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Substrate influence on the plasmonic response of clusters of spherical nanoparticles
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The plasmonic response of nanoparticles is exploited in many subfields of science and engineering to enhance
optical signals associated with probes of nanoscale and subnanoscale entities. We develop a numerical algorithm
based on previous theoretical work that addresses the influence of a substrate on the plasmonic response of
collections of nanoparticles of spherical shape. Our method is a real-space approach within the quasistatic limit
that can be applied to a wide range of structures. We illustrate the role of the substrate through numerical
calculations that explore single nanospheres and nanosphere dimers fabricated from either a Drude model metal
or from silver on dielectric substrates and from dielectric spheres on silver substrates.
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I. INTRODUCTION

Currently there is great interest in the use of the plasmonic
response of tailored metallic substrates and other structures for
the purpose of enhancing electric fields of laser beams in their
near vicinity. Enhancements with an origin in the excitation
of collective plasmon modes can increase the field intensity
by many orders of magnitude in the near vicinity of diverse
systems. This phenomenon was first explored in the context
of surface-enhanced Raman scattering (SERS), wherein it was
found that the Raman cross section of pyridine adsorbed on
electrochemically roughened Ag surfaces can be enhanced by
approximately 6 orders of magnitude relative to that realized
for pyridine in solution.! The field has evolved to the point
where the Raman spectrum of single molecules can be de-
tected through the use of plasmon-enhanced Raman probes.>>
Plasmonic enhancements can be used not only in the context
of Raman spectroscopy, but also, more generally, to enhance
the cross section of diverse nonlinear optical processes.*>

In the theoretical literature, one finds numerous studies
of the plasmonic response of isolated nanoparticles of di-
verse shape®’ along with metallic arrays of nanoparticles.?’
So far as we know, virtually all such discussions explore
nanoparticles and their arrays in free space.'®!" Treatments
of the free-space response are appropriate for clusters of
nanoparticles in solution, but commonly, one is interested
in particles and particle arrays on substrates. Then, an issue
is the influence of the nanoparticle-substrate interaction on
the plasmonic response of the nanoparticles that reside on it.
Papers addressing particle-substrate interactions include the
work of Yamaguchi et al.,'> which discussed particles above
substrates in the dipole approximation. Work done by Ruppin'?
and by Roman-Veldzquez et al.'* and Noguez'? also deal with
sphere-substrate interactions but only for a single nanoparticle.
Mayergoyz et al. have studied the plasmon eigenfrequencies
of nanosphere dimers and also cylindrical structures on a
substrate.” Moreover, a recent study on the plasmonic response
of cubical nanoparticle dimers'® reports on the dimer-substrate
interactions in the SERS context.

Since the early 1970s, Bedeaux and Vlieger have conducted
numerous theoretical and numerical studies on the effects of
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particle-substrate and particle-particle interactions.!” These
studies have been concentrated around spherical or spheroidal
particles on top of a substrate or truncated particles of such
shapes on a substrate (used to model a finite contact angle). In
a paper based on the formalism of Bedeaux and Vlieger, the
particle-substrate interactions were taken into account to high
multipolar order, while the particle-particle interactions were
only calculated to dipolar or quadrupolar order, since their
main concern was systems where the particle coverage is low.'®

More recently, numerical studies based on Bedeaux and
Vlieger’s work have been carried out by Lazzari and co-
workers for the purpose of in situ inversion of experimental
optical spectra obtained from growing thin granular metal
films. 82!

In this paper, we present a description of the influence
of a substrate on the plasmonic response of nonperiodic
nanosphere arrays; through the use of the Bloch theorem,
one may address periodic systems as well. We employ the
quasistatic description of the response of the system. This
proves adequate for objects whose linear dimensions are
small compared to the wavelength of light.??> In contrast to
previous work, we consistently take into account higher-order
interactions between the nanospheres.

After we describe the formalism, we turn our attention to
calculations that explore the influence of the substrate on the
response of nanospheres and nanosphere dimers. Of interest is
the discussion of hot-spot regions where, at selected excitation
frequencies, one realizes very large field enhancements by
virtue of the excitation of collective plasmon modes. For the
case of two spheres in free space that are nearly in contact,
one realizes a hot spot at the point of closest contact between
the spheres.>»** In this paper, for a nanosphere dimer near a
dielectric substrate, we find moving hot spots. A small change
in excitation frequency can cause the hot spot to move from
the point of nearest contact between the spheres to the south
poles of the spheres—the points on the spheres closest to the
substrate. In recent work, two of the authors have discussed
moving hot spots in nanosphere clusters.?’

This paper illustrates the role of the substrate in creating
new hot spots. We find that, if a dielectric sphere is in close
proximity to a plasmonic active metallic substrate, the region
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around the south pole of the dielectric sphere becomes a hot
spot. A spatially localized potential well that can trap substrate
plasmons is formed just under the dielectric sphere. Also, if a
metallic sphere is placed close to a dielectric substrate, we find
acollective plasmon localized near the south pole of the sphere.
Thus, the interaction of nanospheres and structured arrays of
such objects placed on substrates creates new hot spots that
can be exploited in diverse nonlinear optical spectral probes
of nanoscale and subnanoscale matter.

