE)
mechanism.
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FIG. 3. (Color online) Left panel: Conductivity σxx vs concentration. Right panel: Hall conductivity σxy vs the gate voltage V o
g for three

values of B: 8 T (black, dashed curve), 11 T (red, dotted curve), and 14 T (blue, dash-dotted curve). The values of σxy without the correction
(C = 0) due to impurities are shown in the inset.

IV. LIFTING OF THE LEVEL DEGENERACY

Recently there has been experimental evidence40,41 of
the lifting of the fourfold degeneracy of the zeroth (n = 0)
Landau level (LL) and partial lifting of the first (n = 1) LL
for B > 20 T in samples having high mobility.12 Detailed
magnetotransport studies41 of the activation gap may provide a
hint regarding the origin of a particular splitting: For instance,
�E(ν = ±1) behaves like

√
B, suggesting a nonspin origin

(possibly an electron-electron interaction and/or scattering by
impurities), while �E(ν = ±4) has a linear dependence on the
magnetic field (possibly a Zeeman-like splitting). The relation
of the activation gap �E(ν) to the actual splitting �Ē(ν) is
not straightforward, since it also depends on the level width
�; it is given by Ref. 42 as �E(ν) = �Ē(ν) − 2�. Within
this picture, �E(ν = ±1) is expected40 to be on the scale
of e2/εlc, hence proportional to

√
B. On the other hand, it

would be natural to assume that the splitting �Ē(ν = ±1) is
proportional to � within the model proposed in this paper.
Note that � is also proportional2 to

√
B. Since the broadening

� is directly proportional to the impurity potential, it can be
proven (see Appendix A) that the correction to the one-electron
eigenvalue, �Ēsn = 〈sn|U (r)|sn〉, is given by

�Ēsn = s Ce−ξ 2

2n+1n!
√

π

[
H 2

n (ξ ) + 2nH 2
n−1(ξ )

+ 2
√

2n ηsHn(ξ )Hn−1(ξ )
]
, (31)

where ξ = kxlc and C = V0/lcLy for short-range impurities;
for long-range impurities, the value of C is a bit more
complicated (see Appendix A). As usual, the zeroth level
should be treated separately; we find

�Ēs0 = sCe−ξ 2/√
π. (32)

The wave vector kx is of the order of 106 m−1. We show
the longitudinal conductivity σxx in the left panel of Fig. 3
and the Hall conductivity σxy in the right panel. We show
σxx as a function of the electron concentration. As seen, the
first peak is shifted away to n′

e = 1.15 × 1012 cm−2 due to

the correction �Ēsn; without this correction, this peak would
occur at ne0 = 1 × 1012 cm−2.

The Hall conductivity σxy is shown for three different
values of the magnetic field B: 8 T (black, dashed curve),
11 T (red, dotted curve), and 14 T (blue, dash-dotted curve).
The lifting of the LL degeneracy, due to impurity scattering,
has been taken into account. The case when the LLs are
still degenerate (C = 0) is shown in the inset. All other
parameters are the same as in Fig. 2 for nonzero Hall field
(EH = 1 kV cm−1). The influence of the energy correction
(�Ēsn) is mostly pronounced at the Dirac point (V 0

g ≈ 0 V),
where the appearance of the ν = 0 plateau is visible. This
is so because the n = 0 LL occurs at zero energy and its
position depends on the density ne, as shown in Fig. 4, where
we plot the Fermi level versus B for different densities ne.
At this point, we may compare the result for the n = 0
plateau with that of Ref. 17, which reads δνeven ∼ (nimp)0.4,
while ours varies as (nimp)0.5. In fact, the values of �Ēsn

FIG. 4. (Color online) Fermi level vs magnetic field for three
different concentrations: ne = 1011 cm−2 (blue, dash-dotted curve),
ne = 5 × 1011 cm−2 (red, dotted curve), and ne = 1012 cm−2 (black,
solid curve). The dashed curves show the Landau levels n = 0,1 and
the gray dots show their intersections with the Fermi level.
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FIG. 5. (Color online) The region of the n = 0 plateau for various values of the parameters C and �. The two right panels are for C = �,
given by Eq. (17), with A = 40, �2 = C/2, and �3 = C/3; the two left panels are for fixed broadening �, C2 = 2C, and C3 = 3C. The dashed,
dotted, and dash-dotted curves are for B = 8,11, and 14 T, respectively.

for the n = 0, 1, 2, 3 levels, at B = 14 T, are 11.7, 11.4, 5.5,
and 4 meV, respectively. Correspondingly, assuming that any
scattering other than that by impurities is negligible, we expect
the plateaus of these levels to remain essentially unaffected
for temperatures, such that kBT � �Ēsn + �, which yields
T � 200 K. Notice that the limit for T depends on the strength
of the magnetic field, the impurity density, etc.

