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Edge channel mixing induced by potential steps in an integer quantum Hall system
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Institut NEEL, CNRS and Université Joseph Fourier, Boite Postale 166, F-38042 Grenoble, France,

NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza dei Cavalieri 7, I-56126 Pisa, Italy, and
International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy

V. Giovannetti, F. Taddei, and R. Fazio
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

D. Feinberg
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We investigate the coherent mixing of copropagating edge channels in a quantum Hall bar produced by step
potentials. In the case of two edge channels it is found that, although a single step induces only a few percent
mixing, a series of steps could yield 50% mixing. In addition, a strong mixing is found when the potential height
of a single step allows a different number of edge channels on the two sides of the step. Charge density probability
has been also calculated even for the case where the step is smoothened.
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I. INTRODUCTION

When a two-dimensional electron gas (2DEG) is subject to
a large magnetic field, the integer quantum Hall (IQH) regime
is accessed. Here charge transport is allowed by the formation
of edge-state channels, each accounting for a single quantum
of conductance. As pointed out for the first time in Ref. 1, this
system became the prototype of a single-channel conductor
with spectacular properties such as chirality and adiabatic
transport, whose study fueled an enormous amount of work
in the field of nanoscience.2 Recently, phase coherence was
studied and found to be preserved over rather long distances,
of the order of more than 10 μm (Ref. 3). For this reason
2DEGs in the IQH regime appear to be specially suited for
electronic interferometry, a very stimulating phenomenon both
for basic science and for its various possible applications. A
recent breakthrough in this field has been the experimental re-
alization of electronic Mach-Zehnder4–8 and Hanbury-Brown
and Twiss9 interferometers. In these experiments electrons in
the edge states loop around an annular structure mimicking
the optical paths of their photonic counterparts.

Recently, a new theoretical scheme was proposed10 which
would allow for a concatenation of several Mach-Zehnder
interferometers (MZIs) in series. This new opportunity of
scalability, which is not topologically possible in many of
the setups experimentally developed so far, exploits the
interference between adjacent edge channels with the same
chirality, coupled by means of some localized potential.
Coherent mixing among copropagating IQH channels has
been investigated in recent times mainly between spin-
resolved channel (induced by the spin-orbit interaction)11 or
in connection with inelastic scattering at high chemical po-
tential imbalance.12 Furthermore, an intereferometer that ex-
ploits nonengineered scattering mechanisms between adjacent

spin-resolved channels has been realized and successfully
tested in Ref. 13. While the possibility of locally breaking
the adiabatic transport in IQH systems was recognized a long
time ago,14 there is now a call for a more focused study on
how much adjacent cyclotron-resolved (i.e., corresponding to
different Landau levels) copropagating edge channels might
be influenced by an engineered nonadiabatic potential.

In this paper we investigate the possibility of inducing
coherent mixing between two copropagating edge channels
in a Hall bar due to abrupt (nonadiabatic) potential steps along
the direction of propagation. More precisely, we calculate the
interchannel transmission probability between two copropa-
gating edge states induced by the potential step, which is
directly connected to the conductance of the system through
the Landauer-Büttiker current formula—see Eq. (10) in the fol-
lowing. The implementation of such local, short-scale potential
variations is, in principle, within the experimental reach of
cutting-edge technology, for example, through precise impu-
rity implantation by means of focused ion beam,15 atomic force
microscope (AFM)-induced oxidation,16 cleaved-edge over-
grown technique,17 and tunable scanning gate microscopy.18

For the sake of clarity here we focus on idealized con-
figurations. We first consider the case of a single potential
step where two edge channels are open on its left and right
hand side, finding that the channel mixing probability is pretty
small even for heights of the potential step of the order of the
Landau level (LL) separation h̄ωc. Moreover, in the presence
of a single edge channel on both sides of the step, we find that
no reflection is allowed as long as the width of the bar is larger
than a few magnetic lengths. By placing in series a number
of such potential steps, though, channel mixing of the order
of 50% could realistically be achieved. The situation changes
when a single edge channel is open on the left-hand side, while
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two channels are open on the right-hand side of a potential step.
Here channel mixing can be as high as 30% for a (single) sharp
step. Finally, we calculate the stationary charge density in the
Hall bar even in the case where the potential step in smoothed,
finding indications, in all situations examined, that channel
mixing persists (within the same order of magnitude) as long
as the potential changes over a distance not exceeding few
magnetic lengths.

