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Impact of surface imperfections on the Casimir force for lenses of centimeter-size curvature radii
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The impact of imperfections, which are always present on surfaces of lenses with centimeter-size curvature
radii, on the Casimir force in the lens-plate geometry is investigated. It is shown that the commonly used
formulation of the proximity force approximation is inapplicable for spherical lenses with surface imperfections,
such as bubbles and pits. More general expressions for the Casimir force are derived that take surface imperfections
into account. Using these expressions, we show that surface imperfections can both increase and decrease the
magnitude of the Casimir force up to a few tens percent when compared with the case of a perfectly spherical
lens. We demonstrate that the Casimir force between a perfectly spherical lens and a plate described by the
Drude model can be made approximately equal to the force between a sphere with some surface imperfection
and a plate described by the plasma model, and vice versa. In the case of a metallic sphere and a semiconductor
plate, approximately the same Casimir forces are obtained for four different descriptions of charge carriers in the
semiconductor if appropriate surface imperfections on the lens surface are present. The conclusion is made that
there is a fundamental problem in the interpretation of measurement data for the Casimir force using spherical
lenses of centimeter-size radii.
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I. INTRODUCTION

The Casimir force1 is caused by the existence of zero-point
and thermal fluctuations of the quantized electromagnetic
field. In the past few years, physical phenomena grouped
under the generic name of Casimir effect have received much
experimental and theoretical attention2 owing to numerous
prospective applications in both fundamental and applied
science. Many theoretical results in Casimir physics (for
instance, on the role of skin depth or surface roughness)
have already been experimentally confirmed (see Refs. 3–6
and the review in Ref. 7). There is, however, one theoretical
prediction made on the basis of the Lifshitz theory2,8,9 that
was unexpectedly found to be in contradiction with the
experimental data. This is the large thermal effect in the
Casimir force at short separations caused by the relaxation
properties of free charge carriers in metals,10 semiconductors,
and dielectrics.11,12 The respective experiments performed
by means of a micromechanical torsional oscillator,5,13,14 an
atomic force microscope,15 and a Bose-Einstein condensate
confined in a magnetic trap16,17 excluded the predicted effect
at a high confidence level.

Almost all experiments on measuring the Casimir force
between two macroscopic bodies were performed in the
sphere-plate geometry.7 Experiments exploiting the sphere-
plate geometry can be separated into experiments with small
spheres of micrometer-size radii3–6,13–15,18–27 and with large
spherical lenses of centimeter-size curvature radii.28–31 In most
cases, spherical surfaces were coated with Au (the single
exception is the experiment29 using a lens made of Ge). Small
spheres (from a few tens to hundreds of micrometer radii)
are usually made of polystyrene or sapphire. It is possible
to control both global and local sphericity of small spheres
microscopically by using, for instance, scanning electron
microscopy. Large spherical lenses from a few centimeters

to more than 10 cm curvature radii are made of glass or
some other material. Allowed parameters of imperfections
(defects) of their mechanically polished and ground surfaces
are specified in the optical surface specification data provided
by a producer (see, e.g., Refs. 32–34).

It should be stressed that different defects are necessarily
present on the surface of each (even of the best quality)
optical lens.35 The reason is that when the glass is first
made, it may already contain defects such as bubbles. In
grinding and polishing, a whole new set of surface defects,
including scratches, digs, and chips, may be introduced.35

In the subsequent technological operations of centering,
beveling, cementing, and assembly, more defects are likely
to be produced. The handling and operations involved in
the numerous cleanings and inspections also add their quota
of defects.35 Because of this, a specification such as “no
bubbles or other imperfections permitted” is impossible to
fulfill.35 Optical surface data specifying the parameters of
permissible defects are obtained using scanning scattering
microscopes, laser interference imaging profilometers, and
other techniques.36 The micrographs of different types of
defects of optical surfaces taken with a differential interference
contrast microscope can be found in Ref. 37. The scanning
electron microscope images of defects are contained in Ref. 38.
The most frequently present imperfections on lenses are
digs, which include all hemispherical-appearing defects, and
scratches, whose length is usually much longer than the
wavelength of the incident light.35–39 Note that in the large-
scale applied problem of lens design,40 surface imperfections
play a rather limited role. However, as is shown below, they are
very important for such a nonstandard application of lenses as
measurements of the Casimir force.

It is important to bear in mind that although large thermal
corrections to the Casimir force at short separations were
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experimentally excluded, the thermal effect by itself in the
configuration of two macrobodies has never been measured.
In this respect, experiments with lenses of large curvature radii
attract much attention because they might allow measurements
at separations of a few micrometers where predictions of
alternative theoretical approaches (taking into account or
discarding relaxation properties of free charge carriers) differ
by up to 100%.

Experiments on measuring the Casimir force using spher-
ical lenses of large radius of curvature have faced serious
problems. The point is that calibration of the Casimir setup
is usually performed by measuring electric forces between
the sphere and plate from a potential difference applied to
the test bodies (some nonzero residual potential difference
exists even when the test bodies are grounded). Calibrations are
performed by a comparison of the measured electric forces at
different separations with the exact theoretical force-distance
relation in the sphere-plate geometry, which is familiar from
classical electrodynamics. Problems emerged when an anoma-
lous force-distance relation for the electric force between an
Au-coated spherical lens of R = 3.09 ± 0.015 cm curvature
radius and a plate was observed,41 distinct from that predicted
by classical electrodynamics (see also Ref. 42). The existence
of anomalous electrostatic forces was also confirmed in
the configuration of a Ge lens of R = 15.10 cm curvature
radius and Ge plate,29 but denied43 for an Au-coated small
sphere of R = 100 μm radius interacting with an Au-coated
plate.

It was shown44 that the anomalous behavior of the elec-
trostatic force can be explained as being due to deviations of
the mechanically polished and ground surface from a perfect
spherical shape for lenses with centimeter-size curvature radii.
Different kinds of imperfections on such surfaces (bubbles,
pits, and scratches) can lead to significant deviations of the
force-distance relation from the form predicted by classical
electrodynamics under an assumption of a perfectly spherical
surface. Later this possibility was recognized45 as a crucial
point to be taken into account in future experiments, not only
in the sphere-plate geometry but also for a cylindrical lens of
centimeter-size radius of curvature near the plate.

In this paper, we consider the possible imperfections on
surfaces of lenses with centimeter-size radius of curvature,
and we calculate their impact on the Casimir force. The point
to note is that the Casimir force is far more sensitive than
the electrostatic force to the bubbles and pits that are always
present on the mechanically polished and ground surfaces.
The physical reason for this is that the Casimir force decreases
with the increase of separation distance more rapidly than the
electric force. As a result, the Casimir force is determined by
smaller regions near the points of closest approach of the two
surfaces. If the local radius of curvature on the lens surface
near the point of closest approach to the plate is significantly
different from the mean radius of curvature R, the impact
of such surface imperfection on the Casimir force can be
tremendous.

We show that the presence of bubbles and pits on a lens
surface, allowed by the optical surface specification data,
makes inapplicable the simplified formulation of the proximity
force approximation (PFA) used28–30 for the comparison
between experiment and theory. We also derive the expressions

for the Casimir force applicable in the presence of bubbles and
pits on surfaces of centimeter-size lenses. It is shown that for
ideal metal bodies, surface imperfections may lead to both a
decrease and an increase in the magnitude of the Casimir force
up to a few tens percent for sphere-plate separations from 1 to
3 μm.

