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Redeposition of sputtered material is a nonlinear effect
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It is demonstrated that redeposition of sputtered material is a nonlinear effect in experiments on pattern
formation induced by ion bombardment of solid surfaces. As a result, redeposition is not the physical mechanism
responsible for the formation of the highly regular hexagonal arrays of nanodots sometimes produced by normal-
incidence ion sputtering.
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I. INTRODUCTION

Bombarding a solid surface with a broad ion beam produces
a remarkable variety of self-assembled nanoscale patterns,1

including periodic height modulations or “ripples,” as well as
mounds arranged in hexagonal arrays of surprising regularity.
The spontaneous emergence of these patterns is not just fas-
cinating in its own right, since in the future ion bombardment
may prove to be an important tool in the fabrication of
nanostructures.

The first type of pattern formation to be discovered was the
ripples that often develop when the nominally flat surface of
a solid is subjected to oblique-incidence ion bombardment.2

According to the Bradley-Harper (BH) theory,3 these ripples
are the result of a surface instability caused by the curvature
dependence of the sputter yield.

In 1999, experiments by Facsko et al. revealed that normal-
incidence ion bombardment (NIIB) of GaSb can result in the
formation of nanoscale mounds or “nanodots” arranged in a
densely packed, highly regular hexagonal array.4 Well-ordered
hexagonal nanodot arrays can also be produced by oblique-
incidence ion bombardment of InP if the sample is rotated
while it is bombarded.5 These observations are not just of
academic interest: Ion bombardment is a fast and reproducible
means of producing a nearly regular array of quantum dots on
a semiconductor surface in a single process step. If NIIB is
to be optimized as a nanofabrication tool, an understanding of
how it engenders pattern formation is essential.

In the BH theory, a solid surface subject to NIIB is un-
stable, and the amplitude of the surface disturbance increases
exponentially in time. To account for the saturation in the
amplitude of the nanodots that is observed experimentally, the
leading-order nonlinear term must be added to the linear BH
equation of motion.6 This gives the Kuramoto-Sivashinsky
(KS) equation

∂h

∂t
= −A∇2h − B∇2∇2h + 1

2
λ(∇h)2, (1)

where h(x,y,t) is the height of the surface above the point (x,y)
in the x-y plane at time t , A > 0 and λ are constants that have
been computed using the Sigmund theory of sputtering,3,7,8

and B is the surface diffusivity. Although the KS equation
yields saturation, it produces no hint of short-range hexagonal
order and exhibits spatiotemporal chaos.9

In the experiments of Facsko et al.,4 the nanodot size distri-
bution was sharply peaked and the dot arrays had short-range
hexagonal order that extended over six or more lattice spacings.

These observations indicate that there was a narrow band of un-
stable wavelengths, according to the modern theory of pattern
formation.9 By contrast, all ripple wavelengths that exceed a
critical value are unstable in the linear BH theory and in theo-
ries that add nonlinear terms to the BH equation of motion.6,10

In an ad hoc attempt to explain how NIIB produces short-
range hexagonal order, Facsko et al. added the term −ah to the
right-hand side of Eq. (1), yielding the so-called damped KS
equation.11 For appropriate values of the damping parameter
a, this term leads to a narrow band of unstable wavelengths and
to short-range hexagonal ordering. However, the equation of
motion must be invariant under the transformation h → h +
h0, where h0 is a constant, and so this modification of the KS
equation is not physically acceptable. Facsko et al. were aware
of this deficiency of their model, and so proposed replacing the
term −ah in the damped KS equation by −a(h − 〈h〉), where
〈h〉 denotes the spatial average of h. This yields

∂h

∂t
= −a(h − 〈h〉) − A∇2h − B∇2∇2h + 1

2
λ(∇h)2. (2)

This modification restores the h → h + h0 invariance but does
not alter the nature of the pattern formation.

It has been unclear whether or not there is any plausible
physical origin for the damping term −a(h − 〈h〉) in Eq. (2).
Facsko and co-workers suggested that this term could model
redeposition of sputtered material,11 but this issue has not
been resolved. In spite of this, the implications of the model
of Facsko et al. have been studied in considerable detail.12

In this paper, we show that redeposition leads to the addition
of a nonlinear term to the equation of motion for normal-
incidence ion bombardment. Therefore, redeposition does not
produce a narrow band of unstable wavelengths, nor does it
lead to short-range hexagonal order. In addition, redeposition
cannot give rise to the linear damping term added to the KS
equation by Facsko et al.