All the results presented here are obtained neglecting
electron-electron interaction, which is expected to be im-
portant only when a finite chemical potential imbalance is
imposed between two IQH edge states and dominate the energy
exchange between them in the presence of nonequilibrium
electron distributions (see Ref. 19 for different theoretical
models). In the zero-bias regime, however, electron-electron
interactions are not proven to play an important role, the
interference pattern in MZI experiments being consistent with
the single-particle theory.20

The paper is organized as follows. In Sec. II we specify the
system under study and we describe the numerical technique
used for our calculations. In Sec. III we discuss the results
obtained when the abrupt step potential connects two regions
characterized by the same edge filling factor (Sec. III A), and
in the case of a series of such steps (Sec. III B). In Sec. III C
we consider the case with one open channel on the left and two
open channels on the right. Finally, Sec. IV finally focuses on
the charge density probability produced by the presence of the
step potential, even in the case when it is smooth.

II. MODEL AND NUMERICAL TECHNIQUE

The system under investigation consists of a quantum Hall
bar subjected to a sharp steplike potential U (y) along the
longitudinal y direction (see Fig. 1), whose role is to induce
scattering among otherwise independent edge-state channels.
In the following we neglect the spin degree of freedom of the
electrons and consider spin-degenerate edge channels (see, for
example, Refs. 18 and 21). The latter are determined through
the solutions of the time-independent Schrödinger equation

FIG. 1. Schematics of the setup. A hard-wall potential confines
the 2DEG in the transverse direction defined by the coordinates
x ∈ [−L/2,L/2]. Along the longitudinal direction y a step potential
U (y) is introduced to induce coherent mixing among the propagating
modes. Its effect is accounted as a global energy shift between the
solutions of the Schrödinger equation in the two regions, as pictured
on the dispersion band curves of the edges drawn on the background
of the figure (the horizontal line that intersects the bands indicates
the Fermi energy).

H�(x,y) = E�(x,y) with the single-electron Hamiltonian
(in Landau gauge) given by

H = h̄2

2m

[
− ∂2

∂x2
+

(
− i

∂

∂y
+ |e|B

ch̄
x

)2]
+ U (y), (1)

where e and m are, respectively, the electron charge and the
effective electron mass and B is the perpendicular magnetic
field. A hard-wall confinement potential that defines the edges
of the sample is assumed. In Eq. (1) U (y) is the step potential
function which is taken to be zero for y < 0 (region I) and
constant for positive y (region II); that is, U (y) = −�E�(y),
where �(y) is the Heaviside function. Under these conditions
the Hall bar effectively splits into two regions and the resulting
scattering problem can be solved through a mode-matching
method22,23 as detailed in the following.

First we notice that in both regions the eigenfunctions of
the Hamiltonian can be expressed as scattering states in the y

direction [i.e., �i(x,y) = ψi(x)eikiy , with i = I,II] so that the
time-independent Schrödinger equation reduces to[

− ∂2

∂x2
+ (ki + βx)2 − εi

]
ψi(x) = 0, (2)

where i = I, II specifies the region, β = l−2
B = |e|B/ch̄

is the inverse magnetic length squared, εi = 2mEi/h̄2 =
2β(Ei/h̄ωc) is the rescaled effective energy, with EI = E

and EII = E + �E. E is defined so that the first LL corre-
sponds to E = h̄ωc/2, where ωc = |e|B/cm is the cyclotron
frequency. The solutions for the transverse eigenfunction ψi

are completely specified by the magnetic field and by imposing
hard-wall boundary conditions: ψi(x = −L

2 ) = ψi(x = L
2 ) =

0. The resulting expression is a transcendental equation that
can be expressed in analytic form in terms of parabolic cylinder
functions.24 We opt nevertheless for a numerical solution
following the technical strategy detailed in the appendix of
Ref. 23, that is, discretizing Eq. (2) in the x variable.