In this paper, Sec. II is devoted to setting up a formalism
that may be applied to any nonperiodic structure of spherical
nanoparticles that are located on, or near, a substrate, and
Sec. III presents the results of our numerical studies of isolated
nanospheres and nanosphere dimers on substrates. Section IV
contains concluding remarks.

II. THEORY

Even if the numerical calculations to be performed in
this paper will focus on one or two nanoparticles, we will,
however, present a more general formalism valid for a cluster
of N nanoparticles. For the case of the dimer, the geometry
is illustrated in Fig. 1. The substrate is located in the half
space z < 0, and it is characterized by the dielectric function
&_(w). The region above the substrate, z > 0, is assumed to
be a nonabsorbing dielectric characterized by the dielectric
function & (w).

We consider a system consisting of N nonoverlapping
nanospheres, located at arbitrary positions. For each such
sphere, we embed a coordinate system S;, j = 1,2,... N so
that the origin of S; is located at the center of sphere j. With
each coordinate system S;, we associate a position vector
r= (I’j,@j,(ﬁj).

Our interest is in nanosphere arrays whose extent is small
compared to the wavelength of light, so the electrostatic
approximation suffices to describe the electric fields in its
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FIG. 1. (Color online) An illustration of the system we consider
in this paper, for the case where we have a nanosphere dimer. The
substrate occupies the half space z < 0, 4 is the distance between the
south poles of the spheres and the substrate, and d is their surface-
surface separation. Sphere j of the dimer has dielectric function
¢j(w) and radius a;. The medium above the substrate has dielectric
function ¢, (w) while that of the substrate is ¢_(w). The two black
dots schematically represent image multipoles in the substrate seen
by an observer in the half space z > 0.
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vicinity. Under this assumption, the Maxwell equations are
equivalent to the Laplace equation. Thus, our task is to solve
Laplace’s equation for the electrostatic potential v,

Vi =0,

subject to the appropriate boundary conditions on the surface
of each sphere and at the interface between the substrate and
the rest of the system. As usual, the electric field is given by
E=-Vy.

We will assume that a spatially uniform electric field E of
angular frequency w is applied to the system, and we analyze its
response to this field. In what follows, all dielectric functions
that enter the analysis are the complex dielectric functions
appropriate for the frequency w, although we suppress any
explicit reference to w in what follows. Hence, the electrostatic
potential in the half space z > 0 can be written as

N N
Vi) =—r-Eo+ ) v,r)+ ) v, (D

Jj=1 j=1

where ; is the electrostatic potential produced by the
polarization charges in sphere j and ¥; is the potential
produced by its image, located in the half space z < 0. In
the substrate (z < 0), the electrostatic potential takes the form

N
Yo(r)=—r-E{+ Y _ y](r), )

J=1

where ij is the electrostatic potential of sphere j as seen

by an observer in the region z < 0, and E[ is the applied
field in the substrate. The various single-sphere potential
functions that enter Eqgs. (1) and (2) may be expanded in
the spherical harmonics. Using the shorthand notation ), =

Z[’io an:,,, we have

D AN MO0, 1 = a;,
vir)=4" 0 (3a)
Y B TY" 058, i <aj,
Im
R —l-1ym
vitry) =Y AT 65.67), (3b)
Im
and
i) =3, An Y 6.0)). (30)

where the various A;,, and By, are expansion coefficients to be
determined and a; refers to the radius of sphere j. The symbol
Y/" refers to the spherical harmonic functions as described
in Ref. 22. As discussed in Refs. 17 and 19, the coefficients
AR and AV are related to A\ through the boundary
conditions at the interface z = 0. Simple image arguments
supply the relation between these quantities. In particular, one

finds that'”-1°

(.R) I+m &+ — €= ()
APT = (=1 +mmAh;, (4a)
and )
(.T) £+ )
i = ml“zfn- (4b)
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Equation (4) ensures that the boundary conditions on the

substrate (z = 0) are automatically satisfied for any A;l]n) . Thus,

in what follows, we seek to solve for the coefficients A;ﬁq)

and Bl(,’n) using the equations that follow from the boundary
conditions at the surface of each nanosphere, i.e., where
r; = aj. Through rearrangement of the equations following
from the boundary conditions on the sphere surfaces, one can

eliminate the coefficients Bz(}i)- In the Appendix, the linear

set of equations determining A;ljﬂ) and Bl(,il) are derived [cf.
Eq. (A4)].

In Sec. III, we present a series of numerical studies of
plasmon resonance phenomena for nanosphere monomers
and dimers placed on a substrate. To this end, we must solve
Eq. (A4). In order to do so, we truncate the summations in
Eq. (3) and also the equation system in Eq. (A4) at [ = L.
The number of unknown coefficients in Eq. (A4) is then
N(L + 1)> — 1. We use the same truncation limit for both
the nanosphere-nanosphere interactions as well as for the
nanosphere-substrate interactions. The nanosphere-substrate
interactions include both the interaction of a given nanosphere
with its own image and the images of the other nanospheres.
Note that all particle-substrate and particle-particle
interactions consistently have been taken into account
(to a given order). In several previous studies, the interaction
with the substrate has been taken into account to a high order,
while the particle-particle interactions have been accounted
for at dipolar or quadrupolar order.!”?! In Sec. III, we will
see that the use of the dipole approximation (retention of only
the terms with / = 1) in the particle-substrate interaction is
very inaccurate from a quantitative point of view save for the
case when the nanospheres are quite far from the substrate.

