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Surface and edge states in topological semimetals
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We study the topologically nontrivial semimetals by means of the six-band Kane model. Existence of surface
states is explicitly demonstrated by calculating the local density of states (LDOS) on the material surface. In
the strain-free condition, surface states are divided into two parts in the energy spectrum, one part is in the
direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence
band. We also show how uniaxial strain induces an insulating band gap and raises the crossing point from
the valence band into the band gap, making the system a true topological insulator. We predict the existence
of helical edge states and spin Hall effect in the thin-film topological semimetals, which could be tested by
future experiments. Disorder is found to significantly enhance the spin-Hall effect in the valence band of the
thin films.
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I. INTRODUCTION

Topological insulators (TIs) have been recognized as novel
states of quantum matter.1 They are of tremendous interest
to both fundamental condensed matter physics and potential
applications in spintronics as well as quantum computing.
TIs are insulating in the bulk which is usually due to
direct bulk band gaps. However, on the boundary there
are topologically protected gapless surface or edge states.
Usually in these materials the spin-orbital coupling is very
strong such that the conduction band and valence band
are inverted. Such phenomena have already been reported
in the literature of the 1980s.2–6 However, the topological
nature behind these phenomena was not revealed at the
time. With the recent development of topological band
theories, a series of materials including HgTe quantum
well, BixSb1−x , Bi2Se3, and Bi2Te3 have been theoretically
predicted and experimentally realized as two-dimensional
(2D) and three-dimensional (3D) TIs.7–9,11–15 The search
for TIs has been extended from these alloys and binary
compounds to ternary compounds. Very recently a large
family of materials, namely the Heusler-related and Li-based
intermetallic ternary compounds, have been predicted to be
promising 3D TIs through first principle calculations.16–22

The enormous variety in these compounds provides wide
options for future material synthesizing of TIs. However,
despite the fact that an insulating bulk is a critical prerequisite
to the TI theory, none of these newly found materials are
naturally band insulators. Many of them are semimetals or
even metals. It has been shown that the band structure and
band topology of many of these compounds closely resemble
that of the zinc blende structure binary compound HgTe and
CdTe.16–22

In this work we study the evolution of surface states in these
topologically nontrivial compounds whose band structures
closely resemble 3D HgTe by means of the six-band Kane
model. By studying the local density of states (LDOS) on the
material boundary, we demonstrate explicitly the existence of
surface states in the direct band gap. Furthermore, we show
that in the strain-free condition, the surface states are separated

into two parts in the band structure. One part exists in the
direct band gap, the other part of surface states (including the
crossing point of the Dirac cone) submerges in the valence
bands. The latter surface states have distinct momentum-
dependent spatial distribution from the former. By applying
uniaxial strains, the crossing point can be raised up into
the strain-induced insulating gap. In the thin films made of
these materials, topologically protected helical edge states
will emerge on the sample edges. In this way we show a
crossover between 3D TIs and 2D TIs. In the strain-free
condition, the bulk band gap can be controlled by tuning
the film thickness. Meanwhile, we found that in the thin
films, disorders or impurities can significantly enhance the
spin-Hall effect (SHE) when the Fermi level is in the valence
band.

II. MODEL HAMILTONIAN

3D HgTe and CdTe share the same zinc blende structure.
The band topology of these two materials is distinguished by
the band inversion at the � point, which happens in HgTe
but not CdTe. This causes HgTe to be topologically nontrivial
while CdTe is trivial.3,11,28 The essential electronic properties
of both are solely determined by the band structure near the
Fermi surface at the � point, where the bands possess �6