In both regions, for a given E one can find a set of
complex values for the wave vector ki satisfying Eq. (2). Those
with zero imaginary part are associated with propagating
longitudinal wave functions which correspond to the 2Pi

edge-state channels. Pi represents the LL filling factor of
region i, defined by the integer part of the quantity Ei/h̄ωc + 1

2
(notice that since Ei differs in the two regions, PI and
PII need not coincide). More precisely, we can identify
Pi real positive solutions {ki

n; n = 1, . . . ,Pi} that describe
propagating right-going channels {ψRi

n (x); n = 1, . . . ,Pi} and
Pi real negative solutions {−ki

n; n = 1, . . . ,Pi} that describe
propagating left-going channels {ψLi

n (x); n = 1, . . . ,Pi}. Such
modes are responsible for the electronic transport in the
sample. We normalize them in such a way that their current
flux is unity. This means that we impose∫ L/2

−L/2
dx

[
ψRi

n (x)
(
ki
n + eAx

)
ψRi

n (x)∗
] = 1, (3)

where Ax = βx/e is the only nonzero component of the
vector potential in the Landau gauge. The normalization of
ψLi

n (x) follows by the symmetry of the problem that imposes
ψLi

n (x) = ψRi
n (−x) for all n and i. The complex and purely

imaginary solutions, instead, are associated with evanescent
eigenfunctions ψ̄ i

n of the system. They do not contribute
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directly to the net electronic transport but are needed to
guarantee the continuity of the wave function and of the
probability current when imposing the matching conditions
at the boundary to the solutions;25 that is,

�I(x,y = 0) = �II(x,y = 0),

∂y�
I(x,y = 0) = ∂y�

II(x,y = 0). (4)

A generic solution of the Schrödinger equation can thus be
written as

�i(x,y) =
Pi∑

n=1

ai
nψ

Ri
n (x)eiki

ny +
Pi∑

n=1

bi
nψ

Li
n (x)e−iki

ny

+
Qi∑
n=1

ci
nψ̄

i
n(x)eik̄i

ny, (5)

where the last summation is performed over the set of the
evanescent modes ψ̄ i

n which solve the Schrödinger equation (2)
with complex wave vectors k̄i

n. We stress that in principle this
last contribution should include infinitely many terms since
infinite are the evanescent solutions of Eq. (2) associated with
a given selected energy eigenvalue Ei . However, to make the
problem treatable numerically we limit the number Qi to only
include those evanescent modes ψ̄ i

n whose k̄n lies within a
finite radius from the origin of the complex plane22 (the exact
number being determined under the condition that the final
result does not vary significantly if extra evanescent modes are
added in the expansion—for our simulations this corresponds
to have Qi � 20).

Consider first the case of small �E, that is, where the
potential step maintains the same filling factor in the two
regions (i.e., PI = PII = P ), and focus on the scattering
process associated with right-going electrons coming from
the left lead with given mode number j ∈ {1,2, . . . ,P }. Due
to the normalization constraint of Eq. (3), the scattering
amplitudes tnj (rnj ) that couple such incoming mode with
the transmitted (reflected) modes in the channel n, can then
be directly identified with the coefficients aII

n (bI
n) obtained

from Eq. (5) while imposing the matching conditions of
Eq. (4). The number of unknowns is given by 2(P + Q), since,
although not entering in the scattering matrix, the coefficients
relative to evanescent waves (cI

n and cII
n ) must be found. The

2(P + Q) equations needed to determine them can be set by
expanding the functions ψRi

n (x), ψLi
n (x), and ψ̄ i

n(x) in the

first N/2 = (P + Q) Fourier modes ϕn =
√

1
L

sin( 2nπx
L

) as
follows:

ψRi
n (x) =

N/2∑
j=1

αi
njϕj (x) for 1 � n � P, (6)

ψLi
n (x) =

N/2∑
j=1

βi
njϕj (x) for 1 � n � P, (7)

ψ̄ i
n(x) =

N/2∑
j=1

γ i
njϕj (x) for 1 � n � Q, (8)

the coefficients αi
nj corresponding to right-going modes, βi

nj

to left-going modes, and γ i
nj to evanescent modes. At the end

of the simulation we check that the number of Fourier modes
used in the expansion is sufficient to properly describe all
propagating, oscillatory damped, and evanescent modes that
contribute appreciably to the scattering matrix. By multiplying
by ϕl and integrating over x, the above expressions can be
recast in the following N × N matrix equation:⎛