As discussed above, one might expect that experiments
with large lenses will help to resolve the problem with the
thermal Casimir force. In this connection, we consider a real
metal spherical lens, with surface imperfections of different
types, close to a real metal plate both described either by the
Drude dielectric function (relaxation of free charge carriers is
included) or by the dielectric function of the plasma model
where the relaxation parameter of free charge carriers is set
to zero. We show that the Casimir force between a perfectly
spherical lens and a plate, both described by the Drude model,
in the limit of experimental error is equal to the Casimir force
between a lens with some specific surface imperfection and
a plate, both described by the plasma model. In contrast, we
demonstrate that if the metal surface of the perfectly shaped
lens and a plate is described by the plasma model, this can lead
to approximately the same Casimir force over the separation
region from 1 to 3 μm as for a lens with some imperfection
and a plate, both described by the Drude model. It has
been known that experimentally it is hard to determine the
position of the point of closest approach between a lens and a
plate on the lens surface with sufficient precision. Therefore,
it remains uncertain what kind of surface imperfection (if any)
is located near the point of the closest approach. This leads us
to the conclusion that experiments with large spherical lenses
are in fact unsuitable for resolving the problem of the thermal
Casimir force between real metals.

Results similar in spirit are obtained for an Au-coated
lens of centimeter-size radius of curvature interacting with a
semiconductor or dielectric plate. We calculate the Casimir
force between a perfectly spherical Au-coated lens and a
dielectric (high-resistivity Si) plate with the neglect of free
charge carriers (in so doing, it makes almost no differ-
ence whether the Drude or the plasma model is used for
the description of Au). We show then that approximately the
same Casimir force over the separation region from 1 to 3 μm is
obtained for an Au sphere with appropriately chosen surface
imperfections and the following models of a semiconductor
plate: (i) High-resistivity Si with included dc conductivity;
(ii) low-resistivity Si with charge carriers described by the
Drude model; and (iii) low-resistivity Si with charge carriers
described by the plasma model. Here, free charge carriers of
the Au sphere are described by the Drude model in cases (i) and
(ii), and by the plasma model in case (iii). Thus, experiments
with large spherical lenses are also not helpful for resolving
the problem of dc conductivity of semiconductor or dielectric
materials in the Lifshitz theory.

The structure of the paper is as follows. In Sec. II, we
consider spherical lenses with surface imperfections of differ-
ent types and derive the formulations of the PFA applicable for
deformed spherical surfaces. Demonstration of the influence of
surface imperfections on the magnitude of the Casimir force in
the simplest case of ideal metal bodies is contained in Sec. III.
Section IV is devoted to the calculation of the Casimir force
between a real metal plate and a real metal lens with surface
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imperfections. In Sec. V, similar results are presented for a real
metal lens interacting with a semiconductor or dielectric plate.
Our conclusions and discussions are contained in Sec. VI.

II. PROXIMITY FORCE APPROXIMATION FOR
SPHERICAL LENSES WITH SURFACE

IMPERFECTIONS OF DIFFERENT TYPES

As discussed in Sec. I, the Casimir force should be more
sensitive than the electrostatic force to surface imperfections
that are invariably present on the mechanically polished and
ground surfaces of any lens of centimeter-size curvature radius.
However, in experiments on measuring the Casimir force in
the lens-plate geometry, comparison between the measurement
data and theory is usually performed by means of the simplified
formulation of the PFA assuming perfect sphericity of the
lens surface.2,7,46 We demonstrate first how this simplified
formulation of the PFA is obtained from the most general
formulation.47 Then we apply the general formulation of the
PFA to lenses with surface imperfections of different types.

The most general formulation of the PFA represents the
Casimir force between a lens surface z = z(x,y) and a plate
z = 0 as an integral of the Casimir pressures between pairs of
plane surface elements spaced at separations z = z(x,y):

Fsp(a,T ) =
∫

�

dσP (z,T ). (1)

Here, dσ is the element of plate area, � is the projection
of the lens onto the plate, a is the shortest separation between
them, and P (z,T ) is the pressure for two plane parallel plates
at a separation z = z(x,y) at temperature T .

We choose the origin of a cylindrical coordinate system
on the plane z = 0 under the lens center. Then for a perfectly
shaped spherical lens of radius of curvature R, the coordinate
z of any point of its surface is given by

z = R + a − (R2 − ρ2)1/2, ρ2 = x2 + y2. (2)

In this case, Eq. (1) leads to

F perf
sp (a,T ) = 2π

∫ √
2RD−D2

0
ρdρP (z,T )

= 2π

∫ D+a

a

(R + a − z)P (z,T )dz. (3)

Keeping in mind that the Casimir pressure is expressed as

P (z,T ) = −∂Fpp(z,T )

∂z
, (4)

where Fpp(z,T ) is the free energy per unit area of parallel
plates, and integrating by parts in Eq. (3), one arrives at

F perf
sp (a,T ) = 2πRFpp(a,T )

−2π (R − D)Fpp(D + a,T )

−2π

∫ D+a

a

Fpp(z,T )dz. (5)

We consider centimeter-size spherical lenses satisfying
conditions a � D, a � R. For such lenses, Fpp(D + a,T ) �
Fpp(a,T ). Because of this, one can neglect the second term on
the right-hand side of Eq. (5) in comparison with the first.46

It can also be shown46,48 that the first term on the right-hand
side of Eq. (5) is larger than the third by a factor of R/a. This
allows one to neglect the third term and arrive at what is called
the simplified formulation46,48 of the PFA,

F perf
sp (a,T ) ≈ 2πRFpp(a,T ), (6)

widely used for both spherical lenses and for spheres [note
that for a semisphere, the second term on the right-hand side
of Eq. (5) is exactly equal to zero].

The above derivation shows that the PFA in the form of
Eq. (6) is applicable only at a/R � 1. For the real metal sphere
(spherical lens) above a real metal plate, the analytic expres-
sions for the Casimir force in terms of scattering amplitudes are
available,49–51 but due to computational difficulties numerical
results were obtained only under the condition49,50 a/R � 0.1
and under the condition51 a/R � 0.053. Computations were
performed for metals described by simple plasma and Drude
models49,50 and by the generalized plasma and Drude models
taking into account interband transitions of core electrons.51

The relative deviations between the obtained exact results
for the Casimir force and the approximate results calculated
using the PFA in Eq. (6) were found to be less than a/R.
It was demonstrated48 also that the PFA results approach the
respective exact results with decreasing a/R. Keeping in mind
that for the experiments performed to date with small spheres
a/R ≈ 10−3 = 0.1% and for experiments with large spherical
lenses a/R ≈ 10−5 = 0.001%, the use of the PFA for the
comparison between experiment and theory is well justified.

Now we consider real lenses with centimeter-size radii
of curvature. Surfaces of such lenses are far from perfect,
even excluding the rms roughness of a few nanometers from
consideration. In optical technology, the quality of the lens
surfaces is characterized32,33,35–40 in terms of scratch and dig
optical surface specification data. In particular, depending on
the quality of the lens used, digs (i.e., bubbles and pits) with
a diameter varying32,35 from 30 μm to 1.2 mm are allowed on
the surface. There may also be scratches on the surface with a
width varying32,35 from 3 to 120 μm. The problem of bubbles
on the centimeter-size lens surface should not be reduced to
the fact that lens curvature radius R is determined with some
error. The thickness of each bubble or pit should of course be
less than the absolute error in the measurement of lens radius
of curvature (for a lens29 with R = 15.10 cm, for instance,
�R = 0.05 cm). The crucial point is that curvature radii of
bubbles and pits can be significantly different, as compared to
R. Surface imperfections with these local radii of curvature, as
we show below, can make a major contribution to the Casimir
force.