(s-type, doubly degenerate), �8 (p-type, j = 3/2, quadruply
degenerate), and �7 (p-type, j = 1/2, doubly degenerate)
symmetry.25 The band inversion in HgTe takes place because
the �6 bands appear below the �8 band, whereas in the normal
case (such as CdTe) �6 is above �8 (see Fig. 1).23,24 In this
work, we use a six-band Kane model Hamiltonian which takes
into account the �6 and �8 band. The spin-orbit split off �7

band usually appears far below the �6 and �8 bands and hence
can be neglected because it does not affect the low-energy
approximation. The six-band Kane model describes the band
structure near the � point well and adequately captures the
band inversion story.3,28 As expected, we find gapless surface
states exist in the direct gap of 3D HgTe while absent
in CdTe.
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The six-band Kane Hamiltonian is

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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where
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2m0
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x + k2

y,

k± = kx ± iky, T = Eg + B(2F + 1)
(
k2
‖ + k2

z

)
,

U = −Bγ1
(
k2
‖ + k2

z

)
, V = −Bγ̄

(
k2
‖ − 2k2

z

)
,

where m0 is the electron mass. For the simplicity of the
physical picture, we have taken the axial approximation
γ̄ = (γ2 + γ3)/2 which makes the band structure isotropic
in the kx,ky plane. Eg , Ep, F , γ1, γ2, and γ3 are material-
specific parameters. The basis functions are denoted as
(|ψ1〉,|ψ2〉)�6,(|ψ3〉,|ψ4〉,|ψ5〉,|ψ6〉)�8. Here we take the pa-
rameters of HgTe just for an illustration of the physics
(Table I). The same physics should also happen in the recently
discovered Heusler and Li-based ternary compounds which
share similar band topologies.16–22

III. TWO TYPES OF SURFACE STATES
IN 3D SEMIMETALS

Without strain, HgTe is a semimetal with an inverted band
structure. At the � point, the conduction band [�8 light hole
(LH)] touches the valence band [�8 heavy hole (HH)] and
the �6 is below the �8 band (see right part of Fig. 1). In the
Hamiltonian H0 the band topology is solely determined by
the parameter Eg . At the � point, LH and HH are degenerate
at energy E = 0, and �6 is at position E = Eg . So when
Eg > 0, the band structure is normal and insulating with a
positive energy gap � = Eg . When Eg < 0, the band structure
is inverted �6 appears below LH and HH. In this case, the
system is semimetal since the bulk band gap � is always
zero because of the LH/HH degeneracy. We will show this
semimetal is topologically nontrivial by showing that gapless
surface states exist in the direct gap of LH and HH. And
by lifting the degeneracy of LH and HH by strain or finite
confinement which makes � nonzero, the system instantly
becomes a topological insulator. Whereas in trivial semimetals,

TABLE I. Band structure parameters of HgTe at T = 0 K.25

Eg EP = 2m0P
2/h̄2 F γ1 γ2 γ3

−0.3 eV 18.8 eV 0 4.1 0.5 1.3

lifting the zero band gap only turns the systems into trivial band
insulators.

To study the topological properties of this Hamiltonian we
transform it into a tight-binding model on a cubic lattice, where
such approximation substitutions are used:

ki → 1

a
sin(kia), k2

i → 2

a2
[1 − cos(kia)], (2)

here ki refers to kx,ky , and kz, a is the lattice constant which
is taken to be 4 Å; in this work. This approximation is valid in
the vicinity of the � point.

Surface states reside only on the system surface, which will
project larger LDOS on the surface than the bulk states. Thus
the surface LDOS can be studied to identify the existence
of surface states. The surface LDOS is given by ρ(k) =
− 1

π
TrImG00(k), where G00 is the retarded Green’s function

for the top layer of a 3D lattice. In a semi-infinite 3D system
the surface Green’s function can be obtained by means of the
transfer matrix,

G00 = (E − H00 − H01T)−1, (3)

T = (E − H00 − H01T)−1H
†
01, (4)

where H00 and H01 are the matrix elements of the Hamiltonian
within and between the layers (or supercells) and T is the
transfer matrix. Usually Eq. (4) can be calculated iteratively