In passing, we note that the formalism presented in this
paper can be applied to extend the formalism used in Ref. 9 to
incorporate interactions of periodic structures with a substrate.
One then has plasmon normal modes characterized by a wave
vector k| parallel to the surface; one encounters only (L + 1)
coefficients in this case because the expansion coefficients of
different nanoparticles are linked by the Bloch theorem. The
quasistatic limit developed in this paper can be applied to
the description of collective excitations whose wave vector is
large compared to w/c with w as the angular frequency of an
excitation of interest and c as the velocity of light in vacuum.

III. RESULTS AND DISCUSSION

In this section, we present a series of studies of the influence
of a dielectric substrate on the plasmonic response of isolated
nanospheres and nanosphere dimers. In addition, we find
hot spots created by plasmonic resonances between dielectric
spheres and metallic substrates, as noted before. We will also
see that termination of the hierarchy of equations at the dipole
(L =1, see Ref. 12) or quadrupole (L = 2) order provides
a very poor quantitative description of interactions between
particles and between the particles and the substrate. We
remark that it is evident from earlier studies, which utilize
a different methodology,”* that higher-order harmonics must
be included in the description of particle-particle interaction,
since the fields associated with hot spots are highly localized
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around the points of nearest contact. Thus, one must retain
spherical harmonics at high order to describe these features.

For the purpose of studying particle-substrate interactions,
we first consider nanoparticles modeled by a dielectric function
of the Drude form,??

2
ew)=1-— Y — 5
w(w +1y)

where wp is the plasma frequency and y is the inverse of
the free carrier relaxation time. For the ambient material, we
have chosen vacuum, i.e., &, = 1 and a dielectric substrate
of e_ > 0. The virtue of model studies based on the form of
Eq. (5) is that we may choose the relaxation rate y sufficiently
small so that much detail is evident in the calculated results.
For the Drude model parameters, we assume wp = 3 eV and
y = 0.03 eV. After our discussion of nanospheres consisting
of Drude metal, we present results for geometries incorpo-
rating silver (Ag) nanoparticles. Among metals that exhibit
plasmonic response in the visible part of the optical spectrum,
the damping rate in Ag is modest, and numerous experiments
employ Ag-based structures.”® It should be remarked that the
optical response of aluminum (Al) is described very well by
the Drude model. Unfortunately, the plasma frequency is very
high, close to 15 eV, so the interesting plasmonic resonances
in Al-based materials lie well into the ultraviolet. In our view,
it would be of great interest to see experimental probes of
structures that incorporate Al nanoparticles, with attention to
the appropriate spectral range.

One possible indicator of plasmonic activity is the total
dipole moment of one of our spherical objects. With p(w)
being the dipole moment of a nanosphere at angular frequency
w, we define the dimensionless dipole moment as

F= p
d380 E 0 ’

where a is the radius of the sphere in question and & is the
vacuum permeability. In terms of our expansion coefficients
Ajm, the three Cartesian components of the dimensionless

dipole moment are given by

_ /3 A=A
P =3z a? ’
s 3 A+ AL
Py = 81 a? ’
and
_ [ 3 Ap
Pe= Ny a2

Since the dipole moment in general is a complex vector
quantity, the quantity we display in the figures that follow is
the modulus of the total dipole moment given by

p(w) = |p(w)| = Vp'p,

where T symbolizes the Hermitian transpose. In our studies of
the interaction of a single sphere with the substrate, we will
display the total dimensionless dipole moment, along with
field-enhancement factors for applied fields perpendicular to
the substrate (E || Z) as well as parallel to the substrate (Ey ||
X). Moreover, for the dimer illustrated in Fig. 1, we will present
results for all three Cartesian components of the applied field.
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FIG. 2. (Color online) The dimensionless dipole moment p(w),
for a Drude metal particle on a substrate of dielectric function
(@) e_ =1, (b) e =2, and (c) e_ = 10. For the vacuum case, i.c.,
e_ = 1, we obtain the Mie result at how = ha)p/«/?a ~ 1.73 eV. For
all plots, we have h = 0.05a, wp =3 eV, y =0.03 eV, and L = 50.

A. The Drude monomer and dimer

We begin by considering a single Drude sphere in vacuum
(¢4 = 1) located a distance & = 0.05a above a substrate. In
Fig. 2, we present numerical calculations of the dimensionless
dipole moment for three choices of the dielectric function
of the substrate, ¢ =1, 2, and 10. The choice ¢_ =1
corresponds physically to the case where no substrate is
present. We present results for two choices of the applied
field: (i) perpendicular to the substrate (z direction, red dotted
curves) and (ii) parallel to the substrate (x direction, blue solid
curves). Since the system is invariant with respect to rotation
about the z axis, the response to an applied field parallel to the
y axis is identical to that shown for x polarization.