As the first example, we consider the lens with the curvature
radius R = 15 cm having a bubble of the radius of curvature
R1 = 25 cm and thickness D1 = 0.5 μm near the point of the
closest approach to the plate [see Fig. 1(a)]. The radius of the
bubble is determined from r2 = 2R1D1 − D2

1 ≈ 0.25 mm2,
leading to 2r = 1 mm < 1.2 mm, that is, less than a maximum
value allowed32 by the optical surface specification data. The
respective quantity d defined in Fig. 1(a) is equal to d ≈
r2/(2R) ≈ 0.83 μm. Then the flattening of a lens surface at the
point of closest approach to the plate is d − D1 ≈ 0.33 μm,
which is much less than �R.
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FIG. 1. (Color online) The configuration of a spherical lens with
radius of curvature R possessing a surface imperfection around the
point of closest approach to a plate. (a) The bubble radius of curvature
is R1 > R. (b) The bubble radius of curvature is R1 < R. (c) The pit
radius of curvature is R1 < R. The relative sizes of the lens and
imperfection are not shown to scale.

The general formulation of the PFA (1) should be applied
taking into account that the surface of the bubble is described
by the equation

z = R1 + a − (
R2

1 − ρ2
)1/2

, (7)

where a is the distance between the bottom point of the bubble
and the plate [see Fig. 1(a)]. In this notation, the surface of the
lens is described by the equation

z = R + D1 − d + a − (R2 − ρ2)1/2. (8)

Using Eqs. (7) and (8), one arrives, instead of Eq. (3), at

Fsp(a,T ) = 2π

∫ a+D1−d+D

a+D1

(R − z + D1 − d + a)P (z,T )dz

+2π

∫ a+D1

a

(R1 − z + a)P (z,T )dz. (9)

Now we take into consideration that the quantities a, d, and
D1 are smaller than the error in the determination of large radii
R and R1. Then one can rearrange Eq. (9) to the form

Fsp(a,T ) ≈ 2π

∫ a+D1−d+D

a+D1

(R − z)P (z,T )dz

+2πR1

∫ a+D1

a

P (z,T )dz. (10)

Here, the first integral on the right-hand side is calculated
similar to Eqs. (3) and (5) leading to 2πRFpp(a + D1,T ).

Calculating the second integral with the help of Eq. (4), one
finally obtains

Fsp(a,T ) ≈ 2π (R − R1)Fpp(a + D1,T ) + 2πR1Fpp(a,T ).

(11)

Now we consider two more examples of surface imper-
fection, specifically, a bubble with the curvature radius R1 =
5 cm [see Fig. 1(b)] and a pit with the curvature radius R1 =
12 cm [see Fig. 1(c)]. In both cases, the curvature radius of the
lens remains the same, R = 15 cm. For the bubble we choose
D1 = 1 μm, which results in r ≈ 0.32 mm, d ≈ 0.33 μm,
and D1 − d ≈ 0.67 μm, in agreement with allowed values.
Equation (11) is evidently preserved with the new values of
parameters.

Now we deal with the pit shown in Fig. 1(c). Here, the
lens surface near the point of closest approach to the plate
is concave up, that is, in the direction of the lens center. The
related parameters are D1 = 1 μm, r ≈ 0.49 mm, d ≈ 0.8 μm,
and d + D1 ≈ 1.8 μm. The pit surface is described by the
equation

z = a + D1 − R1 + (
R2

1 − ρ2)1/2
. (12)

Here, a is the separation distance between the plate and the
points of the circle on the lens surface closest to it. The surface
of the lens is described as

z = R + a − d − (R2 − ρ2)1/2. (13)

Repeating calculations that have led to Eq. (11) with the
help of Eqs. (12) and (13), we obtain

Fsp(a,T ) ≈ 2π (R − R1)Fpp(a,T ) + 2πR1Fpp(a + D1,T ).

(14)

It is evident that Eqs. (11) and (14) lead to significantly
different results than the simplified formulation of the PFA in
Eq. (6). The reason is that at separations a � 1 μm, we get
D1 � a, and all three contributions on the right-hand side of
Eqs. (11) and (14) are of the same order of magnitude. This is
confirmed by the results of numerical computations for both
ideal metals (Sec. III) and real materials (Secs. IV and V).

III. DEMONSTRATION OF THE ROLE OF SURFACE
IMPERFECTIONS FOR IDEAL METAL BODIES

We begin with the case of an ideal metal lens with surface
imperfections shown in Figs. 1(a)–1(c) near the point of closest
approach to an ideal metal plate. The case of ideal metal
bodies, although it disregards real material properties, allows
the demonstration of the entirely geometrical effect of surface
imperfections on the Casimir force.

To perform numerical computations by Eqs. (11) and (14)
one needs a convenient representation for the Casimir free
energy per unit area, Fpp(z,T ), in the configuration of two
parallel ideal metal plates. The standard expression for this
quantity is given by2,52

Fpp(z,T ) = kBT

π

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥ ln(1 − e−2zql ). (15)
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Here, kB is the Boltzmann constant, k⊥ is the magnitude
of the projection of the wave vector on the plates, q2

l = k2
⊥ +

ξ 2
l /c2, ξl = 2πkBT l/h̄ with l = 0,1,2, . . . are the Matsubara

frequencies, and the primed summation sign means that the
term with l = 0 is multiplied by 1/2. The most frequently
used form of Eq. (15) separates it into the contribution of
zero temperature and thermal correction. For our purpose,
however, it is more convenient to present Eq. (15) as a sum of
the high-temperature contribution to the free energy and the
correction to it. For this purpose, we rewrite Eq. (15) in terms
of a dimensionless integration variable y = 2aql and expand
the logarithm in a power series,

Fpp(z,T ) = − kBT

4πz2

∞∑
l=0

′ ∫ ∞

τzl

ydy

∞∑
n=1

e−ny

n
. (16)

Here, the dimensionless parameter τz is defined as τz =
4πzkBT /(h̄c). After performing integration and then the
summation with respect to l, the following result is obtained:

Fpp(z,T ) = − kBT

4πz2

[
ζ (3)

2
+

∞∑
n=1

e−τzn

n2(1 − e−τzn)

×
(

1

n
+ τz

1 − e−τzn

)]
, (17)

where ζ (x) is the Riemann zeta function. Note that the first
contribution on the right-hand side of Eq. (17) is just the high-
temperature limit of the free energy. This is seen if we take into
account that τz = 2πT/Teff , where the effective temperature
is defined from kBTeff = h̄c/(2z), and, thus, τz → ∞ when
T 	 Teff .

Now we are in a position to compute the Casimir force
between the spherical lens of large curvature radius with
bubbles and pits of different types and a plane plate, both
made of ideal metal. In the literature, it is common to use
the simplified formulation of the PFA (6) in the sphere-plate
geometry for both small spheres of about 100 μm radii and
large spherical lenses.2–7,13–15,18–30,41–43 In doing so, the role
of bubbles and pits on the surface of lenses of centimeter-size
curvature radii is neglected. Equation (6), however, is not
applicable for lenses with large radius of curvature because
it assumes a perfect spherical surface. For such lenses, one
should use more complicated results like those in Eqs. (11) and
(14). To illustrate this fact, we perform calculations for three
typical model imperfections on the spherical surface near the
point of closest approach to the plate shown in Figs. 1(a)– 1(c).