Although redeposition must be ruled out as the causal
factor for the experimentally observed pattern formation,
there are other theories for the genesis of the short-range
hexagonal order induced by NIIB. In the theory of Castro
et al., a mobile layer at the surface of the solid modifies
the dynamics, leading to the addition of a second nonlinear
term to the KS equation.10 This theory accounts for the
coarsening of the nanodot arrays that is sometimes observed in
experiments,4,13,14 and so represents an important contribution
to the field. At first, it seemed that the Castro et al. nonlinearity
might also produce short-range hexagonal order,10 but more
recent numerical work strongly suggests that this is not the
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case.15 This is to be expected, since the equation of motion
introduced by Castro et al. does not have a narrow band of
unstable wavelengths.

Very recently, Bradley and Shipman have advanced a theory
of pattern formation induced by NIIB of binary compounds.16

In their theory, the coupling between a surface layer of altered
composition and the surface topography leads to a narrow band
of unstable wavelengths and to short-range hexagonal order for
a certain range of the parameters. The starting point of their
fully nonlinear theory is the linear theory of Shenoy et al.17

This paper is organized as follows. In Sec. II, we show
how the equation of motion for the solid surface is modified
by redeposition. The implications of the resulting equation of
motion are explored in Sec. III. We close the paper with our
conclusions in Sec. IV.

II. THE EFFECT OF REDEPOSITION

Consider the planar surface of an amorphous solid com-
posed of a single atomic species. We place the origin on the
solid surface and orient the z axis so that it is normal to the
surface.

The surface is now perturbed, and so its height h above the
x-y plane becomes a function of x ≡ x x̂ + y ŷ. We assume
that the surface height is a slowly varying function of position.
Thus, |∇h| � 1 at all points on the surface, where ∇ ≡ x̂∂x +
ŷ∂y .

The perturbed surface is now subjected to normal-incidence
ion bombardment. In the vacuum above the solid, the flux of
ions is taken to be −J ẑ, where J is a constant independent
of both position and time. The surface of the solid moves
as a result of sputtering, redeposition, surface diffusion, and
ion-induced surface flow,18–20 and so h now depends on t as
well as x. The small slope approximation will remain valid
for all t > 0 if the flat surface is stable. If the flat surface is
unstable, on the other hand, this approximation is valid only
for early times.

In modern experiments on pattern formation induced by ion
bombardment, an ultrahigh vacuum is maintained: Typically,
the working pressure is less than 10−6 bars and can be
as low as 10−10 bars.21 In these conditions, a sputtered
atom that strikes the sample surface almost certainly traveled
ballistically between its point of origin and the point where it
contacts the surface once more. Indeed, in studies on the effects
of ion bombardment on large amplitude surface structures
like trenches and asperities, it is universally assumed that
the trajectory of a sputtered atom is a straight line—see, for
example, Refs. 22–26. The sputtered atoms will therefore be
taken to travel ballistically in the present work. We will also
make the simplifying assumption that a sputtered atom that
strikes the surface is redeposited there with probability one,
although this assumption does not affect our final conclusions.

Consider a point r = x + h(x,t) ẑ on the surface (see
Fig. 1). The projection of this point onto the x-y plane is
x. Let the unit normal to the surface at r be n̂. We wish to
find F (r,t)dA, the number of atoms redeposited on a surface
area element d A ≡ n̂ dA centered on the point r per unit
time. We will work to lowest nontrivial order in the spatial
derivatives of h. As a result, we may take the sputter yield
Y to depend only on the local angle of incidence α for the
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FIG. 1. Normal-incidence ion bombardment of the solid surface.
For the purpose of drawing this figure, the surface height h(x,y,t)
has been taken to be independent of y. The curve is the surface of the
solid. The surface point r is at a height h = h(x,t) above the point
x on the x-y plane. The unit normal to the surface at r is n̂. The
coordinate system (ξ,η,ζ ) has its origin at the point r ′. The ζ axis
lies along n̂′, while the η axis points out of the page.

purpose of computing F (r,t)dA—the curvature dependence
of the sputter yield introduces a higher-order correction to
F (r,t)dA, which we will neglect.

