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Electron-hole dynamics in normal and deuterated KH2PO4 illuminated
by intense femtosecond laser pulses
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The dynamics of electrons and holes in potassium dihydrogen phosphate (KH2PO4 or KDP) crystals and its
deuterated analog (KD2PO4 or DKDP) induced by femtosecond laser pulses is investigated at λ = 800 nm. To
do so, experiments based on a femtosecond time-resolved interferometry technique have been carried out. It
is shown that two relaxation dynamics exist in KDP and DKDP crystals. Both of them correspond to physical
mechanisms for which the multiphoton order required to promote valence electrons to the conduction band is
lower than the one of a defect-free crystal. These results suggest the presence of states located in the band gap
that may be due to the presence of defects existing before any laser illumination or created in the course of
interaction. In order to interpret the experiments, a model based on a kinetic equation system has been developed.
Modeling results are in good agreement with the experimental data.
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I. INTRODUCTION

Potassium dihydrogen phosphate (KH2PO4 or KDP) and its
deuterated analog (KD2PO4 or DKDP) are dielectric materials
commonly used to convert laser light to shorter wavelengths.
However, laser-induced damage in these materials remains a
limiting factor in the development of high-power laser systems
designed to produce inertial confinement fusion.1 Indeed,
these crystals are used to produce the 3ω pulses (λ = 351
nm) required to induce an efficient energy deposition into
a target made of a deuterium-tritium mixture. These pulses
have an average fluence close to 10 J/cm2 and a duration
of roughly 3 ns, which results in pulses exhibiting low
intensities of a few GW/cm2. Despite such features, it has been
shown that laser-induced damage (LID) appears in the bulk of
(D)KDP crystals, which is detrimental for the laser aperture.1

Therefore, in order to improve the laser flux resistance of these
crystals, there is a need to understand the underlying physical
mechanisms responsible for LID.

LID is localized, i.e., the crystal is not damaged uni-
formly. It is thus assumed that the LID originates from
precursor defects (enhancing the laser absorption) that may
be present within the crystal before any laser illumination or
that appear during the course of interaction. Some of these
defects have been identified, but their relation to LID in
the nanosecond time scale has not been clearly established
yet. The defects created are essentially connected with the
proton transport within the hydrogen bond network. This
displacement induces various types of point defects, e.g.,
deuterium or hydrogen interstitial atoms D0/H0, oxygen
vacancies for which a hole is trapped next to them, and
[HPO4]− centers ([DPO4]− in DKDP) for which a hole is
trapped next to the hydrogen-deuterium vacancy. The latter
species are often called A radicals. Well-known defects in KDP
crystals are also the B radicals that consist of a self-trapped
hole (STH) associated with the [H2PO4]0 center ([D2PO4]0

in DKDP). See, for instance, Refs. 2–6 and references
therein for a more detailed description of these defects.

Above the picosecond time scale, the defect recombination
appears to be governed by a thermally-activated diffusive
process.7

The LID of (D)KDP crystals have been studied both
experimentally and theoretically in the nanosecond time scale
(see, for example, Refs. 8–14). The evolution of the fluence
required to reach a given damage level with respect to the laser
wavelength shows a striking feature: this fluence evolves by
successive plateaus,8 which can be explained by introducing
states located in the band gap (SLG).15,16 Nevertheless,
because of the nanosecond time scale, the previous studies
only provide poor information about the precursor defects.
Indeed, the long time that elapses after the initial absorption,
during which an efficient nucleus activity has occurred, gives
rise to a loss of information about the precursor defects. In
this framework, femtosecond time-resolved experiments are
clearly of great interest, and ultrashort pulses present at least
two advantages. First, they allow us to expose the sample to
much higher intensities. For wide-band-gap dielectrics, this
means it is possible to excite efficiently a large density of
carriers by a nonlinear process, subsequently increasing the
sensitivity of any probing experiment. Second, by performing
a time-resolved experiment, it is possible to decompose and
to get a much clearer view of the successive mechanisms.
To our knowledge, two experiments have been carried out
in this femtosecond domain for KDP crystals: Davis et al.17

used a pump-probe technique, providing indications of the
system dynamics, and Carr et al.18 performed spectroscopic
measurements during the optical breakdown.

In order to further understand the physical mechanisms
leading to LID in (D)KDP crystals and to improve the
knowledge about the fundamental electronic mechanisms
involved in these dielectric materials, we have carried out
studies in the femtosecond time scale, allowing us to follow
the initial steps of electronic relaxation and atomic rearrange-
ments. The experiment, described in Sec. II, consists of a
femtosecond time-resolved interferometry technique that was
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successfully used to investigate the relaxation dynamics in var-
ious materials.19,20 We have chosen to deal with λ = 800 nm
in order to be able to vary the laser intensity in a large range
before reaching the ablation threshold. Also, this allows us
to accurately determine the order of the multiphoton process,
which can shed light on the presence of SLG. Further, this
experiment allows measuring the relaxation dynamics of the
photoexcited bulk electrons in both KDP and DKDP crystals.
It is shown that the relaxation dynamics can depend on
the laser intensity and the isotope under consideration. We
concentrate on the importance of self-trapping of electrons
and holes in the defect creation process. These experimental
results are reported in Sec. III, where a first analysis of the
data makes it possible to introduce a modeling approach
aimed at describing the previously mentioned mechanisms.
In order to finely analyze these results, we have developed in
Sec. IV a model based on a kinetic equation system (KES)
that predicts the time evolution of the electronic densities
associated with the various states. The comparison between
experimental and modeling results renders it possible to
evaluate the generalized multiphoton absorption cross sections
and the capture cross section, which are shown to depend on the
electron kinetic energy. Conclusions are drawn in Sec. V, and
a few analyses are reported in the Appendixes for the reader’s
convenience.

II. EXPERIMENTAL PROCEDURES

Experiments were performed with KDP and DKDP single
crystals manufactured by Saint-Gobain. The DKDP crystal
was grown by slowly cooling a supersaturated solution of KDP
and heavy water. The KDP crystal was prepared under fast-
growth conditions. Both of them have high optical quality.
The crystal was oriented far away from the phase matching
angle and was moved after each measurement point; that is,
each data point was measured on a fresh site. We used the
Saclay Laser-matter Interaction Center-LUCA laser facility of
the CEA Saclay.21 This laser delivers pulses of duration τL =
55 fs (full-width half-maximum, FWHM) of 30 mJ at 800 nm
(1.55 eV), but less than 1 mJ is needed for our experiment.
The laser temporally gated to have a single-shot beam that is
divided into two fractions; one part is the pump pulse, and the
second fraction, the probe pulse, is divided in two parts in a
Michelson-type interferometer before being focused onto the
sample.