FIG. 1. (Color online) A schematic illustration of the band
inversion between �6 and �8 the left is the normal case where the blue
curve represents the LH and HH of the �8 valence band, the right is
the inverted case where the LH flips up and becomes the conduction
band, the �6 appears below the HH band.
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FIG. 2. (Color online) (a) Surface LDOS of 3D HgTe without strain, bright line in the direct gap between LH and HH �8 bands indicates
the first-type surface state, bright regions in the valence band indicates the second-type surface state, E�6 < E0 < EHH = ELH . (b) An
insulating band gap is opened with strain Tε = 0,Uε = 0,Vε = −0.224 eV, the first- and second-type surface states become connected,
E�6 < EHH = E0 < ELH . (c) Same as (b) at Tε = 0.1 eV, Uε = −0.05 eV, Vε = −0.25 eV, note that the �6 band has been inverted with the
HH �8 band and thus appears in the middle of �8 bands (LH and HH), i.e., EHH < E�6 < E0 < ELH . A highest LDOS limit is set and higher
data points have been filtered to this limit for a clearer view of the whole spectrum.

until T converges, which is quite time consuming. Here we
use a fast converging algorithm proposed by Sancho et al.
to calculate the transfer matrix.26 In Fig. 2(a) we present the
LDOS on an infinite xy surface, where the z dimension is semi-
infinite. As expected, the LDOS clearly shows the existence
of surface states between the LH and HH bands. Through
further checking we find that these states indeed reside only
on the surface boundary [see Fig. 3(a)]. Its spatial distribution
is in the decaying form beneath the surface. Interestingly,
we also find another kind of surface state submerging in the
valence bands [bright crossing regions in the valence band
of Fig. 2(a)]. It shows up between the inverted �6 and HH
�8 bands. We confirm its surface-state nature by checking its
spatial distribution along the z direction [Figs. 3(b) and 3(c)].
It is found that the spatial distribution of this surface state has
a very distinct form from that of the LH and HH bands. It bears
the oscillating feature of LDOS of bulk states [see Fig. 3(d)]
but is also clearly decaying beneath the surface. We call the
former surface state as the first type and the latter the second
type. Both types of surface-state project much larger LDOS on
the surface than the bulk states. However, the first-type surface
state is clearly decoupled from the bulk states while the second
type is coupled with the valence bulk conduction states.

The spatial distribution can be obtained by enlarging the
supercell when calculating the surface Green’s function G00.
For example, take the first 50 layers as a unit cell, we can
obtain the LDOS distribution in the first 50 layers. Figure 3(a)
shows the spatial distribution of the first-type surface state at
variant k. It shows that the closer to the � point the wider the
wavefunction distributes in space. Only away from the � point,
the first-type surface state shows strong localization on the
surface. Close to the � point, the LDOS distribution is
bulk-like and can barely be recognized as surface state. In
Fig. 2 the bright line indicating the first-type surface has been
highlighted for a clearer view. The Fermi surface of 3D HgTe
is close to the point where the conduction band touches the
valence band.18,29 The first-type surface states at the Fermi
surface distribute widely in the space. They are expected to
make no significant contribution to the transport properties

either. Without appropriate doping or gating it is difficult to
detect the first-type surface states in 3D HgTe experimentally

FIG. 3. (Color online) Surface state (ss) distribution along the
z direction. (a) First-type ss at k = 0.005 (red, plus sign dot),
0.01 (green, cross dot), 0.02 (blue, star dot), 0.035 (pink, empty square
dot) 1/Å. (b) Second-type ss below the crossing point at k = 0.0066
(red, plus sign dot), 0.01 (green, cross dot), 0.014 (blue, star dot),
0.017 (pink, empty square dot), 0.022 (cyan, filled square dot) 1/Å.
(c) Second-type ss above the crossing point at k, same as in (b). (d)
Bulk states at k = 0.0066 1/Å and E = −0.4 eV (red, plus sign dot),
−0.1 eV (green, cross dot), 0.2 eV (blue, star dot).
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either through angle-resolved photoemission spectroscopy
(ARPES) or transport measurements.