We begin with the surface imperfection shown in Fig. 1(a),
where the bottom of the spherical lens is flattened for
approximately 0.33 μm (see Sec. II). Computations of the
Casimir force Fsp(a,T ) in Eq. (11), taking the bubble into
account, and the force F

perf
sp (a,T ) in Eq. (6) for a lens with a

perfectly spherical surface, were performed at T = 300 K with
the help of Eq. (17) over the separation region from 1 to 3 μm.
Computations at larger separations would not be warranted
because the experimental error quickly increases with the
increase of a. Thus, in the most well known measurement28

of the Casimir force, by using a large lens the relative error
at a = 3 μm was shown53 to be larger than 47%. In the
experiment29 with Ge test bodies, the relative error in the
measured Casimir force exceeds 100% at a � 2 μm due

1.5 2 2.5 3

0.25

0.5

0.75

1

1.25

1.5

FIG. 2. (Color online) The normalized Casimir force acting
between an ideal metal spherical lens with surface imperfections
of different types and an ideal metal plate as a function of separation.
Lines 1, 2, and 3 are for the surface imperfections shown in Figs. 1(a),
1(b), and 1(c), respectively.

to the error in subtracted residual electrostatic forces. The
computational results for the ratio Fsp(a,T )/F perf

sp (a,T ) as a
function of separation are presented in Fig. 2 by the line labeled
1. As can be seen in Fig. 2, in the presence of the bubble
shown in Fig. 1(a), the use of Eq. (6) for a perfect spherical
surface instead of Eq. (11) considerably underestimates the
magnitude of the Casimir force. Thus, at separations a = 1.0,
1.5, 2.0, 2.5, and 3.0 μm, the quantity Fsp/F

perf
sp is equal to

1.458, 1.361, 1.287, 1.233, and 1.193, respectively, that is,
the underestimation varies from 46% at a = 1 μm to 19% at
a = 3 μm.

We continue with the surface imperfection shown in
Fig. 1(b), where the thickness of an extra bulge on the spherical
lens around its bottom point is approximately equal to 0.67 μm
(see Sec. II). Computations were performed with Eqs. (6)
and (11) using Eq. (17). The computed values of the quantity
Fsp(a,T )/F perf

sp (a,T ) as a function of separation are shown by
the line labeled 2 in Fig. 2. It can be seen that in this case, the
assumption of perfect sphericity of a lens surface considerably
overestimates the magnitude of the Casimir force. Thus, at
separations a = 1.0, 1.5, 2.0, 2.5, and 3.0 μm, the values of
the quantity Fsp/F

perf
sp are equal to 0.429, 0.507, 0.580, 0.641,

and 0.689, respectively, that is, overestimation varies from
57% at a = 1 μm to 36% at a = 3 μm.

Finally, we consider the surface imperfection in the form of
a pit presented in Fig. 1(c). Here, the deformation of the lens
surface is characterized by the parameter d + D1 ≈ 1.8 μm.
The computational results using Eqs. (6), (14), and (17) are
shown by the line labeled 3 in Fig. 2. Once again, the as-
sumption of perfect lens sphericity significantly overestimates
the magnitude of the Casimir force. Thus, at separations
a = 1.0, 1.5, 2.0, 2.5, and 3.0 μm, the ratio Fsp/F

perf
sp is equal

to 0.314, 0.409, 0.496, 0.570, and 0.627, respectively, that
is, overestimation varies from 69% at a = 1 μm to 37% at
a = 3 μm.

Thus, for an ideal metal lens above an ideal metal plate, the
use of the PFA in its simplest form (6) can lead to the Casimir
force, either underestimated or overestimated by many tens
percent, depending on the character of imperfection on the
lens surface near the point of closest approach to the plate.
Below, we show that for a lens with a centimeter-size radius
of curvature and a plate made of real materials, the role of
imperfections of the lens surface increases in importance.
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IV. TEST BODIES MADE OF REAL METAL

At separations above 1 μm, the characteristic frequencies
making a major contribution to the Casimir force are suffi-
ciently small. Because of this, one can neglect the contribution
of interband transitions and describe the metal of the test bodies
by means of a simple Drude model. This leads to the dielectric
permittivity depending on the frequency

εD(ω) = 1 − ω2
p

ω(ω + iγ )
, (18)

where ωp is the plasma frequency and γ is the relaxation
parameter.

The dielectric permittivity (18) takes into account relax-
ation properties of free electrons by means of the temperature-
dependent relaxation parameter γ = γ (T ). It is common
knowledge that in the local approximation, it correctly de-
scribes the interaction of a metal with the real (classical) elec-
tromagnetic field, specifically in the quasistatic limit54 where
ω → 0. The behavior of ε as the reciprocal of the frequency
in this limit is a direct consequence55 of the classical Maxwell
equations. It can be said that the Drude dielectric permittivity
(18) is fully justified on the basis of fundamental physical
theory and confirmed in numerous technical applications. The
Drude model (18) also provides the correct description of out
of thermal equilibrium physical phenomena determined by the
fluctuating electromagnetic field such as radiative heat transfer
and near-field friction.56 Because of this, a disagreement of
Eq. (18) with the experimental data would be a problem of
serious concern. However, as was noticed in Sec. I, precise
experiments on measuring the Casimir pressure at separations
below 1 μm by means of the micromechanical torsional
oscillator5,13,14 exclude large thermal effect in the Casimir
force caused by the relaxation properties of charge carriers
in metals. The results of these experiments are consistent with
the plasma model

εp(ω) = 1 − ω2
p

ω2
, (19)

obtained from Eq. (18) by setting γ = 0.
In classical electrodynamics,54,55 the plasma model is con-

sidered as an approximation valid in the region of sufficiently
high infrared frequencies, where the electric current is pure
imaginary and the relaxation properties do not play any
role. In real (classical) electromagnetic fields, the dielectric
permittivity (19) does not describe the reaction of a metal on
the field in the limit of quasistatic frequencies. As was noted
above, Maxwell equations lead to ε ∼ 1/ω in the limiting
case ω → 0. The contradiction between the Lifshitz theory
combined with the Drude model and the experimental data
was widely discussed in the literature,2,7,57–65 but a resolution
has not yet been achieved. It was also suggested66 that there
might be some differences in the reaction of a physical system
in thermal equilibrium with an environment to real fields with
nonzero mean value and fluctuating fields whose mean value
is equal to zero. Because of this, the possibility of measuring
the thermal Casimir force at separations of a few micrometers,
where the predicted results from using Eqs. (18) and (19) differ
up to a factor of 2, is of crucial importance.

We first consider surface imperfections introduced in
Figs. 1(a)–1(c) and compute their impact on the Casimir force
between a lens and a plate, both described either by the Drude
or by the plasma model. In so doing, Eq. (11) remains valid for
the imperfections of Figs. 1(a) and 1(b) and Eq. (14) for the
imperfection of Fig. 1(c). As to the free energy per unit area
of two parallel plates, one should use the following Lifshitz
formula2,7–9 instead of Eq. (17):

Fpp(a,T ) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥

∑
α

ln
(
1 − r2

αe−2aql
)
.