In Fig. 2(a), we present the response of the sphere in
free space, from which the Mie resonance at the frequency
hwp/~/3 ~ 1.73 eV is readily observed. While an isolated
Drude metal sphere has a spectrum of multipole modes at an-
gular frequencies w; = wp [[/(2] + 1)]1/2 withl =1,2,3, ...,
only the dipole mode with / =1 is excited by an applied
field whose wavelength is large compared to the radius of
the sphere. In the presence of a substrate, higher-order modes
may be excited by a spatially uniform applied field, as we
will see. These will appear at higher frequencies than the Mie
resonance, as suggested by the fact that w1 > w; forl > 1.

When the dielectric function of the substrate is ¢_ > ¢,
the spectral response of the nanosphere is altered significantly.
First, for the case of modest dielectric function e_ = 2, the
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(former) Mie resonance remains the dominant spectral feature,
and itis redshifted by the proximity of the dielectric substrate to
the nanosphere [Fig. 2(b)]. A substantial splitting of the modes
is observed when the response to a field parallel to the substrate
is compared to the response to a field perpendicular to it. We
also see activation of a higher-frequency mode. One might be
tempted to associate this with excitation of the quadrupolar
mode with / =2, but when the sphere is so close to the
substrate, classification of the mode by the angular momentum
quantum number is no longer accurate since a large number of
! modes are mixed together. We require L, the cutoff used in
the hierarchy of equations displayed in Eq. (A4), to be on the
order of 30 (or more) to obtain converged results.

If the substrate has a large dielectric function (e_ = 10),
then the response of the sphere is modified dramatically
relative to the free-space case [Fig. 2(c)]. The splitting of
the low-frequency resonances, for parallel and perpendicular
excitations, is now very large. For both orientations of the
applied field, the oscillator strength of the next highest mode
is comparable to the low-frequency (dipole) mode. We also
see a third mode in the spectrum, so the symmetry breaking
provided by the substrate now asserts itself prominently in the
response of the sphere.

The appearance of these higher-order modes can be in-
tuitively understood as follows. When we apply an electric
field E( to a nanosphere, it will generate local evanescent
fields. When £ is small, some of the evanescent fields are
reflected from the substrate, resulting in a nonuniform field
around the sphere. This causes the simultaneous excitation of
many different / modes, meaning that the notion of discussing
modes in multipolar terminology breaks down badly. The cross
talk between different / modes is also the reason why we see
higher-order modes (e.g., quadrupole modes) in the dipole
moment [ p(w)] of the spheres.

We now turn our attention to a discussion of the response
of a Drude dimer, as shown in Fig. 1. The radii of the two
spheres are both assumed to be equal to a. The distance
between the spheres is d = 0.1a, and they are both placed
a distance & = 0.05a above the substrate. In Fig. 3, we depict
the dimensionless dipole moment of one of the spheres in a
dimer whose axis is parallel to the x axis and, hence, to the
substrate.

When the dimer is placed in free space [Fig. 3(a)] and
the applied field is perpendicular to the dimer axis, there is
one dominant resonance. This is the Mie resonance of the
single sphere, slightly blueshifted due to the particle-particle
interactions. In addition, a second weak mode shows up at
higher frequencies. In contrast, when the dimer is excited by
a field parallel to the dimer axis (blue solid curve), we see
a sequence of collective modes redshifted by large amounts
from the isolated sphere Mie resonance. These results are in
agreement with previous work on nanoparticle dimers in free
space.?* As for the case of the single sphere on a substrate, the
fields generated from one sphere cause higher-order modes to
be excited in the other sphere, and vice versa.

For a substrate with modest dielectric function [e_ = 2,
Fig. 3(b)], we see a splitting between the dominant collective
modes excited by a field parallel to Z (red dotted curve) and
that excited by a field parallel to y (green dashed curve). This
is to be expected since the presence of the substrate will break
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FIG. 3. (Color online) The dimensionless dipole moment p(w),
for one of the particles in a Drude metal dimer, on top of a substrate
of dielectric function (a) e_ = 1, (b) e = 2, and (c) e = 10. For all
plots, we have & = 0.05a, d = 0.1a, wp =3 eV, y =0.03 eV, and
L = 50.

the rotational symmetry around the x axis. If the dielectric
function of the substrate is substantial [¢_ = 10, Fig. 3(c)], we
observe dramatic differences between the spectral response
for the three directions of the applied field. The shift of the
lowest-frequency mode for E || ¥ from the Mie resonance of
the isolated sphere is particularly dramatic.

These results demonstrate that placing metallic nanosphere
dimers over a substrate with a large dielectric function will
give rise to substantial field enhancements. Also, strong dipole
moment enhancements can be achieved over a very large
spectral range compared to that realized for a single isolated
nanosphere. Thus, as this example illustrates, the interaction
between structured nanoparticle arrays and a substrate of
substantial dielectric function can allow one to design objects
with a broad plasmonic spectral response.