The principle of this experiment is described in detail in
Ref. 20 and is based on interference fringes in the frequency
domain obtained when two collinear femtosecond pulses
separated by a fixed time delay (whose maximum value is
�t = 90 ps in this experiment) are observed at the exit
of a monochromator. The fringe system is recorded by a
charge-coupled device camera, and a Fourier analysis allows
us to extract the phase and amplitude information for the probe
beam that has crossed the sample. When a high-intensity pump
pulse is focused on the sample at some time between the two
probe pulses, the fringes are distorted due to the material index
modifications, and their contrast decreases. As a consequence,
the induced phase shift �� between the two probe pulses
can be measured as a function of time by changing the delay
between the pump pulse and the probe pulses. Within the

Drude model, �� is expressed as20

��= 2πL

λ

{
n2I + e2

2n0ε0

[
−fcbncb

m∗ω2
+ ftrntr

m
(
ω2

tr − ω2
)]}

, (1)

where L is the effective length over which the index is
modified, λ is the wavelength of the probe beam, I is the
intensity of the pump laser, n2 is the nonlinear index, ncb is the
density of conduction electrons, fcb is the oscillator strength
for the transitions occurring in the conduction band (CB),
ntr is the density of electrons trapped in the band gap, h̄ωtr

corresponds to the energy difference between the fundamental
and the first excited state of the induced defect and ftr is its
corresponding oscillator strength, ω is the laser frequency of
the probe beam, m is the electron mass, and m∗ is the electron
effective mass in the conduction band.

The measurement of �� with respect to the time delay
between the pump and the probe pulse gives access to the
evolution of quantities ncb and ntr with respect to time and,
thus, information on the physical mechanisms of excitation,
defects creation, and relaxation. The first term of Eq. (1)
represents the Kerr effect, which induces a real positive
contribution since �nKerr = n2I and n2 is positive. It gives
both the zero time delay and the experimental time resolution,
which is of the order of 120 fs (FWHM). The second term,
which is proportional to the density of electrons that have been
excited by the pump pulse in the conduction band, is always
negative. The last term stands for the trapping of the electrons
subsequent to a defect formation. It can be positive or negative,
depending on the sign of (ω2 − ω2

tr). The time-dependent ncb

can be separated from the Kerr effect since in most cases
the lifetime of the free carriers is longer than the laser-pulse
duration. Hence, just after the pump pulse, the maximum value
of the negative phase shift corresponds to the total number of
carriers excited by the pump pulse.

III. EXPERIMENTAL RESULTS

For both crystals and for a wide range of pump intensities
we have measured the phase shift �� at various time
delays between the pump and probe laser beams. The chosen
wavelength is 800 nm in order to be able to vary the laser
intensity over a large range before reaching the ablation
threshold, which is measured to be about 68 TW/cm2 (waist
of 64 μm). In this way, an accurate determination of the order
of the multiphoton process is possible, which gives interesting
information on the presence of SLG.

For KDP, we present in Fig. 1 the phase shift and the
absorption with respect to the time delay up to 1500 fs after
the multiphoton excitation induced by the laser pump with
I = 60 TW/cm2. Just after zero delays, the fast generation of
free carriers is demonstrated by both the negative value of the
phase shift and the strong absorption in the crystal. It appears
that the dynamics of the electronic relaxation follows two
kinetics, and �� can be fitted at first glance by two exponential
time decays where the fast relaxation time τ1 is around 300 fs
and does not depend on the intensities considered in this
paper. This behavior is characteristic of the fast trapping of an
exciton (self-trapped exciton, STE),19,20 as observed in various
insulators. Experimental evidence of the formation of STE in
KDP has been given by Ogorodnikov,5 who has attributed a
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FIG. 1. (Color online) Evolution of the phase shift (top black
curve) and the absorption (bottom red curve) as a function of the time
delay for a KDP crystal and a laser intensity of roughly 60 TW/cm2.

luminescence at 5.24 eV to the radiative recombination of the
STE, following excitation by VUV photon from synchrotron
radiation. It should also be noted here that the fast relaxation
time τ1 in KDP is comparable to the one measured in SiO2,
KBr, and NaCl. Figure 2 shows the same results as in Fig. 1
but with longer time delays. In order to evaluate the relaxation
times, we use a fitting function based on exponentials, such
as αe−�t/τ1 + βe−�t/τ2 , where α, β, τ1, and τ2 are fitting
parameters. From this kind of measurement, it appears that
the second relaxation time τ2 varies roughly as I−1, where I

is the laser intensity, and has a range of tens of picoseconds.
For instance, for I = 60 TW/cm2, we found τ2 � 8 ps for
KDP, with a root-mean-square relative error (RMSRE) close
to 5%. This fit has been performed in the range �t ∈ [0;20 ps]
in order to avoid the Kerr effect and the trapping that cannot
be described by the above fitting function based on decreasing
exponentials. Further, note that the obtained value of τ2 slightly
depends on the delay time range used. Furthermore, as usual,
it is worth noting that the fitting procedure only provides
trends since there is no reason for the time delay to evolve
with the used fitting function. Actually, as will be shown in
Sec. IV, the evolution of the phase shift with respect to the
time delay is much more complex than a simple superposition
of exponential behaviors. Figure 2 also shows that the phase
shift becomes positive after roughly 40 ps. This latter value
corresponds to defect formation times for which free electrons
are trapped in the h̄ωtr level. Indeed, this corresponds to the
positive contribution of the last term of Eq. (1).