We begin by determining �(r,r ′,t)dAdA′, which is defined
to be the number of atoms incident on d A per unit time that
come from sputtering from the surface element d A′ ≡ n̂′ dA′
centered on the point r ′. The ion flux incident upon d A′ is
J d2x ′, where d2x ′ ≡ dx ′ dy ′. We introduce a local coordinate
system (ξ,η,ζ ) with its origin at the point r ′ and with the ζ

axis along n̂′ (see Fig. 1). The coordinate axes will be oriented
so that the η axis lies along ẑ × n̂′. The angle between n̂′ and
ẑ is the local angle of incidence α, which, to lowest order, is
|∇′h(r ′,t)|.

The atoms sputtered from d A′ do not have an isotropic
angular distribution. Let f (α,θ,φ)d� be the fraction of the
total yield sputtered into the element of solid angle d� =
sin θ dθ dφ with polar and azimuthal angles θ and φ measured
relative to the axes ξ , η, and ζ . Of course, the angular
distribution function f (α,θ,φ) does not depend on φ for α = 0.
In the linear collision-cascade regime, f (0,θ,φ) is proportional
to cos θ , but experiments have revealed significant deviations
from this form for both high and low ion energies.27 For
nonzero α, on the other hand, the angular distribution of the
sputtered atoms is peaked around the specular direction.27

The precise form of f does not matter for our purposes,
except for one key attribute: f (α,θ,φ) tends to zero as θ →
π/2 for all values of α and φ.28,29 Physically, this means that
the sputtered atoms never graze the surface of the solid, no
matter what the local angle of incidence α is. It is simple
to see why this is so. Let n(v)d3v be the number density of
atoms just beneath the surface of the solid with velocity v in
the volume element d3v in velocity space. Immediately below
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the surface, the current density of atoms with velocity v lying
in the volume element d3v is n(v)v d3v. Thus, the flux of
atoms through d A with velocity v in d3v is n(v)v · d A d3v.
If v is tangent to the sample surface and so is orthogonal to
d A = n̂ dA, this flux vanishes.

The solid angle that d A subtends relative to the point r ′ is

d� = −d A · �/3, (3)

where � ≡ r − r ′ is the vector leading from r ′ to r . The
number of atoms incident on d A per unit time that came from
the surface element d A′ is

�(r,r ′,t)dAdA′ = JY (α)f (α,θ,φ)d�d2x ′, (4)

provided that there is a line of sight between r and r ′.
[Naturally, if there is no line of sight between r and r ′, no
atoms sputtered from d A′ will be redeposited on d A and
so �(r,r ′,t) = 0.] Inserting Eq. (3) into Eq. (4) and again
working to lowest nontrivial order in the derivatives of h, we
obtain

�(r,r ′,t)dAdA′ = −JY (0)f (α,θ,φ)

× h − h′ − (x − x′) · ∇h

|x − x′|3 d2x d2x ′, (5)

where h ≡ h(x,t) and h′ ≡ h(x′,t).
We can simplify Eq. (5) because α ∼= |∇′h′| is small and θ

is close to π/2. Since

n̂′ = ẑ − ∇′h′√
1 + (∇′h′)2

, (6)

we have

cos θ = � · n̂′


∼= h − h′ − (x − x′) · ∇′h′

|x − x′| . (7)

Let β ≡ π/2 − θ . Equation (7) shows that cos θ = sin β

is small, and so β ∼= sin β = cos θ is small as well. As a
consequence,

f (α,θ,φ) = f

(
α,

π

2
− β,φ

)

∼= f

(
α,

π

2
,φ

)
− β

∂

∂θ
f (α,θ,φ)

∣∣∣∣
θ=π/2

. (8)

f (α,π/2,φ) vanishes because f (α,θ,φ) tends to zero as θ →
π/2. Moreover, to lowest order we can replace α by zero in
the surviving term on the right-hand side of Eq. (8). Since
f (0,θ,φ) is independent of φ,

γ ≡ − ∂

∂θ
f (0,θ,φ)