(20)

Here, α = TM or TE for the electromagnetic waves with
transverse magnetic and transverse electric polarizations,
respectively, and the reflection coefficients at the imaginary
Matsubara frequencies are given by

rTM = rTM(iξl,k⊥) = ε(iξl)ql − kl

ε(iξl)ql + kl

,

(21)

rTE = rTE(iξl,k⊥) = ql − kl

ql + kl

,

where

kl = k(iξl,k⊥) =
[
k2
⊥ + ε(iξl)

ξ 2
l

c2

]1/2

. (22)

For convenience in numerical computations, we rearrange
Eq. (20) in terms of the dimensionless wave-vector variable
y introduced in Sec. III and the dimensionless Matsubara
frequencies ζl = ξl/ωc = τal, where ωc = c/(2a) is the char-
acteristic frequency:

Fpp(a,T ) = kBT

8πa2

∞∑
l=0

′ ∫ ∞

ζl

ydy
∑

α

ln
(
1 − r2

αe−y
)
. (23)

The reflection coefficients are expressed in terms of new
variables in the following way:

rTM = rTM(iζl,y) =
εly −

√
y2 + ζ 2

l (εl − 1)

εly +
√

y2 + ζ 2
l (εl − 1)

,

(24)

rTE = rTE(iζl,y) =
y −

√
y2 + ζ 2

l (εl − 1)

y +
√

y2 + ζ 2
l (εl − 1)

,

where εl ≡ ε(iωcζl). When the Drude model (18) is used in
computations, we have

εl = εD
l = 1 + ω̃2

p

ζl(ζl + γ̃ )
. (25)

Here, the dimensionless plasma frequency and relaxation
parameter are defined as ω̃p = ωp/ωc and γ̃ = γ /ωc. In this
case, the calculated free energy is marked with a subscript D.
For the plasma model (19),

εl = ε
p

l = 1 + ω̃2
p

ζ 2
l

, (26)

and the Casimir free energy F(a,T ) = Fp(a,T ).
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Now we perform computations of the Casimir force
between a real metal (Au) lens with a surface imperfection
around the point of closest approach to a real metal (Au)
plate normalized for the same force with a perfectly spherical
lens. Note that in real experiments, the lens and the plate are
usually made of different materials coated with a metal layer.
For lenses of centimeter-size curvature radius, the thickness
of an Au coating can be equal28 to about 0.5 μm. It was
shown,67 however, that for Au layers of more than 30 nm
thickness, the Casimir force is the same as for test bodies
made of bulk Au. First, we describe the metal of the lens and
the plate by the Drude model with ωp = 9.0 eV and γ =0.035
eV. Computations are performed by Eqs. (11) and (14) for
imperfections in Figs. 1(a), 1(b), and 1(c), respectively, with
all parameters indicated in Sec. II, using Eqs. (23)–(25). The
computational results for the quantity Fsp,D(a,T )/F perf

sp,D(a,T )
as a function of separation at T = 300 K are shown by lines
1, 2, and 3 in Fig. 3 for the surface imperfections presented
in Figs. 1(a), 1(b), and 1(c), respectively. These lines are in
qualitative agreement with respective lines in Fig. 2 for the
ideal metal case. Thus, for the surface imperfection shown in
Fig. 1(a), the assumption of a perfectly spherical surface of the
lens leads to an underestimated Casimir force. As an example,
for the imperfection in Fig. 1(a), the quantity Fsp,D/F

perf
sp,D

at separations of 1 and 3 μm is equal to 1.176 and 1.097,
respectively. Thus, the underestimation of the Casimir force
varies from approximately 18% to 10%. The same quantity at
the same respective separations is equal to 0.4125 and 0.6752
[for the surface imperfection in Fig. 1(b)] and 0.2951 and
0.6103 [for the surface imperfection in Fig. 1(c)]. This means
that for the imperfection in Fig. 1(b), the assumption of perfect
sphericity leads to an overestimation of the Casimir force that
varies from 59% at a = 1 μm to 32% at a = 3 μm. For the
surface imperfection in Fig. 1(c), the overestimation varies
from 70% to 39% when separation increases from 1 to 3 μm.
Thus, for real metals described by the Drude model, surface
imperfections of the lens surface play qualitatively the same
role as for ideal metal lenses. As can be seen in Figs. 2 and
3, the lines labeled 1 for ideal metals and for Drude metals
are markedly different, whereas the respective lines labeled 2

1.5 2 2.5 3
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0.75

1

1.25

1.5

FIG. 3. (Color online) The normalized Casimir force acting
between an Au-coated spherical lens with surface imperfections of
different types and an Au plate as a function of separation. Au is
described by the Drude model. Lines 1, 2, and 3 are for the surface
imperfections shown in Figs. 1(a), 1(b), and 1(c), respectively.

and 3 in both figures look rather similar. This is explained by
the fact that for the surface imperfection shown in Fig. 1(a),
D1 = 0.5 μm, while for the imperfections in Figs. 1(b) and
1(c), D1 = 1 μm. As a result, the influence of the model
of the metal used (ideal metal or the Drude metal) for the
lines labeled 2 and 3 is not as pronounced as for the line
labeled 1. A few computational results for the quantity F

perf
sp,D

at different separations for a lens with R = 15 cm are presented
in column (a) of Table I. They are used below in this section.
For comparison purposes, in column (b) of Table I the same
quantity is computed using the tabulated optical data for a
complex index of refraction68 extrapolated to low frequencies
by means of the Drude model. As can be seen in Table I, the
Casimir forces in columns (a) and (b) at each separation are
almost coinciding. This confirms that at a � 1 μm, the role of
interband transitions is negligibly small, as was noted in the
beginning of this section.

Now we consider the lens and the plate made of metal
described by the plasma model (26) and we compute the
quantity Fsp,p(a,T )/F perf

sp,p(a,T ) using Eqs. (11), (14) and
(23), (24). It turns out that the computational results differ only
slightly from the respective results shown in Fig. 3. Because
of this, Fig. 3 is in fact relevant to a lens and a plate made of
a metal described by the plasma model as well. To illustrate

TABLE I. The values of the Casimir force between an Au-coated sphere of R = 15 cm radius of
curvature and an Au-coated plate computed at T = 300 K for (a) Au described by the Drude model
and a perfectly shaped lens; (b) Au described by the tabulated optical data extrapolated by means of
the Drude model and a perfectly shaped lens; (c) Au described by the plasma model and a perfectly
shaped lens; (c) Au described by the generalized plasmalike model and a perfectly shaped lens; (e)
Au described by the Drude model and a lens with surface imperfection shown in Fig. 1(a); (e) Au
described by the plasma model and a lens with surface imperfection shown in Fig. 5(b). See text for
the parameters of lens imperfections.

a
Fsp(a) (pN)

(μm) (a) (b) (c) (d) (e) (f)

1.0 −299.08 −299.38 −386.56 −386.64 −430.34 −269.93
1.5 −84.914 −84.953 −124.44 −124.44 −116.72 −80.423
2.0 −35.540 −35.548 −57.984 −57.985 −46.681 −37.298
2.5 −18.874 −18.876 −33.330 −33.331 −27.787 −21.961
3.0 −11.744 −11.745 −21.830 −21.830 −14.304 −14.847
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FIG. 4. (Color online) The Casimir force between a perfectly
spherical lens and a plate, both described by the plasma model, vs
separation is shown by the solid line. The dashed line shows the same
force between a sphere with some surface imperfection and a plate,
both described by the Drude model. See text for further discussion.

minor differences arising when the plasma model is used, we
present the following values of the quantity Fsp,p/F

perf
sp,p for all

three types of surface imperfections shown in Figs. 1(a)–1(c)
at separations a = 1 and 3 μm, respectively: 1.17 and 1.092
[imperfection of Fig. 1(a)]; 0.4333 and 0.6916 [imperfection
of Fig. 1(b)]; 0.3200 and 0.6300 [imperfection of Fig. 1(c)].
Comparing these values with the above results obtained using
the Drude model, we find that relative differences vary from a
fraction of a percent to a few percent. In column (c) of Table I,
we present several computational results for the quantity
F

perf
sp,p. Column (d) of the same table contains similar results

computed using the generalized plasmalike model,2,7,14 taking
into account the interband transitions of core electrons. The
results of columns (c) and (d) computed at the same separations
are almost coinciding.