In order to study the isotopic effect, the evolution of the
phase shift with respect to the time delay for KDP and DKDP
is given by Fig. 3. Because of the experimental setup, it was
not possible to obtain data with exactly the same laser intensity
for both crystals. Also, we used I = 42.32 TW/cm2 and
I = 36.8 TW/cm2 for KDP and DKDP, respectively; these
values are sufficiently close to allow a comparison to make
sense. The phase shift for DKDP has the same shape as that of
KDP; that is, it exhibits a fast and a slow relaxation dynamics.
An analogous study made in DKDP reveals the same behavior
as in KDP with the same value for τ1 (�300 fs), suggesting that
this value does not depend on the nature of the isotope present
in the material. The phase shift reaches the zero value for a time
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FIG. 2. (Color online) Same as Fig. 1 but with longer time delays.
The smooth red curve is a fit to evaluate the relaxation time (see text
for more details).

delay close to 50 ps, indicating a slower relaxation kinetics
than for KDP. More precisely, a fit based on the previously
described function indicates that τ2 is close to 10 and 18 ps for
KDP and DKDP, respectively, with RMSRE close to 15%. The
resulting fitting curves are shown in Fig. 3. Also, it appears that
τ2 is almost twice as long for DKDP than for KDP. This factor
can only be reasonably assigned to an isotopic influence since
when dealing with intrinsic mechanisms, the only difference
between KDP and DKDP is that protons are replaced by
deuterons. Furthermore, this type of influence associated with
the isotope effect has already been observed in the literature;
see, for instance, Refs. 5,7,17, and 22. Also, it is worth
noting that we are presently dealing with a migration process
following a hydrogen bond breaking and not dealing with a
decoherence occurring after a few vibrational periods. As long
as the migration process takes place, the dielectric function
evolves. Unlike a relaxation process due to a decoherence
occurring after a few vibrational periods for which the isotopic
influence is to introduce a factor

√
223, there is no clear
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FIG. 3. (Color online) Evolution of the phase shift as a function
of the time delay for KDP (solid black curve) and DKDP (dashed
red curve) crystals. The laser intensities are I = 42.32 TW/cm2 and
I = 36.8 TW/cm2 for KDP and DKDP, respectively. The smooth
blue curves are fits of the data (see text).
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FIG. 4. (Color) Evolution of the phase shift as a function of the
laser energy density at (a) �t = 150 fs and (b) �t = 20 ps in a
DKDP crystal. The red (medium gray) curves are the best fits of
the experimental data with a power law. For �t = 150 fs, the green
(light gray) and blue (dark gray) curves are fits with a power law
with an exponent equal to 2 and 4, respectively. Note that for the
highest energy densities, a deviation from the power-law behavior
is observed because the damage threshold is reached. It turns out
that the corresponding plasma density strongly absorbs and reflects
the probe beam, and the measurement does not make sense in these
conditions.

interpretation of the observed factor 1.8. Nevertheless, we
propose that during its migration, the proton or deuteron has
to get over potential barriers, possibly by tunneling.17,22 Since
the probability of getting over a potential barrier is larger
when the particle mass is small, the proton migrates more
easily than the deuteron, resulting in a faster relaxation
dynamics for KDP. Despite using a different experimental
setup, Davis et al. have also measured a factor close to 2
between relaxation signals of KDP and DKDP.17

To investigate the presence of intermediate states that may
play a role in the excitation mechanism, we have determined
the order of the multiphoton process. To identify this order, we
measured the phase shift as a function of the intensity of the
pump pulse at a fixed delay time. These results are reported in
Fig. 4 for a DKDP crystal. (The results are similar for a KDP
crystal and therefore are not presented here.) The data reported
in Figs. 4(a) and 4(b) correspond to time delays of 150 fs
and 20 ps, respectively, i.e., the fast and the slow dynamics,
respectively. For both KDP and DKDP, we found that the
phase shift evolves as I n with n = 3 for �t = 150 fs. Note that

the experimental data do not only account for the excitation
process at high intensities due to the formation of a dense
plasma absorbing and reflecting the laser pulses. Also, the fits
have been performed for energy densities lower than 3.9 J/cm2

(the value for which no significant experimental artifact was
observed); a comparison between the fits and the experimental
data then makes sense in this energy range. In order to enhance
the reliability of the fit with n = 3, fits with n = 2 and n = 4
have also been plotted in Fig. 4(a), which definitely shows that
we are dealing with a third-order process. Regarding the slow
dynamics, the fitting procedure leads to n = 1 for �t = 20 ps.
This result strongly suggests that electrons have been promoted
to the conduction band by two independent processes, each of
which corresponds to different relaxation dynamics. For both
processes, the multiphoton order is lower than the one expected
for ideal (D)KDP crystals. Indeed, since the band gap is close to
7.7 eV,8 five photons would be required for an electron to make
a transition from the valence band to the conduction band.
From this study, we conclude that a nonnegligible density
of SLGs exists in both materials or is rapidly created in the
course of interaction. This observation is consistent with first-
principles density functional theory calculations, showing that
oxygen or hydrogen vacancies induce SLG.10,11 A schematic
illustration of the corresponding band structure and of the two
excitation-relaxation processes is given in Fig. 5. Finally, for
both KDP and DKDP, we found that the damage threshold for
a single-shot laser at 55 fs is 68 TW/cm2. This result indicates
that the fine electronic structure modification due to the isotope
influence does not significantly change the photon absorption
cross section.

The previous results allow us to make first a hypothesis
about the mechanisms involved during and after the laser
irradiation. Also, on the basis of previous published scenarios,
we tentatively provide interpretations of the experimental data.
At 800 nm, the electronic heating is high enough to induce
hot electrons ([H2PO4]− → [H2PO4]0 + e−

hot).
7 This suggests

that B radicals (which consist of a STH associated with the
[H2PO4]0 center in KDP - [D2PO4]0 in DKDP) are involved
because, first, a STE may be associated with the STH and,

Process 1 Process 2
VB

CB

TR TR

SLG1

SLG2

FIG. 5. (Color online) Schematic illustration of the band structure
of KDP crystals. Process 1 involving SLG1 corresponds to the fast
relaxation dynamics. Process 2 involving the SLG2 corresponds to
the slow relaxation dynamics. The solid red arrows indicate the
absorption of photons, whereas the dashed blue arrows illustrate the
relaxation toward the trapped state TR.
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second, the free-hole trapping is intrinsic: the number of
recombination centers does not depend on the laser intensity
or, subsequently, the trapping rate τ−1

h . [This fact is used in
Eq. (3) in Sec. IV.] It follows that many of these electrons
can first recombine with holes in a time scale of 300 fs
[Eq. (2) in Sec. IV], but a fraction of the excited electrons
and holes might relax because of a second mechanism that
takes place on a longer time scale. Indeed, the formation time
of a hydrogen defect is around 1.6 ps.17 Thus, the shallow
traps can be immediately formed under beam excitation and
participate, in turn, to promote the valence electrons to the CB.
According to McMillan and Clemens,7 [H2PO4]0 + e− →
[HPO4]− + H is effectively a possible second reaction where
A radicals are produced. This second process is intensity and
isotope dependent and may only need one photon to promote
electrons from the states close to the CB. Here the thermalized
electrons and holes move independently of each other, and
both the electrons and holes can be stabilized in a variety of
positive and negative traps.10,11,16 In particular, the following
reactions may take place: [H2PO4]− + free hole → [H2PO4]0

and, subsequently, [H2PO4]0 + free electron → [H2PO4]−.
The latter reaction is governed by the electron-capture cross
section σc.