∣∣∣∣
θ=π/2

(9)

is simply a positive constant. Equation (8) therefore reduces
to

f (α,θ,φ) = γ
h − h′ − (x − x′) · ∇′h′

|x − x′| . (10)

Returning to Eq. (5), we have at last

�(r,r ′,t)

= JY (0)γ
[h−h′ − (x − x′) ·∇h][h′ −h− (x′ − x) ·∇′h′]

|x − x′|4 ,

(11)

provided that there is a line of sight between r and
r ′.30

To obtain F (r,t)dA, we need only sum �(r,r ′,t)dAdA′
over all surface area elements d A′. It follows that

F (r,t) =
∫

�(x + h ẑ,x′ + h′ ẑ,t)d2x ′. (12)

Therefore, including the effects of redeposition in Eq. (1), we
obtain
∂h

∂t
(x,t) = −A∇2h(x,t) − B∇2∇2h(x,t) + 1

2
λ[∇h(x,t)]2

+�0F (x + h(x,t) ẑ,t), (13)

where �0 is the atomic volume. Equation (13) is the desired
equation of motion.31

At first sight, it appears that �(r,r ′,t) diverges as |x −
x′| → 0, and so the validity of Eq. (13) might be questioned. In
fact, �(r,r ′,t) tends to a finite limit as |x − x′| tends to zero. To
see this, let us look at the behavior of �(r,r ′,t) for x′ = x + l ê
in the limit that l → 0; here ê is an arbitrary unit vector in the
x-y plane. �(r,r ′,t) is zero for sufficiently small l if

σ ≡ ∂2

∂l2
h(x + l ê,t)

∣∣∣∣
l=0

(14)

is negative, and so we may confine our attention to the case
in which σ � 0. After expanding h′ = h(x′,t) = h(x + l ê,t)
in a Taylor series in l in Eq. (11) and taking the l → 0 limit,
we obtain

lim
l→0

�(r,r ′,t) = 1
4JY (0)γ [(ê · ∇)2h(x,t)]2, (15)

and this is well defined and finite for a smooth surface.

III. DISCUSSION

There are obvious difficulties a priori with the idea that
the damping term −a(h − 〈h〉) models redeposition in high
vacuum. Clearly, very little material sputtered from a surface
point r ′ will be redeposited at r if the two points are remote
from one another. Moreover, none of the material sputtered
from r ′ will be redeposited at r if there is no line of sight
between the two points. In contrast, all surface points r ′ 
= r
contribute equally to the damping term −a[h(x,t) − 〈h〉]. This
is clearly unphysical.

These observations do not permit us to conclude that
redeposition is not responsible for the experimentally observed
pattern formation, since it could be argued that redeposition
might contribute a linear term to the equation of motion
with a form different from the damping term of Facsko
et al., and that this term could produce a narrow band of
unstable wavelengths. However, it is readily apparent from
Eqs. (11) and (12) that F (r,t) is a nonlinear functional of h.
Because redeposition is a nonlinear effect, it cannot produce a
narrow band of unstable wavelengths or short-range hexagonal
order.

Our detailed analysis yields further evidence that the
linear damping term −a(h − 〈h〉) cannot be used to model
redeposition: Redeposition contributes a nonlinear term to
the equation of motion, not a linear one. In addition, we
found that �(r,r ′,t) decays like |x − x′|−4 as |x − x′| → ∞,
which makes precise our observation that little of the material
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sputtered from a surface point r ′ will be redeposited at r if the
two points are widely separated.

Our study of redeposition does not completely rule out the
validity of the equation of motion (2) for sputtering in high
vacuum, since it could be argued that some physical effect
other than redeposition might be responsible for the presence
of the damping term −a(h − 〈h〉). However, this damping term
is highly nonlocal, and this severely restricts the possibilities.
Shadowing and ion reflection are nonlocal phenomena, but
their effects are entirely negligible for normal-incidence ion
bombardment.