⎜⎝
∑P

n

(
aI

n�αI
nl − aII

n �αII
nl

)
∑P

n

(
kI
na

I
n
�αI

nl − kII
n aII

n �αII
nl

)
⎞
⎟⎠

=
⎛
⎝BII −BI GII −GI

B̃II −B̃I G̃II −G̃I

⎞
⎠

⎛
⎜⎜⎜⎜⎝

�bII
n

�bI
n

�cI
m

�cII
m

⎞
⎟⎟⎟⎟⎠ , (9)

where for i = I, II, �αi
nl ≡ (αi

n1,α
i
n2, . . . ,α

i
nN )T ,

�bi
n ≡ (bi

1,b
i
2, . . . ,b

i
P ), �ci

n ≡ (ci
1,c

i
2, . . . ,c

i
Q), and Bi , Gi

denote the matrices containing the Fourier coefficients,
namely, (Bi)nl ≡ βi

nl and (Gi)nl ≡ γ i
nl , respectively, while B̃i

and G̃i denote the matrices of elements (B̃i)nl ≡ ki
nβ

i
nl and

(G̃i)nl ≡ ki
nγ

i
nl . This linear problem can be solved numerically

so that the resulting coefficients allow a full reconstruction
of the wave function in all regions through Eq. (5). The
same analysis holds when PI �= PII with the only important
requirement that the linear system in Eq. (9) is determined,
that is, that PI + QI ≡ PII + QII. An example of such
configuration is presented in Sec. III C, where we assumed
PI = 1 and PII = 2.

To conclude the section we mention that the conductance
G of the system is determined, according to the Landauer-
Büttiker scattering theory,1 by the expression

G = 2e2

h

PII∑
n=1

PI∑
j=1

|tnj |2, (10)

valid in the limit of small voltages and zero temperature.

III. RESULTS

In this section we discuss the results obtained for the
scattering amplitudes in the case of a Hall bar with either
one or two open edge channels.

A. Two regions with equal filling factor

Let us now consider the case of two edge channels (PI =
PII = 2) on each side of the step potential, aiming at evaluating
the channel mixing probabilities |t12|2 and |t21|2 representing
the probability for transmission from inner (2) to outer (1)
edge and vice versa, respectively (see Fig. 1). By setting L =
6.7lB , where lB = β− 1

2 is the magnetic length, we make sure
that the reflection probabilities are negligible. More precisely,
fixing the energy of the incoming electrons at 1.7h̄ωc above
the first LL, we found that the only nonvanishing, though
very small, reflection coefficient is |r22|2 ∼ 10−3. In Fig. 2 the
channel mixing probability |t12|2 is plotted as a function of the
potential barrier height �E in units of h̄ωc: |t12|2 increases
monotonically with increasing �E, taking a value of the order
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FIG. 2. Channel mixing probability |t12|2 percentage, for the case
PI = PII = 2, as a function of the height of the potential step �E.
(Inset) Scattering phase shift as a function of the potential step height
for a single edge channel.

of few percent only for a step potential as high as 0.7h̄ωc (note
that, due to the nonzero reflection probability, |t21|2 slightly
differs from |t12|2).

It is worth mentioning that, in the limit of small step
height �E 	 h̄ωc, an analytical estimation of t12 is possible.
For instance, assuming a potential of the form U (y) =
−�E�(y)e−y/L while taking the limit L −→ ∞, one can
verify that, up to a phase factor, the channel mixing amplitude
t12 can be approximated to the first order in �E (Born
approximation26) as

t12 = 1√
N12

�E

kI
1 − kII

2

∫
dxψ I

k1
(x)ψ∗II

k2
(x), (11)

where

N12 =
∣∣∣∣
∫ L/2

−L/2
dx

∣∣ψ I
k1

(x)
∣∣2(

βx + kI
1

)

×
∫ L/2

−L/2
dx ′∣∣ψ II

k2
(x ′)

∣∣2(
βx ′ + kII

2

)∣∣∣∣ , (12)

is the normalization factor that ensures the unitarity of the
scattering matrix. We checked that the curve reported in Fig. 2
is fitted by the formula (11) close to the origin.

As a check we also consider the case of a single edge chan-
nel (PI = PII = 1). Here we have verified that the reflection
probability |r11|2 is negligible, within the numerical accuracy,
as long as L is greater than 6.5lB . Current conservation
therefore implies that one can write t11 = e−iφ .

The inset of Fig. 2 shows the phase φ in radians as a function
of the potential step height �E in units of h̄ωc. The energy of
the impinging electrons E is set to 0.8h̄ωc (i.e., 0.3h̄ωc above
the first LL). The phase shift φ increases monotonically nearly
reaching the value π/8 for the highest step considered.

B. Series of potential steps

A possible strategy to achieve a channel mixing of the
order of 50% is to place several potential steps in series. This
is, in principle, possible by using nanopatterning techniques to
realize a sequence of top gates. Assuming a typical magnetic
length of about 10 nm, a few tens of potential steps could be
obtained over a length of some microns.