7 It is noteworthy that the latter reaction can take
place only when the crystalline lattice is relaxed, i.e., when
the inverse reaction [HPO4]− + H → [H2PO4]− has occurred.
Also, our measurements show that the relaxation of carriers
can last up to 20 ps (KDP) or 40 ps (DKDP), which clearly
shows the influence of the isotope, i.e., the relation between the
diffusivity coefficient of hydrogen or deuterium and the atom
mass, i.e., a migration process. We also suggest an original
scenario based on the presence of charged oxygen vacancies
that may be implied in the second process since they introduce
two SLGs.11 It is noteworthy that these defects can be present
in large concentrations even at room temperature.4 Also, this
defect may significantly enhance the multiphoton absorption
cross section and produce a large amount of free electrons (to
our knowledge, it has not been shown that STE are associated
with oxygen vacancies). Indeed, these (PO3)2− centers have
already been identified as strongly enhancing the absorption.4

Because of the laser heating, these free electrons can break
hydrogen or deuterium bonds, thus producing the A radicals.
The following relaxation based on crystalline rearrangements
then should be as previously described.

In order to confirm the above-mentioned mechanisms of
excitation and relaxation, to interpret finely the experimental
data, and to obtain values of the physical quantities involved in
these processes, such as the multiphoton ionization or capture
cross sections, we have developed a kinetic model with two
excitation-relaxation dynamics.

IV. KINETIC MODEL AND DISCUSSION

Let us now develop a kinetic equation system (KES) in
order to describe the physical mechanisms responsible for the
observed phase shift in the previous section. Also, the aim of
the modeling is to describe the response of the sample and to
extract quantitative information about the different relaxation
processes observed during the experiment.

As an initial remark, we should emphasize the complexity
of the behavior observed in both KDP and DKDP crystals,

which is much more complex than observed, for instance,
in SiO2 or NaCl. In SiO2, the fast relaxation of photoexcited
carriers is associated with the formation of STEs. The trapping
rate (150 fs) is independent of the initial excitation density,
and the intensity dependence of the signal just follows the
nonlinear evolution expected for a multiphoton transition from
the valence band to the conduction band. In NaCl, the situation
is slightly more complex but still easy to handle. In this material
the formation of STE is also the rule, but this arises through a
two-step process: formation of a STH and then trapping of an
electron by the STH. This is why we observe an acceleration
of the process with an increased excitation density: the higher
the density of the STH is, the higher the probability is for an
electron to be trapped. In the present case, the overall set of data
was much more difficult to interpret because of the important
role of SLG. Such a strong influence of empty or occupied
defect states has never been observed in other materials by our
team, at least at intensities up to the breakdown threshold.

Since all the experimental results show that two relaxation
kinetics exist in (D)KDP crystals, we have to introduce two
relaxation mechanisms in the rate equations. Since we use
moderate intensities that do not produce high carrier densities
(no more than 1019 cm−3, as will be shown) for which it
is reasonable to assume that less than one carrier pair is
produced in a cell of the crystalline lattice,24 we assume
that each excitation-relaxation mechanism can be considered
as independent of the other. It supposes that free electrons
and holes are trapped in the vicinity of the place where they
have been produced. Under this assumption, we can derive
independent kinetic models for each mechanism. In addition,
since the excited carrier density is negligible compared to the
density of valence electrons (close to 1023 cm−3), the depletion
of the valence band is not taken into consideration in the
following KES. The comparison of the theoretical predictions
with the experimental data will allow, first, stating whether
this modeling assumption and the following ones are reliable
or not and, second, determining the modeling parameters.

The first relaxation mechanism has no intensity depen-
dence, whereas the characteristic time constant of the second
mechanism depends on the intensity. We assume that the first
mechanism can be associated with the formation and the
trapping of an exciton whose characteristic lifetime τ1 is a
parameter of the model, which can be estimated from the
experimental results. It has to be noted that such a description
corresponds to the behavior observed in SiO2. In order to
account for the third-order intensity dependence in (D)KDP,
we have to assume the presence of a SLG, called SLG1,
located roughly at 3.1 eV above the valence band (see Fig. 5).
SLG1 is assumed to be initially filled (because it is related to
the valence band), and its electronic density does not evolve
during the course of interaction, i.e., nSLG1 = const is imposed.
The latter assumption is supported by the fact that SLG1
is filled with an efficient second-order multiphoton process
compared to the emptying third-order process, as shown by
Fig. 5. The KES corresponding to this first mechanism thus
reads ⎧⎨