Now we consider the situation when computational results
for the Casimir force between a perfectly spherical lens above
a plate, both described by the plasma model, are approximately
the same as for a lens with some surface imperfection above a
plate, both described by the Drude model (here and below we
use the same Drude parameters for Au as already indicated in
the text). In Fig. 4, the Casimir force F

perf
sp,p between a perfectly

shaped lens of R = 15 cm radius of curvature and a plate
versus separation is shown as a solid line [see also column (c)
in Table I]. It is computed by Eqs. (6), (23), (24), and (26)
at T = 300 K. As an alternative, we assume that there is a
surface imperfection on the lens around the point of closest
approach to the plate shown in Fig. 1(a). For the parameters of
this imperfection (bubble), we choose R1 = 23 cm and D1 =
0.75 μm, which leads to r ≈ 0.59 mm and d ≈ 1.16 μm. The
flattening of the lens in this case is equal to d − D1 ≈ 0.41 μm,
that is, much smaller than the error in the measurement of the
lens curvature radius.

Computations of the Casimir force Fsp,D between a lens
with this imperfection and a plate as a function of separation
are performed by Eqs. (11) and (23)–(25). The computational
results are shown in Fig. 4 by a dashed line. At a few
separations, these results are presented in Table I, column (e).
As can be seen in Fig. 4, the values of the Casimir force for
a perfectly spherical lens described by the plasma model are
rather close to the force values for a lens with imperfection
described by the Drude model. For example, using columns
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FIG. 5. (Color online) (a) The Casimir force between a perfectly
spherical lens and a plate, both described by the Drude model, vs
separation is shown by the dashed line. The solid line shows the same
force between a sphere with some surface imperfection and a plate,
both described by the plasma model. See text for further discussion.
(b) The configuration of a spherical lens with radius of curvature R

possessing a surface imperfection in the form of two bubbles around
the point of closest approach to a plate. The relative sizes of the lens
and imperfection are shown not to scale.

(c) and (e) in Table I, one obtains that the relative difference
between the two descriptions,

δFsp(a,T ) = F
perf
sp,p(a,T ) − Fsp,D(a,T )

F
perf
sp,p(a,T )

, (27)

varies from –11% at a = 1 μm to 34% at a = 3 μm. Keeping
in mind that the error of force measurements quickly increases
with the increase of separation, it appears impossible to make
any definite conclusion on the model of dielectric properties
from the extent of agreement between the experimental data
and theory.

Now we consider the opposite situation, that is, when
the Casimir force F

perf
sp,D is approximately equal to Fsp,p for

a sphere with some imperfection over the separation region
from 1 to 3 μm. The Casimir force F

perf
sp,D between a perfectly

spherical lens of R = 15 cm radius of curvature and a plate,
both described by the Drude model (25), was computed as
a function of separation by Eqs. (6) and (23)–(25). The
computational results are shown in Fig. 5(a) by a dashed line
[see also column (a) in Table I]. Large deviation between
the solid line in Fig. 4 and the dashed line in Fig. 5(a) reflects
the qualitative difference between the theoretical descriptions
of the Casimir force by means of the plasma and Drude models.

Approximately the same theoretical results, as shown by
the dashed line in Fig. 5(a), can be obtained, however, for a
lens and plate metal described by the plasma model if the lens
surface possesses some specific imperfection near the point of
closest approach to the plate. In Sec. II, we have considered
only the simplest surface imperfections. There may be more
complicated imperfections on the lens surface, specifically,
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different combinations of imperfections shown in Figs. 1(a)–
1(c). In Fig. 5(b), we show the surface imperfection on the
lens surface with R = 15 cm curvature radius consisting of
two bubbles. The first bubble is of R1 = 3 cm radius of
curvature. It is of the same type as that shown in Fig. 1(b).
The second bubble on the bottom of the first is of R2 = 19 cm
curvature radius. It is like that in Fig. 1(a). From Fig. 5(b), one
obtains D1 ≈ 1.5 μm, D2 ≈ 0.2 μm, and r ≈ 0.47 mm. For
the increase of lens thickness at the point of closest approach
to the plate due to the presence of bubbles, we find 0.74 μm,
which is much smaller than the error in the measurement of
the lens radius of curvature. The Casimir force between the
spherical lens with two bubbles and a plate is given by the
repeated application of Eq. (11) to each of the bubbles,

Fsp(a,T ) = 2π (R1 − R2)Fpp(a + D2,T ) + 2πR2Fpp(a,T )

+2π (R − R1)Fpp(a + D1,T ). (28)

We performed numerical computations of the Casimir force
Fsp,p as a function of separation using Eqs. (23), (24), (26),
and (28). The computational results are shown in Fig. 5(a)
by a solid line. At a few separation distances, these results are
presented in Table I, column (f). As can be seen in Fig. 5(a), the
theoretical lines computed for a perfectly spherical lens using
the Drude model and for a lens with a surface imperfection
using the plasma model are rather close. Quantitatively, from
columns (a) and (f) in Table I one obtains that the quantity

δF̃sp(a,T ) = F
perf
sp,D(a,T ) − Fsp,p(a,T )

F
perf
sp,D(a,T )

(29)

varies from –10% at a = 1 μm to 26% at a = 3 μm.
Such small differences do not allow experimental resolution
between alternative theoretical descriptions of the lens and
plate material by means of the Drude and plasma models.
The reason for that is that in experiments with lenses of
centimeter-size radius of curvature at large separations, as
explained in Sec. III, an experimental error exceeding a few
tens percent is expected.

V. METALLIC OR SEMICONDUCTOR LENS ABOVE A
SEMICONDUCTOR PLATE

As mentioned in Sec. I, the account of relaxation prop-
erties of free charge carriers in semiconductor and di-
electric materials also creates problems for the theoretical
description of the thermal Casimir force. Here, most of the
experiments15,20,21,24,69 were performed with an Au-coated
sphere of about 100 μm radius above a semiconductor plate,
and only one29 with a Ge spherical lens of R = 15.1 cm above a
Ge plate. The measurement data of the two experiments15,16 are
inconsistent with the inclusion of dc conductivity into a model
of the dielectric response for high-resistivity semiconductors
with the concentration of charge carriers below critical (i.e., for
semiconductors of dielectric type whose conductivity goes to
zero when temperature vanishes) and for dielectrics. The ques-
tion of how to describe free charge carriers of low-resistivity
semiconductors in the Lifshitz theory (e.g., by means of the
Drude or plasma model) also remains unsolved. One may hope
that these problems can be solved in experiments on measuring
the Casimir force between large Au-coated or semiconductor
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FIG. 6. (Color online) The Casimir force between a perfectly
spherical Au-coated lens and Si plate as a function of separation
for dielectric Si (upper solid line), dielectric Si with dc conductivity
included (dotted line), low-resistivity Si described by the Drude model
(dashed line), and low-resistivity Si described by the plasma model
(lower solid line).

lenses above semiconductor plates. Below, we show, however,
that invariably present imperfections of the lens of large radius
of curvature do not allow one to discriminate between the
different theoretical models.

We start with a perfectly spherical Au-coated lens of
R = 15 cm curvature radius above a Si plate. Within the
first model we describe a high-resistivity Si plate as a true
dielectric with the dielectric permittivity εSi(ω) determined
from the tabulated optical data70 for Si samples with resistivity
ρ0 = 1000 �cm. In so doing, εSi(0) = 11.66 < ∞. This model
is an approximation because it disregards the dc conductivity
of Si. The computational results for the Casimir force between
a lens and a plate computed using Eqs. (6), (23), and (24) with
εl = εSi(iωcζl) at T = 300 K are shown by the upper solid
line in Fig. 6. These results are almost independent of either
the Drude or the plasma model is used for the description
of the lens metal. Specifically, the relative difference in force
magnitudes due to the use of the Drude or plasma models
decreases from 0.22% to 0.031% when the separation distance
increases from 1 to 3 μm.