FIG. 3. (Color online) (a) Single potential step followed by an
adiabatic tail. (b) Averaged channel mixing probability |t12|2 as a
function of M for different potential heights [black (circles), 0.72h̄ωc;
blue (squares), 0.4h̄ωc; brown (diamonds), 0.2h̄ωc] assuming random
phases φi accumulated between the steps. Numerical error on unitarity
of the S-matrix might induce variations of the order of 1%. The
curves represent the average over 2000 random configurations. (c)
Channel mixing probability |t12|2 as a function of M for different
potential heights [same color code as for panel (b)] assuming that
each individual phase-adjusting gate is tuned to maximize the mixing.

A simple evaluation of the channel-mixing transmission
probability can be done by assuming that, after the sharp step,
the potential smoothly goes to zero [see Fig. 3(a)]. In doing
so, after the mixing occurring at a potential step, the electrons
in the two channels freely propagate along the potential tail
to the next potential step accumulating a relative phase. Once
all reflections due to the large separations between steps are
suppressed, the total transmission matrix t(M) of a series of M

steps is (up to a global phase) the product of the transmission
matrices of the individual steps (of height �Ei) plus tails,
which include the phase φi accumulated while propagating
past the step i:

t(M) =
M∏
i=1

(
t11 (�Ei) eiφi t12 (�Ei) e−iφi

t21 (�Ei) eiφi t22 (�Ei) e−iφi

)
.

The phase φi depends both on the details of the adiabatic
tail of the step and on the distance xi between the steps.
It turns out that even a few steps can increase dramatically
the channel mixing probability |t12(M)|2 and that the latter,
due to interference effects, very much depends on the set of
phases {φi}i=1,M . For example, 50% mixing can be achieved
with four potential steps of height �E � 0.72h̄ωc, or with
10 potential steps of height �E � 0.4h̄ωc. The control of the
phases φi , in order to tune the channel mixing, can be obtained
by placing lateral finger gates in the region of the tail of the
potentials. The role of these additional gates is to modify the
lateral confinement potential in such a way to alter the distance
xi traveled by the electrons propagating between two steps.
Indeed, due to the large difference (ki

1 − ki
2), even a small
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variation of xi (of the order of 1/10 of the magnetic length)
results in a very significant variation of phase difference
between the modes φi = (ki

1 − ki
2)xi � 1. In Fig. 3(c) the

maximum (over φi) channel mixing probability |t12(M)|2
(obtained numerically) is plotted as a function of the number of
potential steps for three different values of step height, namely,
0.2h̄ωc, 0.4h̄ωc, and 0.72h̄ωc.

It is interesting to consider the situation where the phase
differences φi are not controlled and take random values. In
this case for every M one can average the channel mixing
probability over a given number of configurations of the set
{φi}i=1,M , with φi ∈ [0,2π ]. In Fig. 3(b) we plot |t12(M)|2
averaged over 2000 configurations for different values of step
height [the same as for Fig. 3(c)]. We notice that equilibration
(50% mixing) is reached for a large-enough M .

C. Two regions with different filling factor

An alternative possible strategy for obtaining a significant
channel mixing consists in fixing PI = 1 and setting �E large
enough so that in region II two edge channels are open (PII =
2). In this case the incoming electrons will be split between
the two edge channels available in region II, according to the
values of the transmission amplitudes t21 and t11.

In order to qualitatively characterize the effect, Fig. 4 shows
the probability |t21|2 for some indicative values of incident
energy E spread all over the energy gap and as a function of
the energy step �E. For all the curves channel mixing exceeds
15%, reaching about 30% for E = 1.6h̄ωc and E = 1.7h̄ωc.

We emphasize that this setup might be used to create the
initial coherent superposition of wave packet on the two edge
channels which are needed for the interferometer of Ref. 10.

FIG. 4. (Color online) Channel mixing probability |t12|2 in the
case where PI = 1 and PII = 2 for four different values of energy
of the incoming electrons (pictured as dashed lines in the inset) as a
function of the potential step height �E, which spans the energies
indicated on the shaded area on the inset.