We plot σxy versus the gate voltage V 0
g in order to have

a clearer contrast with the experimental data in Ref. 43.
Note that V 0

g is proportional to the concentration ne through
the relation6 ne = (εε0/te) × V 0

g , where ε and ε0 are the
permittivities of the vacuum and SiO2, respectively, e is the
elementary charge, and t = 300 nm is the thickness of the SiO2

substrate, as commonly assumed.6,44 The results of Fig. 3 are
in accordance with the experimental data; for instance, our
calculation for B = 8 T gives the end of the n = 0 plateau at
V 0

g ≈ 10 V, as in Ref. 43, while for B = 14 T and the same
plateau, our calculation gives ne = 0.9 × 1012 cm−2, while
experimentally1 it is at n′

e ≈ 1.1 × 1012 cm−2.
The widths of the plateaus depend on the values of C, which

appear in �Ēsn, and the LL-width �, both of which are sample
dependent. It is evident that with C = 0, there are no plateaus
around V 0

g = 0. For C �= 0, we have plateaus whose widths
depend weakly on �, with � = C giving the widest plateau.
We show this with the two sets of panels in Fig. 5, and by
focusing only on the n = 0 plateau. The left set is for fixed
� [A = 40, see Eq. (17)] and C progressively larger, while
the right set is for fixed C and � progressively smaller. The
different curves are marked as those in Fig. 3.

V. CONCLUDING REMARKS

We investigated the influence of the Hall field EH �= 0 and
of the electron scattering by impurities on the Hall (σyx) and
longitudinal (σxx) conductivities in graphene, mostly at low
temperatures. We also considered the usual case, EH = 0.

For the evaluation of σyx , we used the Kubo-Greenwood
formula for � = 0, and obtained the well-known expression
σyx = 4(N + 1/2)e2/h [cf. Eq. (15)]. With a slight modifica-
tion of this formula, we also evaluated corrections to σyx due to
broadening (� �= 0) and the relative deviation from the � = 0
case [see Eq. (16)].

An essential ingredient of the calculation of σyx was the
inclusion of the correction �Ēsn of the energy levels given by
Eq. (31). This value depends on the strength of the scattering
and lifts the kx degeneracy of the LLs as shown by Eq. (31).
It is the main degeneracy lifting for zero Hall field EH = 0,
but it also contributes to EH �= 0 when �Ēsn is added to

Eq. (4). This inclusion and the symmetry between electrons
and holes gives rise to the n = 0 Hall plateau. This correction
or dispersion is embodied in the parameter C and is absent for
C = 0, as the inset to the right panel of Fig. 3 makes clear.
For C �= 0, the plateau depends weakly on the value of �

(cf. Fig. 5). Usually �Ēsn is neglected, but in this particular
case, where the n = 0, LL is at zero energy; its contribution is
paramount for the existence of the n = 0 plateau but not for
the n > 0 plateaus, which are simply shifted a bit (cf. Fig. 3).
Since �Ēsn decreases with n, this further makes the relative
shift of the n > 0 plateaus less important. Notice, though, that
these n > 0 plateaus are not split by the inclusion of �Ēsn.

Accounting for the n = 0 plateau due to scattering by
impurities is in line with numerical calculations45 that consider
electron-electron interaction as a mechanism for lifting the kx

degeneracy of the LLs. Notice, though, that these numerical
calculations are limited to the n = 0 level, whereas ours
are not. Although we used, we believe, realistic values for
the parameters C and �, a relative uncertainty in their true
values still remains. One can expect that considering electron-
electron interaction in a mean-field fashion, e.g., in the Hartree
approximation, simply “renormalizes” the values of C and �.

Since we considered only scattering by impurities, the
results are valid, in general, only for low-temperatures T .
However, since h̄ωc is much larger than in conventional
semiconductors, we expect this temperature range to be
significantly wider. A more specific limitation results from the
inequality kBT � �Ēsn + �, which makes the upper limit in
T depend on the impurity density and the magnetic field. As
to whether short-range or long-range scattering by impurities
is the most important, the answer is unclear since the relevant
parameters are not well known (see Sec. IV) and, at least in
theory, the transport properties are insensitive to the potential
range within the self-consistent Born approximation.2,20 It
appears, though, that most observations and independent
treatments favor long-range Coulomb impurities.17,18

For the evaluation of σxx , we used a standard linear-
response formula27 and also contrasted the results [e.g.,
Eq. (28)] with the well-known ones pertaining to the usual
IQHE39,42 for elastic scattering by impurities. In either case,
σxx oscillates with electron concentration. The peak values
depend on the details of the scattering potential when the Hall
field EH is absent; if it is present and sufficiently weak so
that it affects only the scattering and not the Fermi functions,
we have an additional dependence (see Fig. 2). This behavior
of σxx is also reflected in that of the longitudinal resistivity
ρxx . In all results, we neglected the influence of the Zeeman
term. We have verified, though, that at least for the B fields we
considered, B � 20 T, this term can be safely neglected.
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APPENDIX A: DISPERSION OF THE ENERGY LEVELS

Below we evaluate the kx corrections to the
eigenvalues due to scattering by randomly distributed
impurities.