⎩
∂n

(1)
cb

∂t
= σ3F

3
pnSLG1 − n

(1)
cb
τ1

,

∂n
(1)
tr

∂t
= n

(1)
cb
τ1

,
(2)
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whereσ3 is the three-photon absorption cross section to bridge
SLG1 to the CB. n(1)

cb , nSLG1, and n
(1)
tr are the electronic densities

in the CB, SLG1, and the trapped state induced by process 1,
respectively. Fp is the photon flux given by I/h̄ω. τ1 is the
relaxation time. Regarding the second mechanism, since both
free electrons and holes have been produced, the free holes
are first trapped, and subsequently, the free electrons can be
trapped by the trapped holes. Also, it is assumed that the free
holes are trapped within a characteristic time constant τh that
accounts for intrinsic hole trapping following laser-induced
bond breakings. τh then lies in the picosecond time domain.
The relaxation time of the free electrons then depends on
the trapped-hole population and their ability to be trapped.
It turns out that the second mechanism exhibits a behavior close
to trends observed in NaCl crystals (see Appendix A). The
corresponding KES for (D)KDP thus should mimic the one for
NaCl. Such a description would imply that the relaxation time
τ2 can depend on the laser intensity, as shown in Appendix A.
More precisely, τ2 and the maximum of the absolute value
of the phase shift |��|max are correlated in the sense where
both depend on I n when n photons are required to promote
valence electrons to the conduction band (see Appendix A).
In (D)KDP crystals, the main difference lies in the fact that
the conduction electrons come from the state located in the
band gap SLG2 (see Fig. 5) and not directly from the valence
band (as shown from the previous analysis of the phase shift
evolution with respect to the intensity at �t = 23 ps). We thus
have to introduce a supplementary rate equation governing
the electronic population associated with this additional state
SLG2. Since it is just below the conduction band (less than
1.55 eV because the absorption of one photon is enough to
induce a transition), it is reasonable to think that this state
is related to the conduction band, and thus, we assume it is
initially empty, i.e., nSLG2(t = 0) = 0. It can be shown that
in the case where this state can be filled without any constraint,
the density of conduction electrons is not a linear function of
the intensity in the general case (see Appendix B). Thus to im-
pose this linear behavior, we have introduced a saturation value
nsat that corresponds to the highest electronic density that can
be reached during the interaction time, i.e., nSLG2(t) < nsat (see
Appendix B). The KES for the second mechanism then reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n
(2)
cb

∂t
= σ1FpnSLG2 − σcvn

(2)
cb

(
n

(2)
th − n

(2)
tr

)
,

∂n
(2)
tr

∂t
= σcvn

(2)
cb

(
n

(2)
th − n

(2)
tr

)
,

∂n
(2)
fh

∂t
= σ1FpnSLG2 − n

(2)
fh
τh

,

∂n
(2)
th

∂t
= n

(2)
fh
τh

,
∂nSLG2

∂t
= σ2F

2
pnSLG1 − σ1FpnSLG2,

(3)

where σ1 is the one-photon absorption cross section to bridge
SLG2 to the CB, σ2 is the two-photon absorption cross section
to bridge SLG1 to SLG2, and σc is the electron-capture cross
section. v is the average electron velocity (see Ref. 20 for more
details), and τh is the relaxation time of free holes. n

(2)
cb , n

(2)
tr ,

nSLG1, and nSLG2 are the densities of electrons in the CB, in
a trapped state, in SLG1, and in SLG2 induced by process 2,
respectively. n

(2)
fh and n

(2)
th are the densities of free and trapped

holes induced by process 2, respectively. In the calculation of
the phase shift, the free- and trapped-electron populations are

given by ncb = n
(1)
cb + n

(2)
cb and ntr = n

(1)
tr + n

(2)
tr , respectively. It

is worth noting that the laser-pulse propagation has been taken
into consideration in the calculations. Indeed, in its course of
propagation, the intensity of the pump pulse can decrease if
the carrier absorption is efficient. Since we deal with a long
distance (L = 100 μm), this effect has to be taken into account.
To do so, we use the well-known Beer-Lambert law, where
the absorption of both conduction and valence electrons is
taken into consideration. The conduction electrons absorption
is evaluated with a Drude model, and it has been observed that
this is the main contribution to the decrease in the laser inten-
sity as soon as the population of excited carriers is significant.

In order to determine the modeling parameters, we use the
fact that the standard phase-shift curves with respect to the
time delay exhibit three regions corresponding to different
physical mechanisms. First, we have the Kerr effect, which
imposes the value of the nonlinear index n2. The second
part of the curves corresponds to the excitation for which
no significant relaxation has occurred. This part allows us to
set the parameters related to the excitation, for instance, the
generalized multiphoton cross sections. Finally, the third part
is associated with the relaxation and allows determining the
relaxation time or the capture cross section. Also, the modeling
parameters corresponding to each of these mechanisms are
pretty decorrelated and can be set independently of each
other. Following this procedure, we then obtained a set of
parameter values that mimic the experimental data. To do
so, the model was simultaneously fitted to the six data sets
by using a Levenberg-Marquardt algorithm. It is noteworthy
that we do not claim the uniqueness of this set. Nevertheless,
having only small deviations from the found values allows us
to reproduce the experimental data. For the whole intensities,
the best fit of the experimental data is obtained with the
parameter values summarized in Table I.25 The obtained
phase shifts as a function of the time delay are reported in
Fig. 6. Except for the product of the capture cross section
with the electron velocity σc × v, all of these values are the
same for both KDP and DKDP crystals. Let us first discuss
these values, followed by the comparison between KDP
and DKDP.

The obtained generalized multiphoton absorption cross
sections are in a fairly good agreement with the empirical
formula σn = 10−19−31(n−1) cm2n/sn−1, where n is the order
of the multiphoton transition.26 The value of τ1 has been set to
300 fs. This short time confirms we are actually dealing with
an exciton: after its promotion, the electron remains linked to
its hole, which allows a fast recombination. This phenomenon
departs from the one associated with τh (describing the second
process), whose value has been set to 1 ps. In that case, τh

accounts for an intrinsic trapping that lies, indeed, as expected
in the picosecond time scale (Ref. 20 and references therein).
It corresponds to a trapping onto a given radical, and thus,
we do not expect a dependence on the isotope. Indeed, we
have found that the results of the simulation are not very
sensitive to τh: several simulations have been realized by
taking a few picoseconds instead of 1 ps, but numerical
results are always in good agreement with the experimental
data. Concerning the electronic density of the SLGs, we
have obtained nSLG1 = nsat = 2 × 1017 cm−3. This value is
compatible with the density of intrinsic defects that can be
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TABLE I. Values of the modeling parameters allowing the best fit of the experimental data for whole intensities.