IV. ELECTRON PROBABILITY DENSITY

In this section we address the electron probability density
|�(x,y)|2 in the case of two edge channels in region II (PII =
2). In Fig. 5 the density |�(x,y)|2 is plotted in the case of a
sharp step potential with PI = 2, where electrons are injected
from region I in channel 1 (a) and channel 2 (b). Vertical
lines represent the position of the potential step (y = 0), so
that region I is on the left-hand side and region II is on the
right-hand side. Bright areas in region I correspond to the high
probability density of incoming electrons exhibiting, in the
transverse x direction, one lobe, for injection from channel 1,
and two lobes, for injection from channel 2. In region II the
probability density relative only to the transmitted electronic
wave functions with channel mixing is plotted; that is, the
contribution to the wave functions due to the amplitudes t11

[for panel (a)] and t22 [for panel (b)] has been subtracted for
clarity.

Up to now we have considered the ideal situation in which
the step potential is sharp. Now we address the effect of the
smoothening of the step and describe the cross-over to the
adiabatic regime occurring when the potential varies over a
length which is larger than the magnetic length. For these
calculations we make use of a tight-binding model where the
wave function is computed by means of the recursive Green’s
functions technique, applied successfully in other contexts.27

Numerical simulations are performed by replacing the sharp
step with a potential of the form U (y) = −�E/(ey/d + 1),
where d is the characteristic length (width) of the potential.
In Fig. 6 contour plots of the probability density are shown
when electrons are injected from the left in channel 1 for three
different values of d, namely, d = 0.5lB (a), d = 1.3lB (b), and

FIG. 5. (Color online) Charge probability density color plot of
the edge states in the case where PI = 2 and PII = 2 with a sharp step
potential. Vertical lines represent the position of the step potential.
Electrons are injected from region I in channel 1 (a) and channel 2
(b). For the sake of clarity, only the contribution to the wave function
relative to t12, for panel (a), and relative to t21, for panel (b), are
retained.
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FIG. 6. (Color online) Charge probability density color plot of
edge states in the case where PI = 1 and PII = 2 with a smooth step
potential characterized by a width d indicated in figure. Vertical lines
correspond to the center position of the step potential. Panel (a), (b),
and (c) are relative to, respectively, d = 0.5, 1.3, and 3.5 magnetic
lengths. For d = 0.5lB the plot is indistinguishable from the one
obtained with a sharp step.

d = 3.5lB (c). Vertical lines represent the center position of the
smooth step potential. Figure 6(a) shows that, for d = 0.5lB ,
there are beatings on the right-hand side of the barrier which
correspond to the coherent superposition of electronic waves
over the two edge channels (the period of the oscillations
corresponds to 2π divided by the difference of the wave vectors
of the two outgoing modes, as expected). Such beatings are
progressively suppressed as the barrier becomes smoother,
eventually disappearing for d = 3.5lB [see Fig. 6(c)], when
the edge channel injected from region I is totally transmitted
to region II without mixing. It is worthwhile noting that the
plot relative to d = 0.5lB is indistinguishable from the plot
relative to a sharp edge. All simulations that we have performed
confirm the picture of a crossover from the channel mixing
situation to the adiabatic regime, reached when the potential
step varies over a scale of a few magnetic lengths.

V. CONCLUSIONS

In this paper we have investigated the edge channel mixing
due to steps potentials in a 2DEG in the IQH regime. Coherent
mixing can be linked to the zero-bias linear conductance of
each individual channel by the Landauer-Buttiker formalism.
Recent experiments indicate that localized scattering might
couple drastically cyclotron-resolved edge channels,21 and
nonadiabatic engineered potentials are thought to be the key
for the implementation of scalable electronic interferometers
implemented by using IQH edge channels, according to
Ref. 10.

In the case of a single sharp step we have found that, in the
presence of two edge channels on each side of the step, the
channel mixing probability cannot be larger than a few percent.
Channel mixing, though, can be substantially enhanced by
putting in series a small number of steps. More precisely, 50%
mixing can be already be reached with four steps of large
height, provided that one can control the phase accumulated
by the electrons propagating between two consecutive steps. A
quite large mixing can also be attained if the height of the steps
is large enough to allow a single channel only on its right-hand
side. In the last section, we have finally addressed the effect
of the step potential on the electron density probability even
in the case where the step is smooth. Our findings suggest the
possibility of employing engineered breaking of the adiabatic
transport regime of IQH edge channels as a tool to induce
scattering among otherwise independent propagating modes,
which can be relevant in the characterization of the coherent
transport. As a future direction we plan to extend our results
investigating the role of interactions, whose effect is not
negligible in regimes where the confinement potential is
smooth and large bias is applied.
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