Unlike the first type surface states which show up as well-
defined sharp lines in the energy spectrum, the second-type
surface state appears above the boundary of the �6 band as
two crossing bright regions submerging in the valence bands
in the energy spectrum. Its LDOS on the surface is the highest
close to the � point. Away from the � point, the surface
LDOS becomes smaller and finally those states merge into
the bulk states. Also unlike the first-type surface state whose
distribution width becomes very large when approaching the
� point, the second-type surface state’s distribution width in
space does not significantly depend on the momentum. At
the � point, the second-type surface-state energy and wave
function is exactly solvable from the Hamiltonian. We will
show that this point is the crossing point of the surface state
Dirac cone (see text below). Beneath the surface, the LDOS
quickly decays in an oscillatory way. For comparison, we

also plot out the bulk states LDOS which is oscillatory and
extended all over the space without decaying [Fig. 3(d)].
Since from the LDOS the second-type surface state can
be easily distinguished from the bulk states, we believe
they may be easily detected from the ARPES measurements
as well.

IV. ORIGIN OF SURFACE STATES AND STRAIN-INDUCED
BAND GAP

The origin of the two types of surface states can be
understood intuitively in the following way. If we divide the
Hamiltonian into two subspaces which are spanned by two
groups of basis: P1 = {ψ1,ψ4,ψ2,ψ5} and P2 = {ψ3,ψ6}, it is
amazing that the effective Hamiltonian in the subspace P1

is quite similar to the effective model proposed for a 3D
topological insulator.14 The Hamiltonian after arranging the
basis as [P1(ψ1,ψ4,ψ2,ψ5),P2(ψ3,ψ6)] reads

H ′
0 =

⎛
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Without considering the coupling between P1 and P2 sub-
spaces, P1 gives the LH (conduction) and �6 (valence) band,
plus a gapless Dirac cone of surface states between their
gap; P2 gives the HH (valence) which overlaps with the
surface-state Dirac cone and �6 band. After turning on the
coupling between the two subspaces, the surface-state Dirac
cone becomes separated into two parts. One part appears in
the direct gap between LH and HH, the other submerges into
the HH of valence band. In this sense, our results are very
similar to an earlier work which discusses interface states in
Hg1−xCdxTe heterojunctions.3

The �8 degeneracy at the � point makes 3D HgTe a
semimetal. To lift the degeneracy and open an insulating
gap at the Fermi energy, which makes the system a true 3D
TI, we consider applying a uniaxial strain along the (001)
axis.11,28 According to Ref. 23, the additional strain induced
Hamiltonian is introduced as [in the original basis order as in
Eq. (1)]

Hs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tε 0 0 0 0 0

0 Tε 0 0 0 0

0 0 Uε + Vε 0 0 0

0 0 0 Uε − Vε 0 0

0 0 0 0 Uε − Vε 0

0 0 0 0 0 Uε + Vε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the Tε , Uε , and Vε are strain-induced interaction terms.
To illustrate the physical picture more clearly, we have made
these terms artificially large in this work. At the � point,
the boundary for the �6 band is E�6 = Eg + Tε , for the HH
band the boundary is EHH = Uε + Vε , and for the LH band
the boundary is ELH = Uε − Vε . In the strain-free condition,
E�6 < ELH = EHH = 0. However, under strain, the relative
position of the three is subject to change and is determined by
the strain terms.