Parameter Value Comment

n2 1.56 × 10−16 cm2/W nonlinear index
σ1 5 × 10−19 cm2 one-photon absorption cross section
σ2 8.1 × 10−50 cm4/s two-photon absorption cross section
σ3 1.3 × 10−82 cm6/s2 three-photon absorption cross section
nSLG1 2 × 1017 cm−3 density of defects
nsat 2 × 1017 cm−3

τ1 300 fs associated with the three-photon absorption
σcv (KDP) 3 × 10−14 cm2 × 1.45 × 107 cm/s value (σcv)ref for Iref = 42.32 W/cm2;

with respect to I , we have σcv = (σcv)ref (I/Iref )−3.3

σcv (DKDP) 0.7 × 10−14 cm2 × 1.45 × 107 cm/s value (σcv)ref for Iref = 36.8 W/cm2;
with respect to I , we have σcv = (σcv)ref (I/Iref )−3.3

τh 1 ps intrinsic hole trapping time
h̄ωtr 5.86 eV trapping energy
fcb 1 free-electron oscillator strength
ftr 1.2 trapped-electron oscillator strength

observed in crystals. Further, according to Liu et al.,11 these
defects may correspond to charged oxygen vacancies since
they exhibit the same order of magnitude of the electronic
density and produce two additional states located in the band
gap. Furthermore, the obtained values of nSLG1 and nsat are
also compatible with the density of defects introduced by
Ogorodnikov et al.5 to account for observed decay times.
Regarding the trapped state, we have set h̄ωtr = 5.86 eV. This
value is compatible with luminescence data obtained in the
literature.5 Further, this value renders it possible to likely locate
the position of the trapped state in the band structure, as shown
in Fig. 5. Finally, the value of the nonlinear index extracted
from the experimental data is 1.56 × 10−16 cm2/W. Because
our experimental setup is not designed for measuring this
quantity, its value is slightly lower than the standard measured
value close to 2.3 × 10−16 cm2/W.27

In order to reproduce well the experimental behavior with
respect to the laser intensity, we have also introduced a
dependence of σcv on the intensity as σcv ∝ I−3.3. Since σcv

is a function of the conduction electron kinetic energy Ek , this
power-law dependence suggests that Ek always depends on I

when the trapping event occurs. From a general point of view,
σcv can be proportional to E−x

k E
1/2
k , where x is a constant. In

the case where Ek can be approximated by a power law of the
intensity as I y , then the comparison between experimental data
and numerical calculations imposes (−x + 1/2)y = −3.3.
The reliability of the assumption is supported by the fact that
the conduction electrons are strongly heated by the pump laser
pulse. Indeed, it can be shown that they can reach a kinetic
energy that can be as high as 100 eV (see Appendix C).28

Further, just after this heating, Ek is proportional to I . When
the conduction electrons release their energy (because of
electron-phonon collisions), a simple classical description of
the evolution of Ek with respect to time allows us to show
that Ek remains close to a power law of the intensity as I y ,
where 1 < y < 2 (see Appendix C). Also, the comparison of
the modeling results with the experimental data leads to the
conclusion that the conduction electron has kept information

about its initial energy gain at the trapping moment. Since
the trapping occurs in the picosecond time scale, i.e., a long
time after the initial laser heating, it can be shown that y may
be close to 2 (see Appendix C). From the above-mentioned
relation (−x + 1/2)y = −3.3, we then deduce that the capture
cross section evolves roughly as E−1

k . This exponent is
compatible with data available in the literature; see, for
instance, Ref. 32.

Let us now come back to the second dynamics associated
with the relaxation time τ2. Calculations give values ranging
between 10 and 20 ps. Further, since τ2 can be approximated by
(σcvσ1n0IτL)−1, the intensity dependence of σcv introduces a
departure from the expected typical I−1 behavior20. In that case
it can be shown that |��|max and τ2 are no longer correlated
regarding the intensity dependence (different from the study
provided in Appendix A).

We finally compare KDP and DKDP results. In order to
mimic the experimental difference between them, we have
introduced a dependence of σc on the isotope.33 The way
we proceed is supported by experimental results given in
Ref. 7, where it is shown that the recombination of radicals
[H2PO4]0 ([H2PO4]0 + e− → [H2PO4]−) is faster than the
one for [D2PO4]0 ([D2PO4]0 + e− → [D2PO4]−). Actually,
this kinetics is governed by a free energy of activation �G

for recombination of this radical that has been found to
be proportional to the relative concentration of deuterium.
We interpret this fact as if the recombination time of the
free electron depends on the isotope. Actually, we think that
the electrons are able to efficiently recombine only when the
ionic structure is stabilized, the H-based structure stabilizing
faster than the D-based one. This interpretation is consistent
with the fact that annealing of [H2PO4]0 or [D2PO4]0 is related
to the freezing of hydrogen or deuterium along the hydrogen
or deuterium bond.7 The capture cross section thus should
account for this fact. To take this influence into consideration,
we simply change the value of σc depending on whether
we consider KDP or DKDP crystals. Also, the values of σc

reported in Table I allow us to reproduce the experimental
data. It is worth noting that the larger value of the capture cross
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FIG. 6. (Color online) Evolution of the phase shift as a function
of the time delay for (left) a KDP crystal and (right) a DKDP crystal
for several laser energies: (a) 42.32, (b) 52.47, (c) 59.25, (d) 23.55,
(e) 29.07, and (f) 36.8 TW/cm2. The noisy black curves and the
smooth red curves correspond to the experimental data and modeling
results based on the resolution of the KES, respectively. Note that a
logarithmic scale is used on the horizontal axis in order to underline
both relaxation dynamics.

section corresponds to the KDP crystals, and since τ2 ∝ σ−1
c ,

we obtained effectively τ2(KDP) < τ2(DKDP).
With the values of the modeling parameters as discussed

above, we can reasonably state that a good agreement between
experimental data and theoretical predictions is obtained.
Further, one can observe that the overall behavior of the phase
shift cannot be reduced to a simple combination of exponential
functions for describing the decreases. Also, it appears that the
KES is able to mimic the complex evolution of the phase shift
with respect to time.

Another look at the variations of the phase shift with
respect to the laser intensity for a given time delay [Fig. 4(b)]
also enhances the reliability of our modeling approach. An
extrapolation of the linear fit does not go through the origin,
whereas a zero phase shift is expected for a zero intensity.
Actually, our modeling allows us to explain the whole
evolution of this phase shift with respect to the intensity.
For low intensities, SLG2 is not significantly filled in the

course of interaction, resulting in a phase shift evolving as I 3

(see Appendix B). For large enough intensities, SLG2 rapidly
reaches the saturation density nsat, thus leading to an evolution
of the phase shift as I 1 (see Appendix B). Also, as the laser
intensity increases, the linear dependence in Fig. 4(b) may
come after a cubic one (not measured due to experimental
uncertainties), allowing the curve to go through the origin.