(1) Short-range impurities. The potential has the form
U (r) = V0δ(r) = V0δ(x)δ(y), with V0 the strength of the
potential. Then, the correction to the eigenvalues, �Esn =
〈snkx |U (r)|snkx〉, is given by Eq. (31). If we replace Ly

in Eq. (31) by the average distance between the impurities
(∝ 1/

√
ni), as done in Ref. 2, we obtain

C ≈ � =
√

ni/2πU0/kslc. (A1)

Then, Eq. (17) gives, for ni ≈ 1010 cm−2 and ks ≈ 2 ×
108 cm−1, the value A ≈ 90, which is in accordance with
Ref. 29 where A lies in the range 50–100. For smaller ks ,
giving A = 40 and B = 14 T, one finds �E0 = 11.7 meV.

(2) Screened Coulomb impurities. The potential has
the form U (r) = U0e

−ks r/r , with U0 = e2/4πε0εr and
Fourier transform U (q) = U0lc/

√
2(u + ucs). For EH = 0,

we find

�Esn = U0

2
√

2lc

∫ ∞

0
du e−u/2 cos(ξ

√
2u)

× [Ln(u) + Ln−1(u)] /
√

u + ucs. (A2)

For B = 8 T, Eq. (A2) gives the numerical values �Ei ≈
8, 24, 12 meV (i = 0,1,2) for the correction to the first three
levels. Using the expansions cos(ξ

√
2u) ≈ 1 − ξ 2u + ξ 4u2/6

and (u + ucs)−1/2 ≈ u
−1/2
cs (1 − u/2ucs), one finds

�Esn ≈ U0

lc
√

2ucs

[
I (0)
n − (1/2ucs + ξ 2)I (1)

n

+ (ξ 4/6 + ξ 2/2ucs)I
(2)
n − (ξ 4/12ucs)I

(3)
n

]
, (A3)

with I (m)
n = (2m − 1)!!

√
2πF (−n,m + 1/2) and F (...) the

hypergeometric functions.38 For n = 0, we have I
(0)
0 =√

2π,I
(1)
0 = √

2π,I
(2)
0 = 3

√
2π , and I

(3)
0 = 15

√
2π .

APPENDIX B: CORRECTIONS TO σ nd
yx DUE TO

BROADENING

We multiply and divide the summand of Eq. (7) by Eζ −
Eζ ′ − i�ζ . If �ζ = � is the same for all ζ , the resulting term
proportional to � vanishes and Eq. (7) takes the form

σnd
yx = ih̄e2

S0

∑
ζ,ζ ′

(fζ − fζ ′)vνζζ ′vμζ ′ζ

(Eζ − Eζ ′)2 + �2
. (B1)

The difference Eζ − Eζ ′ is of the order of h̄ωc [cf. Eq. (4)]. For
small � � h̄ωc, the denominator can be expanded in powers
of (�/h̄ωc)2 = 2/A [see Eq. (17)]; this leads to

σnd
yx

∼= ih̄e2

S0

∑
ζ,ζ ′

(fζ − fζ ′)Pζζ ′

(Eζ − Eζ ′)2
(1 − 2/A), (B2)

where Pζζ ′ is the product of the velocities given by Eq. (10).
The sum over momenta gives a factor S0eB/h. Taking into
account the degeneracy gs = 4, the correction �σnd

yx to the
Hall conductivity σnd

yx takes the form

�σnd
yx

∼= − e2gs

4Aγ 5/2

∑
nn′ss ′

(fns − fn′s ′ )(δn−1,n′ − δn,n′−1)

(
√

ns − √
n′s ′)4

. (B3)

If we treat separately the sums between the “+” and “+”
branches, “+” and “−” branches, “−” and “+” branches, etc.,
some terms will cancel out and lead to

�σnd
yx

∼= − 32e2

Aγ 5/2h

∑
n

(n2 + n + 1/8)

× (f +
n − f +

n+1 + f −
n − f −

n+1). (B4)

For small temperatures, this expression turns into

�σnd
yx

∼= − 32e2

Aγ 5/2h
(N2 + N + 1/8), (B5)

where N is the largest integer contained in EF /h̄ωc. The
relative deviation from the � = 0 case is then

�σnd
yx

σ nd
yx

∼= − 8

Aγ 3/2

N2 + N + 1/8

N + 1/2
. (B6)

For N = 0 and γ ≈ 1, it has the very simple form

�σnd
yx

σ nd
yx

∼= − 2

A
. (B7)

If the impurity scattering is weak, the dimensionless parameter
A (Ref. 2) has a high value, A ≈ 100. Then for B = 14 T, we
have � ≈ 20 meV, while h̄ωc = 149 meV, and the deviation
of the Hall conductivity is about 2%. If we take A ≈ 40, the
deviation is about 4%.
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