Figure 4 shows how the response of the dimer depends
on the distance & above the substrate. A substrate dielectric
function ¢ = 10 was assumed in order to emphasize the
influence of the substrate on the response of the dimer. In
Fig. 4(a), where h = 2a, the spectral response is very close
to that of the isolated dimer, shown in Fig. 3(a). We see
clear interaction effects with the substrate when 7 = 0.3a
[Fig. 4(b)], but it remains true that the spectrum is qualitatively
similar to that of the free dimer. The dimer has to be close to
the substrate for the interaction effects to modify the spectrum
even for the large substrate dielectric function used in these
calculations [Fig. 4(c)].
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FIG. 4. (Color online) The plots show p(w) for one of the particles
in a Drude metal dimer for (a) & = 2a, (b) h = 0.3a, and (c) h =
0.05a. For all plots, we have e_ = 10, d = 0.1a, wp =3 eV, y =
0.03 eV, and L = 30.

We pause for a moment to comment on issues of conver-
gence. It is common to employ the dipole approximation to
describe intersphere interactions and interactions of nanopar-
ticles with substrates using the image method.'” In Fig. 5,
we present how the position of the lowest-energy collective
mode for the case Ej || Z depends on L, which determines
the number of unknown A;, coefficients in Eq. (A4). The
frequently used dipole approximation corresponds to L = 1,
and from Fig. 5, one observes that it is inaccurate even when
the dimer is far above the substrate (h = 2a) and becomes
gradually worse as / is decreased. The cutoff L must be on the
order of 30 to obtain converged results for the parameter ranges
explored in this paper. One may appreciate the reason for this
from earlier work.>* When two spheres are quite close to each
other, one encounters collective modes wherein the fields are
concentrated in a small angular range near the points of closest
contact. Similarly, when one or more nanospheres are very
close to a dielectric substrate, one encounters collective modes
localized around the south pole of the spheres—the points
closest to the substrate. One requires large values of the cutoff
L if one wishes to describe such modes accurately. Notice, by
the way, that the mode frequency is significantly redshifted
when the dimer comes very close to touching the substrate.
In passing, we note that convergent results do not guarantee
correctness of the calculated potentials. In order to do so, one
has to explicitly make sure that the boundary conditions are sat-
isfied for the required accuracy at all points on all interfaces.

InFig. 6, we examine the nature of the enhanced fields in the
Drude dimer at the two points indicated in the inset. Again, we
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FIG. 5. (Color online) Position of the lowest-energy resonance as
afunction of 4, in the case where E || Z. The blue dotted curve shows
the result when the calculation is done in the dipole approximation
(i.e., L = 1), while the red solid curve L = 30 shows the converged
results. For all cases, a Drude dimer with d = 0.1a was assumed, and
the substrate dielectric function was e_ = 10.

have assumed d = 0.1a and & = 0.05a in these calculations.
For most of the spectrum, the largest field enhancement is
found at point 2, the hot spot where the two spheres nearly
touch. Notice, however, that we also have very large field
enhancements between the south pole of the spheres and
the dielectric substrate, in particular, at 1.35 eV [see Figs. 6
and 7(a)]. In our view, the region where the dielectric substrate
is very close to the bottom of the sphere acts like an effective
potential well that traps surface plasmons at the south pole.
The surface plasmons sense the presence of the dielectric
through the fields associated with them in the region outside the
sphere.

From Fig. 6, we can see that points 1 and 2 are hot
simultaneously at roughly the same frequency. However, as
one scans through a given resonance peak, near iw = 1.4 eV
in Fig. 6, the hot spot moves from point 1 to point 2 and
conversely, depending on the precise value of the frequency.
Thus, we have another example of the phenomenon of the
moving hot spots discussed in a recent publication.”> We
illustrate this behavior in Fig. 7, where we plot |E|/|E| on
a contour map.?” A small energy shift of 0.1 eV is enough to

7 T T T T
X — Point 1
Point 2

|E*/|Eof* [10°]

1.0 1.2 1.4 1.6 1.8 2.0
hw [eV]

FIG. 6. (Color online) The square of the electric field | E|*/|E|?,
at point 1 (blue solid curve) and point 2 (green dotted curve) as a
function of frequency, for the Drude dimer. The results are for the
case where E || £, and the substrate dielectric function is e_ = 10.
The other parameters are the same as in Fig. 3.
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FIG. 7. (Color online) The field enhancement |E|/|E,| in the
xz plane. At (a) hw = 1.35 eV, the highest field enhancement is
found between the sphere and the substrate; at (b) iw = 1.45 eV, the
highest field enhancement is found on the line connecting the two
spheres. As shown in the figure, E, || . The system parameters are
e_ =10, h =0.05a, d = 0.1a, and L = 50. Of particular interest
is the area between the two lowest-frequency peaks, where the
location of maximum field enhancement flips between the two points
indicated.

change the shape of the field enhancement considerably and
move the hot spot from point 1 to point 2.

B. Ag monomers and dimers

The Drude model discussed in Sec. III A is useful to exam-
ine, since one may model metals in which the plasmons are
damped very lightly. Thus, one can explore detailed structure in
the response of the model system. In practice, however, interest
resides in realistic metals that display plasmonic response in
the visible. In this respect, silver (Ag) and gold (Au) are the
two metals most studied experimentally. While Au is indeed
plasmon active, the plasmons in this material are, in fact, rather
heavily damped. Ag is a much better material in principle, even
though in experiments oxide can form on its surface.