Anspach and Linz recently performed Monte Carlo simu-
lations of the effects of redeposition of sputtered material.32

Their simulations were confined to two dimensions, and the
effects of surface diffusion, the curvature dependence of the
sputter yield, and ion-induced surface flow were omitted.
In addition, the angular distribution of sputtered material
Anspach and Linz adopted does not vanish in the θ → π/2
limit, except when the local angle of incidence α is zero.
Their simulations are therefore not expected to accurately
model normal-incidence ion bombardment of a real three-
dimensional solid. Although Anspach and Linz touched on
the question of whether or not redeposition could lead to a
damping term of the kind introduced by Facsko et al., they
were unable to give a definite answer. Even if they had been
able to provide one, the limitations of their model would have
left it open to dispute.

The fact that �(r,r ′,t) rapidly tends to zero as |x − x′| →
∞ suggests that it might be possible to approximate F (r,t)
by a term that only depends on the derivatives of h at x, i.e.,
there might be a good, purely local approximation to F (r,t).
This is not the case, though. To see this, consider the scaling
properties of F (r,t). We set

h(x,t) = 〈h〉 + Wg(x/L), (16)

where g is a scaling function with 〈g〉 = 0 and W and L

are the vertical and lateral scales of the surface disturbance,
respectively. This yields F (r,t) ∝ (W/L)2. The only term
that depends solely on the derivatives of h at x, that has
the correct scaling properties, and that is invariant under
rotations of the surface about the vertical line passing through
x is ρ[∇h(x,t)]2, where ρ is a constant. However, there is
a problem with this potential local approximant to F (r,t). A
cursory glance at Eqs. (11) and (12) suggests that F is invariant
under the transformation h → −h, but this is not correct, as
we can establish by considering the inverted surface h̃ ≡ −h.
(The solid fills the space beneath the inverted surface.) If
there is a line of sight between the points r = x + h(x,t) ẑ
and r ′ = x′ + h(x′,t) ẑ on the original surface, then there is
no line of sight between the points r̃ = x + h̃(x,t) ẑ and r̃ ′ =
x′ + h̃(x′,t) ẑ on the inverted surface. (Naturally, the converse
of this statement is also true.) As a result, F (r,t) = c(W/L)2,

where the value of the constant of proportionality c depends
on the sign of W . Since the term ρ[∇h(x,t)]2 does not share
this property, it is at best a crude approximation to F (r,t).

Two simple physical examples are sufficient to show that
ρ[∇h(x,t)]2 can be a poor approximation to F (r,t) in-
deed. First, consider a one-dimensional sinusoidal disturbance
h(x,t) = A cos(kx), where A and k are constants. A point
at the base of a trough receives redeposited material. In
contrast, a point P at the top of a crest does not, because
only points at the top of the adjacent crests have a line of
sight to P , and sputtered atoms do not graze the surface.
Thus, F vanishes at the top of a crest but not at the bottom
of a trough. In contrast, ρ(∇h)2 vanishes at both of these
points.

A second example is provided by the tilted planar surface
h(x,t) = sx, where s is a constant. In this case, F is zero at any
point r on the surface, regardless of the value of the surface
slope s. The term ρ(∇h)2 = ρs2, on the other hand, depends
on the value of s and is nonzero for s 
= 0.

If, despite these deficiencies, redeposition is modeled by
replacing F with ρ(∇h)2, its effect on the dynamics is simple:
The value of the constant λ in the KS equation (1) is merely
altered. The resulting modified equation of motion is just the
KS equation, which does not produce short-range hexagonal
order.

We have restricted our analysis to normal-incidence ion
bombardment because that is the case of greatest experimental
interest, and for the sake of simplicity. However, an analysis
that is completely analogous to the one in Sec. II would show
that redeposition contributes a nonlinear term to the equation
of motion for oblique-incidence bombardment, just as it does
for normal incidence.

IV. CONCLUSIONS

In this paper, we established that in high vacuum, redepo-
sition of sputtered material is a nonlinear effect. Therefore,
redeposition cannot produce a narrow band of unstable
wavelengths and does not lead to arrays of nanodots with
short-range hexagonal order. In addition, redeposition cannot
give rise to the linear damping term added to the Kuramoto-
Sivashinsky equation by Facsko et al.11 in their attempt to
model the development of hexagonal ordering during normal-
incidence ion bombardment. Finally, we showed that in general
the effect of redeposition at an arbitrary surface point is poorly
modeled by a term that depends only on the form of the surface
in the immediate vicinity of that point.
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