On the basis of the models described here, we are able to
evaluate the maximum free-electron density produced by the
laser pulses. For laser intensities of 23.55 and 52.47 W/cm2,
this density is close to 1018 and 1019 cm−3, respectively.
These orders of magnitude are consistent with previous
investigations.19,20 Furthermore, we confirm a posteriori the
assumptions made at the beginning of this section.

V. CONCLUSION

In order to study the excitation and the relaxation of
carriers in (D)KDP crystals, we have carried out femtosecond
time-resolved interferometry. This study has shown that two
excitation-relaxation processes exist in KDP and DKDP.
Both excitation mechanisms are assisted by the presence of
electronic states located in the band gap, leading to a nonlinear
dependence upon pump laser intensity that is below the one
expected from a direct five-photon transition. The first one
results from a third-order process, with a fast relaxation time of
300 fs. This first process has been identified with the formation
and relaxation of a self-trapped exciton. The second process
corresponds to a signal having a linear dependence upon the
laser intensity. The associated relaxation dynamics is much
slower than the first process, its time being on a tens of
picoseconds time scale. Since this relaxation time depends
on the laser intensity and the isotope under consideration, this
process is associated with the breaking of hydrogen bonds due
to hot free electrons and a subsequent rearrangement of the
crystalline lattice. All of these facts have been supported by a
model based on a kinetic equation system aimed at describing
the time evolution of the electron densities associated with
the various states. From this approach, we have been able to
obtain more information about the physical mechanisms. Also,
we have been able to evaluate the generalized multiphoton
absorption cross sections and the capture cross section. The
latter has been shown to depend on the electron kinetic energy.
In particular, it appeared that the conduction electrons can be
heated up to 100 eV.

These results clearly show the existence of states located in
the band gap. Also, beyond providing information regarding
the fundamental electronic processes in the dielectric material
under consideration, the present study confirms the conclu-
sions obtained by two teams in the nanosecond range.8,15 We
further show that the electronic density associated with these
states is close to 1017 cm−3, which is consistent with previous
work.5 Since oxygen vacancy exhibits states located in the
band gap with electronic densities comparable to our values,
these defects are believed to be responsible for the observed
data. Also, the comparison between the results obtained in both
the nanosecond and the femtosecond regime strongly support
the fact that oxygen vacancies are involved in laser-induced
damage of KDP and DKDP crystals both in the femtosecond
and nanosecond regimes. It is noteworthy that in the case of
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nanosecond damage where the laser beam is not focused on
the sample, the defect responsible for damage may actually
be a cluster of holes next to oxygen vacancies induced by the
presence of a structural defect.16,34

We now plan to perform similar experiments but using
the third harmonic of the LUCA facility, corresponding to a
wavelength of 266 nm. Since the number of photons required to
promote valence electrons to the conduction band is different
compared to the present study, different states are expected
to be excited. We then expect to obtain more information
about the electronic mechanisms that can be excited in KDP
or DKDP crystals.
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APPENDIX A: REVISITED KINETIC MODEL
FOR SiO2 AND NaCl

In Ref. 20, it has been observed for silica that the relaxation
time does not depend on the intensity. The KES thus only has
to account for a multiphoton excitation and an exponential
decay as follows: {

∂ncb
∂t

= σnF
n
pn0 − ncb

τ
,

∂ntr
∂t

= ncb
τ

,
(A1)

where ncb and ntr stand for the conduction and trapped-electron
populations, respectively. The term σnF

n
pn0 describes the

production of free particles by the simultaneous absorption of
n photons. τ is an effective relaxation time. n0 is the electronic
density in the ground state, which is assumed not to be modified
in the course of interaction, i.e., ncb � n0.

For NaCl crystals, a dependence of the phase shift with
respect to the laser intensity has been observed by Martin
et al.20 In order to account for this fact, Martin et al. have
invoked a two-step relaxation mechanism: since both free
electrons and holes have been produced, once the free holes
are first trapped, the free electrons can then be trapped by
the trapped holes. Also, it is assumed that the free holes
are trapped within a characteristic time constant τh that
accounts for intrinsic hole trapping following laser-induced
bond breakings. τh also lies in the picosecond time domain.
The relaxation time of the free electrons then depends on the
trapped-hole population and their ability to be trapped. The
kinetic model describing these processes then reads⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ncb
∂t

= σnF
n
pn0 − σcvncb(nth − ntr),

∂ntr
∂t

= σcvncb(nth − ntr),
∂nth
∂t

= nfh
τh

,
∂nfh
∂t

= σnF
n
pn0 − nfh

τh
,

(A2)

where ncb, ntr, nfh, and nth stand for the densities of free
electrons in the conduction band, trapped electrons, free
holes, and trapped holes, respectively. The electron trapping
efficiency is described by the product σcv, where σc is the
electron-capture cross section and v is its velocity. τ−1

h is an
intrinsic hole trapping rate. Let us now evaluate the behavior

of the physical parameters of interest for us with respect to the
laser intensity. Regarding the maximum of the absolute phase
shift amplitude, since it corresponds to a situation for which no
significant relaxation has occurred, it is mainly related to the
free-electron density, which is proportional to the production
term. It follows that

|��|max ∝ I n. (A3)

Concerning the electron relaxation time τeff , its instantaneous
expression is given by the inverse of σcv(nth − ntr). Also, the
larger the number of available trapped holes is, the faster the
relaxation is. In the case where not too many electrons have
been trapped, (nth − ntr) can be approximated by nth, the latter
population being proportional to I n. [This can be shown by
solving exactly the hole rate equations of Eq. (A2).] It follows
that

τeff ∝ 1

σcvσnF n
pn0

∝ 1

I n
. (A4)

From the previous considerations, it appears clearly that
|��|max and τeff are correlated because both of them depend
on the same power of the laser intensity.