This section is devoted to studies of the plasmon resonance
properties of Ag monomers and dimers. Figure 8 shows
calculations of the reduced dipole moment for a single Ag
nanosphere placed a distance & = 0.05a over a dielectric
substrate. For a free-standing Ag sphere in vacuum, the Mie
resonance at hw = 3.5 eV is readily observed [Fig. 8(a)].
The response of the sphere is modest for e_ = 2 [Fig. 8(b)].
However, when ¢_ = 10 [Fig. 8(c)], we see a substantial
splitting of the main resonance and activation of higher-
frequency modes occur.
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FIG. 8. (Color online) The dimensionless dipole moment for an
Ag sphere placed a distance & = 0.05a above a dielectric substrate
of (a)e_ =1, (b) e = 2, and (c) - = 10. The equation system was
truncated at L = 50.

In Fig. 9, we show the response of an Ag dimer with its
axis parallel to the substrate. As previously, we have assumed
h = 0.05a and d = 0.1a. The strong interaction between the
two spheres of a free-standing dimer in vacuum can be seen
from Fig. 9(a) by noting the pronounced difference in response
to an applied field parallel (E || X) or perpendicular (E || y
or E || Z)to the dimer axis. Atleast from the perspective of the
dipole moment of each sphere, the influence of the substrate
is not significant for e = 2 [Fig. 9(b)], but we see substantial
effects for the larger dielectric function e_ = 10 [Fig. 9(c)].

While the dipole moment of the Ag spheres shows substrate
effects to be weaker than those of the corresponding Drude
monomer and dimer, the field-enhancement effects are still
substantial. When the spheres are either close to each other
and/or close to the substrate, the resonances are highly
localized in space and form so-called hot spots. This is
illustrated by Fig. 10, which shows the enhancement in the
electric field intensity (|E|?/|E|*) for an Ag dimer. Hence,
one can have local regions where the fields are strongly
enhanced while their effect on the total dipole moment of
the sphere is more modest.

Regarding the field enhancement in the Ag dimer, depicted
in Fig. 10, we see considerable enhancement between the
sphere and the substrate. This enhancement is caused by the
proximity of the sphere to the dielectric substrate that creates a
potential well where surface plasmons can be trapped near the
south pole of the sphere. On resonance, the enhancement in
the square of the field is close to 5 x 10° [Fig. 10]. If one has
SERS in mind, where the cross section is enhanced by roughly
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FIG. 9. (Color online) The response for an Ag dimer close to a
substrate, as described by the dimensionless dipole moment of one of
the spheres. As in previous cases, d = 0.1a, h = 0.054, and L = 50
were used. (a) e_ =1, (b) e_ =2, (c) e = 10.

the fourth power of the field, then in this case, the Raman cross
section would be enhanced by 25 x 10°. Thus, the influence of
the dielectric substrate on the enhanced fields realized for the
dimer is very substantial. Although we observed full reversal
of hot-spot positions for a dimer made from Drude metal,
it appears that the larger attenuation of silver {Im[e;(w)]}
prohibits this phenomena in the Ag dimer. Hence, the dominant
hot spot is for all frequencies of the incident light located at
point 2 in the gap between the two spheres.

7 1 1
G — Point 1
Point 2
S 2@
o~ 4t : _
S f—l
=0 : l
SIPYS 5o |
n FRE ST

1.0 1.2 1.4 1.6 1.8 2.0
hw [eV]

FIG. 10. (Color online) Intensity enhancement |E|?/|Eo|?, as a
function of frequency of the applied field at points 1 and 2 for the Ag
dimer on a substrate of dielectric function e_ = 10. The remaining
parameters are the same as in Fig. 9.
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FIG. 11. (Color online) The dimensionless dipole moment of a
member of a dielectric dimer placed in close proximity to an Ag
surface. The dielectric functions for the two spheres forming the
dimer are both (a) £; =2 and (b) &; = 10. In both cases, we have
d =0.1a, h = 0.05a, and L = 50.

C. Dielectric dimer on an Ag substrate

In the literature, primary attention is directed toward
nanoscale objects fabricated from plasmon-active metals.
We find that dielectric particles create localized evanescent
fields that stimulate the formation of localized plasmons in
a nearby metallic substrate. These surface plasmons are not
excited on a flat metallic surface. In this section, we consider
a dielectric dimer with a frequency-independent, real, and
positive dielectric function ¢; placed close to an Ag surface.

Figure 11 depicts the dimensionless dipole moment of the
dielectric dimers placed very close to an Ag substrate. As
before, the separation between the two spheres is d = 0.1a,
and the height above the substrate is 7 = 0.05a. Dipole activity
in the dielectric sphere is observed in the frequency range near
the surface plasmon resonance of the Ag surface. Since the
dielectric function of the sphere (g;) is frequency independent,
this plasmonic activity has its origin in the Ag substrate. As
expected, the effect is enhanced when the dielectric function
of the spheres ¢; is increased [Fig. 11].