Surface state at the crossing point of the Dirac cone is
easily solvable directly from the Hamiltonian H0 + Hs , where
kx = ky = 0.30 Using the boundary condition ψ(z = 0) = 0
and ψ(z = −∞) = 0, we get the eigenenergy for the surface
state:

E0 = C + D1M

B1

= (Eg + Tε)(γ1 + 2γ ) + (Uε − Vε)(2F + 1)

γ1 + 2γ + 2F + 1
, (6)

where

C = Eg + Tε + Uε − Vε

2
, M = Eg + Tε − Uε + Vε

2
,

D1 = B

2
(2F + 1 − γ1 − 2γ ), (7)
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B1 = −B

2
(2F + 1 + γ1 + 2γ ).

And the wave function is

ϕ = 1√
2

⎛
⎜⎝ i

√
D+
B1√

−D−
B1

⎞
⎟⎠ c(eλ1z − eλ2z),

with the basis ψ1 and ψ4 or ψ2 and ψ5, where

λ2
1,2 =

D2 ±
√

D2
2 − D3

2D+D−
, with

D2 = −[
A2

1 + D+(E0 − L1) + D−(E0 − L2)
]
,

D3 = 4D+D−(E0 − L1)(E0 − L2),

D± = D1 ± B1, L1 = C + M , L2 = C − M , and A1 =√
2
3P . For the surface-state solution to exist, it is required

that

MB1 > 0.

This condition is easily satisfied in an inverted band structure
without strain, where Eg < 0.

In Figs. 2(b) and 2(c), the spectrum after adding the strain
interaction is plotted. An insulating gap is opened between
the LH and HH �8 bands. Meanwhile, both the first- and
second-type surface states go through an evolution. At a critical
point [Fig. 2(b)] the crossing point can move to the top of the
valence band at the � point and both types of surface states
become connected with each other. On further increasing the
strain strength, the crossing point jumps out of the valence
band and sits in the band gap. At this stage, we find only
one kind of surface state appearing in the insulating gap
[Fig. 2(c)]. The spectrum of surface state forms a gapless
Dirac cone at the � point and the system becomes a typical 3D
TI. Notice that Fig. 2(c) closely resembles the band structure
of 3D TI Bi2Se3 and Bi2Te3.14,15 Although Fig. 2 is obtained
from the tight binding model on a lattice, we find the energy
of the crossing point agrees with the exact solution quite
precisely.

V. EDGE STATES IN 2D THIN FILMS

A. Quasi-2D lattice model

It is, however, technically difficult applying strong enough
strains to make a semimetal insulating in experimental condi-
tions. The finite-size effect can open a gap in the bulk states at
the � point but will also open a gap in the surface states.27,30

Instead of considering the surface states, we make the 3D
topologically nontrivial semimetals into thin films and study
their edge effects in the strain-free condition. The same lattice
model is used as in the 3D case, but now the z dimension is
of finite thickness L. We study the LDOS on the side surface
of a thin film where x is infinite and y is semi-infinite. In
this case, only kx is a good quantum number. In Fig. 4, the
LDOS on the film edge surface for various film thickness is
plotted. In the thick film limit, the band gap opened by the
finite-size effect is not obvious. The spectrum still resembles
that of the 3D case [Figs. 4(a) and 4(b)]. Surface states still

FIG. 4. (Color online) LDOS at the edge of thin films at
different thickness calculated with the 3D lattice model. (a) L =
116 Å; (b) L = 76 Å; (c) L = 36 Å; (d) L = 28 Å; (e) L = 20 Å;
(f) L = 12 Å;.

show residuals on the spectrum. The finite confinement of
z causes energy-level discretization as in a quantum well,
which induces a series of sub-bands appearing in the energy
spectrum as layered structures. When the film is thinned down
the discretized energy level spacing increases. A pair of edge
states with linear dispersion are found in the band gap [Fig. 4(c)
and 4(d)]. The system becomes a 2D topological insulator.
When the film is thinner than 20Å, another transition happens,
the system becomes trivial. The edge states disappear from the
band gap.