Within the second model, we consider the same high-
resistivity Si plate, but take the dc conductivity into account.
Then the dielectric permittivity can be presented in the form

εdc
Si (ω) = εSi(ω) + i

4πσ0

ω
, (30)

where σ0 = σ0(T ) is the static conductivity. In the local
approximation, the permittivity (30) correctly describes the
reaction of semiconductors on real electromagnetic fields. In
this case, computations using Eqs. (6), (23), and (24) result in
the dotted line in Fig. 6. Note that the computational results
do not depend on the value of σ0 in Eq. (30), but only on
the fact that σ0 �= 0. The dotted line in Fig. 6 is also almost
independent of either the Drude or the plasma model is used
for the description of a lens metal.

As the third and fourth models, we consider a Si plate made
of low-resistivity B-doped Si with the concentration of charge
carriers above the critical value.20 This is a semiconductor of
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metallic type whose conductivity does not go to zero when the
temperature vanishes. We present the dielectric permittivity of
such a plate in the form (the third model)

εD
Si(ω) = εSi(ω) − ω2

p,Si

ω(ω + iγSi)
, (31)

where the values of the Drude parameters are20 ωp,Si ≈
0.46 eV and γSi ≈ 0.099 eV, or in the form (the fourth model)

ε
p

Si(ω) = εSi(ω) − ω2
p,Si

ω2
. (32)

The results of the computations using Eqs. (6), (23), (24),
and either (31) or (32) are presented in Fig. 6 by the dashed
and lower solid lines, respectively. Similar to models used
for the description of low-resistivity Si, the metallic lens was
described by the Drude model [when Si was described by
Eq. (31)] or by the plasma model [for the dielectric permittivity
of Si in Eq. (32)]. Note that the magnitudes of the Casimir
forces given by the second and third models (the dotted and
dashed lines in Fig. 6, respectively) are very close. When
separation increases from 1 to 3 μm, the relative differences
between the dotted and dashed lines decrease from 4.8% to
0.75%, respectively. Figure 6 demonstrates that the magnitudes
of the Casimir force between an Au lens and a Si plate may
vary over a wide range depending on the choice of the Si
sample and theoretical model used.

Now we present a few computational results for the Casimir
force between an Au-coated lens and a Si plate when the
Si is described by the different models listed above and the
lens may have surface imperfections around the point of
closest approach to the plate. We first consider the plate made
of dielectric Si (the first model) described by the dielectric
permittivity εSi(ω) and the Au-coated lens of perfect sphericity.
The Casimir force in this case is shown by the solid line in
Fig. 7(a), which was already presented in Fig. 6 as the upper
solid line. Now let the plate be made of low-resistivity Si
described by the Drude dielectric permittivity (31) (the third
model) and the lens possess the surface imperfection shown
in Fig. 1(b) with the parameters R1 = 12.5 cm, D1 = 1 μm,
and r ≈ 0.5 mm. The results of the numerical computations
for the Casimir force using Eqs. (11), (23)–(25), and (31) are
shown by the dashed line in Fig. 7(a). As is seen from this
figure, the dashed line is almost coinciding with the solid one.
Thus, the relative deviation of the Casimir force for a lens with
surface imperfection from the force with a perfectly spherical
lens [defined similar to Eqs. (27) and (29)] varies from –2%
to 13% when separation increases from 1 to 3 μm. Because of
this, with lenses of large radius of curvature, it is not possible
to experimentally resolve between the case of high-resistivity
(dielectric) Si described by the finite dielectric permittivity
εSi(ω) and low-resistivity Si described by the Drude model.
Almost the same Casimir forces, as shown by the dashed line
in Fig. 7(a), are obtained for a plate made of high-resistivity
Si with dc conductivity included in accordance with Eq. (30)
(the second model) if the lens has an imperfection shown in
Fig. 1(b) with the parameters R1 = 13 cm, D1 = 1 μm, and
r ≈ 0.5 mm. In this case, the Casimir force for a lens with
surface imperfection deviates from the force for a perfectly
spherical lens by –3% at a = 1 μm and 14% at a = 3 μm.
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FIG. 7. (Color online) The Casimir force between a perfectly
spherical Au-coated lens and Si plate made of dielectric Si vs
separation is shown by the solid lines. The dashed lines show the
Casimir force between an Au-coated lens with some specific surface
imperfections and a plate made of low-resistivity Si, where Si is
described (a) by the Drude model and (b) by the plasma model.

The last, fourth, model to discuss is of the plate made of low-
resistivity Si described by the plasma dielectric permittivity
(32). In this case, we consider an Au-coated sphere with
surface imperfection (two bubbles) shown in Fig. 5(b). The
parameters of the imperfection are the following: R1 = 1.5 cm,
R2 =21 cm, D1 = 2 μm, and D2 = 0.2 μm, leading to
r ≈ 0.28 mm. Computations of the Casimir force are per-
formed using Eqs. (23), (24), (26), and (32). The computational
results are shown as the dashed line in Fig. 7(b). In the
same figure, the solid line reproduces the Casimir force
acting between a perfectly spherical lens and a plate made
of dielectric Si. The relative differences between the dashed
and solid lines in Fig. 7(b) vary from –8% to 23% when the
separation increases from 1 to 3 μm. Thus, experimentally it
would not be possible to distinguish between the cases when
the lens surface is perfectly spherical and the plate is made of
dielectric Si, and when the lens surface has an imperfection
but the Si plate is of low resistivity and is described by the
plasma model.

At the end of this section, we briefly consider the spherical
lens of R = 15.1 cm radius made of intrinsic Ge above the
plate made of the same semiconductor.29 In this experiment,
Eq. (6) was used29 for a comparison between the measurement
data and theory. As two simple examples, we consider that
the Ge lens has a bubble either of the radius of curvature
R1 = 22 cm and thickness D1 = 0.09 μm or R1 = 10 cm and
thickness D1 = 0.2 μm near the point of closest approach to
a Ge plate [see Figs. 1(a) and 1(b), respectively]. The radii
of the two bubbles are coinciding and equal to r = 0.2 mm,
leading to the diameter of each of the bubbles, 2r = 0.4 mm
(see Sec. II). The obtained value should be compared with
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limitations imposed by the scratch and dig optical surface
specification data of the used29 Ge lens of ISP optics, GE-
PX-25-50. According to the information from the producer,34

this lens has the surface quality 60/40. The latter means that
0.4 mm is just the maximum diameter of bubbles allowed. It
is also easily seen that the flattening of the lens surface in
Fig. 1(a) or the swelling up in Fig. 1(b) due to bubbles is much
less than the absolute error of R equal to29 �R = 0.05 cm.
Really, with the above parameters, d ≈ 0.13 μm. As a result,
the flattening of the lens surface in Fig. 1(a) is given by d −
D1 ≈ 0.04 μm and the swelling up in Fig. 1(b) is given by
D1 − d ≈ 0.07 μm. In the presence of bubbles, the Casimir
force should be calculated not by Eq. (6) but by Eq. (11).
Computations using the dielectric permittivity71 of intrinsic Ge
show that for the used parameters of the bubble in Fig. 1(a),
Eq. (11) leads to larger magnitudes of the Casimir force by
15% and 10% than Eq. (6) at separations a = 0.6 and 1 μm,
respectively. In contrast, for the bubble in Fig. 1(b), the use
of Eq. (11) instead of Eq. (6) results in smaller magnitudes
of the Casimir force by 19% and 14% at the same respective
separations.