APPENDIX B: ROLE OF AN INTERMEDIATE STATE
ON THE INTENSITY DEPENDENCE OF THE

FREE-ELECTRON POPULATION

Let us consider the promotion of valence electrons into
the conduction band assisted by an intermediate state (see
Fig. 7). We assume the promotion to be a two-step process
where the transition from the valence band to the intermediate
state and the transition from the intermediate state to the
conduction band result from the absorption of n and m photons,
respectively. The electrons are assumed to pass through the
intermediate state during a certain time. The resulting rate
equations during the course of interaction are{

∂ncb
∂t

= σmFm
p nSLG − ncb

τ
∂nSLG

∂t
= σnF

n
pnvb − σmFm

p nSLG,
(B1)

where τ is an effective relaxation time. It is assumed that
the variations of nvb are negligible, i.e., nSLG(t) � nvb and
ncb(t) � nvb for all times. This system can be solved exactly,

VB

SLG

CB

n photons

m photons

FIG. 7. Schematic band structure including one state located in
the gap. VB and CB denotes the valence band and the conduction
band, respectively. n photons are required to bridge the VB to the
SLG, whereas m photons are required to bridge the SLG to the CB.
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and with nSLG(t = 0) = ncb(t = 0) = 0 as initial conditions,
we obtain

nSLG(t) = σnF
n
pnvb

σmFm
p

(
1 − e−σmFm

p t
)

(B2)

and

ncb(t) = σnF
n
pnvb

[
τ (1 − e−t/τ ) − e−σmFm

p t − e−t/τ

τ−1 − σmFm
p

]
.

(B3)

If the electronic population associated with the intermediate
state does not reach any saturation, i.e., σmFm

p t � 1, then
expression (B3) transforms into

ncb(t) � σmσnF
m+n
p nvb

[
τ t − τ 2(1 − e−t/τ )

1 − σmFm
p τ

]
. (B4)

In this case, we thus have roughly ncb ∝ Im+n. In the case
where nSLG rapidly reaches a certain value nsat in the course of
interaction, such that nSLG cannot exceed nsat, the resolution of
the differential equation governing ncb(t) in Eq. (B1), where
nSLG is replaced by the constant nsat, leads to

ncb(t) � σmFm
p nsatτ (1 − e−t/τ ) (B5)

and, subsequently, ncb ∝ Im. Also, the introduction of a
saturation density allows us to lose any information on how
the intermediate state has been filled. This fact allows us to
explain simply why ncb exhibits a low-order dependence on
the intensity when SLGs are present.

APPENDIX C: CONSIDERATIONS ABOUT THE KINETIC
ENERGY OF THE CONDUCTION ELECTRONS

Here we address the evolution of the kinetic energy Ek of
the conduction electron as a function of time. In particular, we
analyze its behavior with respect to the laser intensity I . When
the conduction electrons are accelerated in the electric field of

the laser pulse, they are heated up to an energy Ek0 that can be
evaluated with a Drude model. This energy reads

Ek0 = e2

cε0m∗
νcτL

ω2 + ν2
c

I, (C1)

where νc is the collisional frequency between electrons and
phonons, τL is the pulse duration, and e, ε0, m∗, and c

denote the usual fundamental constants. An estimation of Ek0

is obtained by taking νc = 1015 s−1 and I = 10 TW/cm2.
We find Ek0 � 100 eV. Since the laser pulse has switched
off, the conduction electrons release their energy into the
lattice through collisions with phonons. Let us now analyze
the electron energy decrease with respect to time. Since we
are dealing with electrons carrying a relatively large energy,
we adopt a classical description that allows us to provide
trends. For every collision, the electron loses the energy of a
phonon Uph. We assume that this event occurs with a frequency
νe−ph. We obtain

Ek(t) = Ek0 − νe−phUpht = Ek0 − αE
1/2
k (t)Upht, (C2)

where α is a constant. It has been assumed that νe−ph is
proportional to the electron velocity v, and the relation Ek =
mv2/2 has been used. Simple algebra allow us to determine
an explicit expression of Ek(t) from Eq. (C2).We obtain

Ek(t) = 1

4

(√
(αUpht)2 + 4Ek0 − αUpht

)2

. (C3)

Ek(t) indeed decreases monotonically as a function of time.
For the shortest times, of course, we find Ek(t = τL) � Ek0

and thus Ek(t = τL) ∝ I . For times for which Ek(t) goes
to zero, i.e., t 	 2

√
Ek0/αUph, we can show that Ek(t) →

(Ek0/αUpht)2 and thus Ek(t) ∝ I 2 in this case. From these
two boundary cases, we can thus approximate the behavior
of Ek(t) with respect to the intensity to be I y , with y in the
interval [1; 2]. It is noteworthy that the previous considerations
about the intensity dependence of Ek(t) remain valid as long
as Ek(t) > Uph. If not, quantum effects become dominant.
Moreover, in the case where Ek(t) goes down to Uph, Ek(t) no
longer depends on the intensity.
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30F. Quéré, S. Guizard, and P. Martin, Eur. Phys. Lett. 56, 138
(2001).

31B. Rethfeld, Phys. Rev. B 73, 035101 (2006).
32R. Heppner, F. Walls, W. Armstrong, and G. Dunn, Phys. Rev. A

13, 1000 (1976).
33The kinetic equations only account for the population of the carriers.

So they cannot describe explicitly the ion’s mobility. This goal
then is achieved by introducing an implicit dependence on the
isotope in σc.

34G. Duchateau, Opt. Express 17, 10434 (2009).

075114-11

http://dx.doi.org/10.1364/OL.30.000661
http://dx.doi.org/10.1209/0295-5075/29/5/009
http://dx.doi.org/10.1103/PhysRevB.55.5799
http://iramis.cea.fr/slic
http://dx.doi.org/10.1364/JOSAB.11.000774
http://dx.doi.org/10.1016/j.cplett.2004.03.107
http://dx.doi.org/10.1016/j.cplett.2004.03.107
http://dx.doi.org/10.1080/00107518808213751
http://dx.doi.org/10.1016/j.optcom.2003.10.046
http://dx.doi.org/10.1103/PhysRevLett.97.237403
http://dx.doi.org/10.1209/epl/i2001-00499-9
http://dx.doi.org/10.1209/epl/i2001-00499-9
http://dx.doi.org/10.1103/PhysRevB.73.035101
http://dx.doi.org/10.1103/PhysRevA.13.1000
http://dx.doi.org/10.1103/PhysRevA.13.1000
http://dx.doi.org/10.1364/OE.17.010434