Figure 12 illustrates the frequency dependence of the
intensity enhancement at a position between the dielectric
spheres and the substrate (point 1) and between the spheres
(point 2). Between the spheres (point 2), the plasmonic
response of the substrate plays only a minor role in the
intensity enhancement, whereas, just below the south pole
of the spheres, the plasmonic activity plays a more important
role, producing higher intensity enhancement for a narrow part
of the spectrum. The proximity of the dielectric spheres to the
substrate converts the incoming plane wave to an evanescent
wave that excites surface plasmons in the Ag substrate. The
consequence is that substantial intensity enhancements appear
below the nanospheres near the surface plasmon frequency of
the Ag surface. The physics is quite similar to the formation of
a hot spot between a metal sphere and a dielectric substrate.

PHYSICAL REVIEW B 83, 075426 (2011)

7 T 'I T T T
6 . — Point 1
Point 2
= o0
: L]

4 . 1
= 3r 5': ]
a I
R ol - ]

b Sroivi

1.0 1.2 1.4 1.6 1.8 2.0

hw [eV]

FIG. 12. (Color online) Intensity enhancements at two selected
points for a dielectric dimer placed in the near vicinity of an Ag
surface. The dielectric function of the spheres is ¢ = 10, and other
parameters are the same as in Fig. 11.

The structure of the field enhancement near the plasmon
resonance is shown in detail in Fig. 13. This figure is
qualitatively similar to Fig. 7. Again, we are faced with the
moving hot-spot phenomenon, since the hot spot moves from
between the spheres to below the spheres as the frequency of
the incident light changes.

=N W T O =] 00 ©
|E|/| Eo

—0.5 —L
—-0.5 00 05 1.0 1.5 2.0 25
z/a

(a)

z/a

|E|/| Eol

—0.5
-0.5 00 05 1.0 15 2.0 25
z/a

()

FIG. 13. (Color online) The field enhancement |E|/|Ej| in
the xz plane for a dielectric dimer above an Ag substrate. At
(a)hw = 3.02 eV, the highest field enhancement is found between the
spheres; at (b) iw = 3.39 eV, the highest field enhancement is found
on the line connecting the two spheres. As shown in the figure, E || £.
The parameters are ¢; = 10, h = 0.05a, d = 0.1a, and L = 50.
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IV. CONCLUDING REMARKS

We have formulated the theory of the interaction of
nonperiodic nanosphere arrays with a substrate, and for the
case of monomers and dimers, we have provided numerical
studies of electric dipole moments induced by a uniform
driving field and field enhancement generated by excitation
of plasmon resonances. While the focus usually is placed on
the interaction of metallic nanoscale objects with metallic
substrates or surroundings, our emphasis has been on the
interaction between metallic and dielectric materials: metallic
nanoparticles on dielectric substrates or dielectric nanoparti-
cles on metallic substrates. Such systems are, in our view,
better suited for experimental examination.

For both these configurations, we find hot spots (i.e., local
regions of high intensity) that are localized between the south
pole of the nanosphere and the substrate. The physical origin
of this behavior is an effective potential well created by the
dielectric that traps and localizes plasmons in the nearby metal-
lic component. Consider, for example, a semi-infinite slab of
a model metal described by the Drude model, Eq. (5). Let the
metal lie in the half space z < 0, and let the half space z > 0 be
vacuum. The surface supports surface plasmons, and in electro-
static theory, these have frequency wp/+/2 independent of the
wave vector. Instead, suppose we fill the upper half space z > 0
with a dielectric material whose dielectric constant is &, > 1.
This lowers the frequency of surface plasmons on the metal
surface to wp (1 + £, )~'/2. Then, if we imagine that the dielec-
tric covers only a finite area on the metallic surface, clearly
an attractive potential well is formed that can trap surface
plasmons bound to the region where the dielectric is found. The
frequency of these modes lies below the frequency band asso-
ciated with those on the metal/vacuum interface. In our studies,
we have a rather different geometry. For instance, in one
configuration, we explored a dielectric sphere that is placed just
a bit above the metallic substrate. The surface plasmons on the
metal surface sense the presence of the dielectric through their
evanescent field that extends above the metal surface. We then
find plasmon modes localized in the near vicinity of the south
pole of the sphere. In the case of dimers, of interest is the mov-
ing hot-spot phenomenon illustrated in Fig. 7. Small changes
in excitation frequency result in a hot spot that moves from one
point in the structure to another. An earlier discussion provided
an example of this behavior in a rather different structure.?