VI. CONCLUSIONS AND DISCUSSION

We have investigated the impact of imperfections, which are
invariably present on lens surfaces of centimeter-size radius of
curvature, on the Casimir force in lens-plate geometry. We have
demonstrated that if an imperfection in the form of a bubble or
a pit is located near the point of the closest approach of a lens
and a plate, the impact on the Casimir force can be dramatic.
We first considered a metal-coated lens above a metal-coated
plate. It was shown that the Casimir force between a perfectly
spherical lens and a plate, both described by the plasma
model, can be made approximately equal to the force between
a sphere with some surface imperfection and a plate, both
described by the Drude model. Similarly, the Casimir force
computed for a perfectly spherical lens and a plate described
by the Drude model can be approximately equal to the
force computed for a lens with surface imperfection and
a plate described by the plasma model. In both cases, the
approximate equality of forces in the limits of the error of force
measurements was found over a wide range of separations
from 1 to 3 μm. The absolute impact of surface imperfections
on the lens surfaces of centimeter-size radii of curvature on
the Casimir force is on the order of a few tens percent for
both ideal and real metals. Surface imperfections can lead
to both a decrease and an increase of the force magnitude.
These conclusions, obtained by simultaneous consideration
of the Drude and plasma models, are of major importance for
experiments aiming to discriminate between the predictions of
both approaches at separations above 1 μm and to resolve the
long-term controversy in the theoretical description of thermal
Casimir forces.

The above conclusions were obtained using the spatially
local Drude and plasma dielectric functions. The possible
impact of nonlocal dielectric permittivity on the thermal
Casimir force between metallic test bodies was investigated
in detail in the literature. Specifically, it was shown72 that
even for metal coatings thinner than the mean free path
of electrons in the bulk metal, the relative difference in

the thermal Casimir forces computed using the local Drude
model and nonlocal permittivities is less than a few tenths
of a percent (≈ 0.2% at a = 100 nm, and it decreases with
the increase of separation). For thicker metal coatings used
in experiments, the contribution of nonlocal effects to the
thermal Casimir force further decreases. This is explained
by the fact that the use of nonlocal dielectric permittivities
leads73,74 to the same equality, rTE(0,k⊥) = 0, as does the
Drude model (18). Thus, there is no need to consider nonlocal
dielectric functions in connection with surface imperfections
of lenses with centimeter-size curvature radii. For other
fluctuation phenomena, such as radiative heat transfer, it was
also calculated56 that at separations between two metallic
semispaces a > 100 nm, the contribution of nonlocal effects
into the heat flux is very small.

Similar results were obtained for an Au-coated lens of
centimeter-size radius of curvature above a Si plate. It was
shown that different models for the description of charge
carriers in Si (dielectric Si, high-resistivity Si taking into
account dc conductivity, low-resistivity Si described by the
Drude model, and low-resistivity Si described by the plasma
model) lead to different theoretical predictions for the Casimir
force between a perfectly spherical Au-coated lens and a Si
plate. However, by choosing an appropriate imperfection, well
within the optical surface specification data, on the surface
of the lens at the point of closest approach to the plate, it
is possible to obtain approximately the same Casimir forces
in all the above models over the separation region from 1 to
3 μm.

The above results show that the presently accepted approach
to the comparison of the data and theory in experiments28–31

measuring the Casimir force by means of lenses with
centimeter-size radii of curvature might not be sufficiently
justified. In these experiments, the Casimir force is computed
using the simplest formulation of the PFA in Eq. (6), that is,
under an assumption of perfect sphericity of the lens surface.
According to our results, however, Eq. (6) is not applicable in
the presence of surface imperfections, which are invariably
present on lens surfaces. In fact, for reliable comparison
between the measurement data and theory, it would be
necessary, first, to determine the position of the point of closest
approach to the plate on the lens surface with a precision of
a fraction of a micrometer. Then one could investigate the
character of local imperfections in the vicinity of this point
microscopically and derive an approximate formulation of the
PFA as in Eqs. (11), (14) or (28). Thereafter, the measurement
data could be compared with theory with some degree of
certainty. It is unlikely, however, that a sufficiently precise
determination of the point of closest approach to the plate is
possible for lenses of centimeter-size radii of curvature. The
possibility to return to the same point of closest approach in
repeated measurements is all the more problematic. Because
of this, one can conclude that measurements of the Casimir
force using lenses of centimeter-size radii of curvature do
not allow an unambiguous comparison to theory, and are not
reproducible (see Refs. 28, 30, and 31, whose results are
mutually contradictory). According to our results, even if the
measurement data for the Casimir force are not consistent
with any theoretical model under an assumption of perfect
sphericity of the lens surface, there might be different types
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of surface imperfections leading to the consistency of the data
with several theoretical approaches.

We emphasize that only a few simple surface imperfections
in the form of bubbles and pits are considered in this paper.
There are many other imperfections of a more complicated
shape (including scratches) that are allowed by the optical
surface specification data and may strongly impact the Casimir
force between a centimeter-size lens and a plate. Such
imperfections are randomly distributed on lens surfaces and
some of them can be located in the immediate region of
the point of closest approach to the plate. The role of Au
coatings used in measurements of the Casimir force should be
investigated as well in the presence of surface imperfections.
Metallic coating of about 0.5 μm thickness28 might lead to a
decrease of thicknesses of bubbles and depths of pits, but to
an increase of their diameters. The latter, however, influences
the magnitude of the Casimir force most dramatically.

The above-discussed fundamental problem arising in the
measurements of the Casimir force using lenses of centimeter-
size curvature radii does not arise for microscopic spheres
of about 100 μm radii used in numerous experiments by
different authors performed with the help of an atomic
force microscope2–4,7,15,18–22,25–27,43,69 and a micromechanical
torsional oscillator.2,5–7,13,14,23,24 For instance, for microscopic
polystyrene spheres made by the solidification from the liquid

phase, the minimization of surface energy leads to perfectly
smooth spherical surfaces due to surface tension. The surface
quality of such spheres after metallic coating was investigated
using a scanning electron microscope2,3,7 and did not reveal
any bubbles or scratches. Spheres of microscopic size have
been successfully used5,13,14 to exclude the large thermal
effect in the Casimir force at separations below 1 μm. They
are, however, not suitable for measurements of the thermal
effect at large separations of a few micrometers because
the Casimir force is proportional to the sphere radius and
rapidly decreases with the increase of separation. Keeping
in mind the above-discussed fundamental problem arising for
spherical lenses of centimeter-size radius of curvature, the only
remaining candidate for the measurement of the thermal effect
in the Casimir force at micrometer separations is the classical
Casimir configuration of two parallel plates.75
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D. López, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A
79, 026101 (2009).

45Q. Wei, D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, and
R. Onofrio, Phys. Rev. A 81, 052115 (2010).

46J. Błocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys.
(NY) 105, 427 (1977).

47B. V. Derjaguin, Kolloid. Z. 69, 155 (1934).
48B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys.

Rev. A 82, 032513 (2010).
49A. Canaguier-Durand, P. A. Maia-Neto, A. Lambrecht, and

S. Reynaud, Phys. Rev. Lett. 104, 040403 (2010).
50A. Canaguier-Durand, P. A. Maia-Neto, A. Lambrecht, and

S. Reynaud, Phys. Rev. A 82, 012511 (2010).
51R. Zandi, T. Emig, and U. Mohideen, Phys. Rev. B 81, 195423

(2010).
52K. A. Milton, The Casimir Effect (World Scientific, Singapore,

2001).
53M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M.

Mostepanenko, Phys. Rev. D 58, 075003 (1998).
54L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics

of Continuous Media (Pergamon, Oxford, 1984).

55J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York,
1999).

56A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291
(2007).

57V. B. Bezerra, R. S. Decca, E. Fischbach, B. Geyer,
G. L. Klimchitskaya, D. E. Krause, D. López, V. M. Mostepanenko,
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