The hot spots localized between metallic spheres and di-
electric substrates and between dielectric spheres and metallic
substrates, suggests that strongly enhanced nonlinear optical
studies may be carried out on diverse systems, not just those
where all constituents are plasmon-active metals. It would be
of interest to explore field enhancements not just for spheres
placed near flat substrates, but for other nanoscale objects
of diverse shape as well. It should be possible to engineer
structures in which large field enhancements are realized that
can be exploited to study, for instance, adsorbates on insulating
surfaces.
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APPENDIX: CONSTRUCTION OF THE
EQUATION SYSTEM

The expression for the electrostatic potential ¥r(r) is shown
in Egs. (1) and (3). This expansion is of no use before one
has determined the expansion coefficients A;rln) and Bz(zi)~ To
do so, we combine the series expansion of ¢ and require
the fulfillment of the boundary conditions at the surface of
the spheres, i.e., the continuity of v and €9,y over any
interface (where 3, = #i - V denotes the normal derivative).??
Note that the boundary conditions at the interface at z = 0
are already fulfilled through Eq. (4). For instance, we may
consider continuity of the electrostatic potential at the surface
of sphere j. This gives the condition

lim ¥;(rj) = 1im+ : —r-Eg

ri—>a; ri—>a

N N
+> vilr) + Zw,-»(r,»)}, (A1)
i=1 i=1

where the notation ¢~ means a ;j £ n, where 7 is infinitesimally
small and positive. For this condition to be useful, and
similarly, for the equation following from the continuity of the
normal components of the displacement field D = —egy Vi,
we need to express the potentials v; and y; fori # j in terms
of the coordinate system S; centered on sphere j. One can do
this by using an identity employed by Bedeaux and Vlieger.!”
This reads

J

oo lj
r Y O =D > H(lymy )
1;=0m;=—1;
Y O bi) )
Rl/+1[+l rjj Yl, j(ejs(bj)v (A2)
ij

where R;; is the vector between the center of the sphere i
and j, and 6;; and ¢;; are the polar and azimuthal angles,
respectively, which describe the direction of R;;. In writing
Eq. (A2), we have used

H(ljvmjyui,mi):4/47-[(_1)1,+mj
[ 20 + 1 ]1/2
QL+ DL+ 1)

y l+m l—m 172
l,-+mi lj+I’Hj

(A3)
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where [ =[; +1; and m = m; — m . Moreover, the notation
(Z) denotes the binomial coefficient. The expansion described
by Egs. (A2) and (A3) can also be applied to the image
multipoles located in the substrate (z < 0).

We now have the electrostatic potential on each side of
the surface of sphere j expressed in terms of the coordinates
of system &;. One may generate a system of equations
for the unknown amplitudes by equating the coefficients of
er/"’ (6;,¢;). When Eq. (Al) is combined with the condition
that the normal components of the electric displacement field
D should be continuous across the surface of sphere j, it is
possible to eliminate the coefficients B](,ff and to generate a

linear system of equations that involves only A;ljn) . When this

is done, the following linear system of equations results:
o Ligjtesli+ D -
meliej—ey)

. Y " (6.9i7)
- Z Agl.],:,iH(lj,mj“i,mi)//—

—bim;81.,=

11
Lj.m; ij
mi—m;
40 H ; Y1, 0. ij)
+ E E s, Hjom 1l my) T
i#j lim; ij

+ (=Dt (A4)

Rfj.+li+]

ij
where B =(ey —e_)/(e4 +¢e_) and [; =1,2,3,...,L and
m;=0,%£1,£2,...,&[;. The coefficients b, are the
expansion coefficients of the applied field E( in terms of the
spherical harmonics. The nonzero b, coefficients (in the case
of uniform E) are given by'”""

4
bl() = —E() ? COS 9(),
/2 :
bl:l:l = :I:E() TN sin Goe]F"”O,

where 6y is the angle between the external field and the
positive z axis and ¢ is the azimuthal angle that describes the
angle between the projection of the external field onto the xy

v (&j,@j)}

(A5a)

(A5b)
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plane and the positive x axis. As the Laplace equation is linear,
we only need to solve for three different directions of Ej
(E parallel to ¥, §, and Z). The response to an applied field
pointing in any other direction can be constructed through
superposition of these three cases.

Equation (A4) gives us N(L + 1)*> — 1 linear equations
in the expansion coefficients A;ﬁ: , and we have N(L + 1)?
unknowns. The final equation results from the continuity
of the normal component of D at the spherical interfaces.
Taking the normal (i.e., radial) derivative of the By, term,
we see that this term vanishes [9,, Boo Y(?(Qj,q) ;) = 0]. This
means that Ay = 0, related to the fact that the nanoparticles
are assumed to carry no charge. Hence, the equation system is
closed, and we can expect to find a unique solution.

Finally, the resonances for an isolated sphere in a homo-
geneous background of dielectric function ¢ can be obtained
from Eq. (A4). By neglecting all contributions from other
particles and image multipoles, i.e., to keep only the first term
on the right-hand side of Eq. (A4), one is essentially left with
the isolated sphere case. Under this assumption, the resulting
equation can readily be solved to give

App X ————,

le + 8+(l + 1)
where ¢ is the dielectric function of the sphere. Hence, the
resonance positions are determined by the zeros of the real
part of the denominator of A;,:

Re[le + e (I + 1)] =0.

If we assume for ¢ the Drude model with y =0 (¢ =
1—a)%,/w2), which in our case, is a good approxima-
tion, we get the following resonance frequencies for the

isolated sphere:
[
W =w .
T+

For systems containing more than a single isolated sphere,
such as the ones discussed in this paper, these resonance
frequencies are typically modified due to particle-particle or
particle-substrate interactions.
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