B. Quantum well approximation and 2D lattice model

When the film is thin enough, the finite-size-caused band
gap becomes obvious. In this case the finite-confinement-
induced sub-bands are far away from the low-energy regime.
We can then use the quantum well approximation 〈kz〉 =
0,〈k2

z 〉 	 (π/L)2.31 Using these relations in the Hamiltonian
in Eq. (1), and choosing the basis set in the sequence (|ψ1〉,
|ψ3〉, |ψ5〉, |ψ2〉, |ψ6〉, |ψ4〉), we can obtain a two-dimensional
six-band Kane model

H (k) =
(

h(k) 0

0 h∗(−k)

)
, (8)
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where

h(k) =

⎛
⎜⎜⎝
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‖ + 〈k2

z 〉) − 1√
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6
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√
3γBk2

−
1√
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z 〉

⎞
⎟⎟⎠ . (9)

The system keeps time-reversal symmetry, and the represen-
tation of the symmetry operation in the new set of bases
is given by T = K · iσ y ⊗ I3×3, where K is the complex
conjugation operator, σy and I denote the Pauli matrix and
unitary matrix in the spin and orbital space, respectively. We
can study the two blocks separately since they are time-reversal
counterparts of each other. Here we focus on the upper
block first. At kx = 0, the boundaries of �6, LH, and HH
are at E = Eg + B(2F + 1)〈k2

z 〉, E = −(γ1 − 2γ )B〈k2
z 〉, and

E = −(γ1 + 2γ )B〈k2
z 〉, which are controllable by choosing

film thickness L. When L decreases from the thick limit down
to L ≈ 30Å the �6 band flips up and exchanges position with
HH, the system is still nontrivial. Further down to L ≈ 20Å,
�6 flips up and exchanges with the conduction band (LH)
[see Fig. 5(e)]. The band structure then becomes trivial just
as the illustrated case in Fig. 1. This rough picture serves as
an intuitive understanding of the topological transition and
edge-state formation in the thin films. It also agrees with the
result we obtained with the 3D lattice model in Fig. 4. In the
thick film limit, the bulk band gap is always between the LH

FIG. 5. (Color online) LDOS at the edge of thin films at
different thickness using the Hamiltonian (9) with 2D lattice model.
(a) L = 28 Å; (b) L = 25 Å; (c) L = 20 Å; (d) L = 16 Å; (e) illustra-
tion of the position change of LH, HH, and �6 bands as film thickness
is varied.

and HH derived states while in thin limit it is between the �6

and LH derived states. In the thick-film limit, surface states
(on top and bottom surfaces) and edge states (on side surfaces)
coexist. The first-type surface states on the top/bottom surfaces
become the effective bulk states of the film appearing as a
conduction band minimum. The edge states in the thinner
films actually evolve out from the surface states on the side
surfaces, whose nature is 2D instead of 1D.

Using the same approximation as in Eq. (2), we can
transform h(k) into a tight-binding model on a 2D lattice.
In Fig. 5 we show the LDOS on the edge of a semi-infinite
film for h(k). The finite-size gap agrees with that obtained with
the 3D lattice in Fig. 4 well. When L > 20Å, the edge states
are found connecting the valence and conduction bands. After
the system becomes trivial when L < 20Å, the edge states do
not cross the band gap anymore, instead they only attach to the
conduction band. At the critical point L = 20Å, the valence
band and conduction band touch and form a linear Dirac cone
at the low-energy regime, which is shown in both Figs. 4 and 5.
This shows that by controlling the film thickness, it is possible
to obtain a single-valley Dirac cone for each spin block without
using the topological surface states.32 Notice that in Fig. 5
we can also see the edge states submerging in the valence
bands, which is similar to the case of second-type surface
states discussed previously. We call them the second-type edge
states.

C. Chern number description of thin-film band topology

In the quantum-Hall effect (QHE), bulk-edge correspon-
dence tells us that a nonzero Thouless–Kohmoto–Nightingale–
den Nijs (TKNN) integer, summed by the Chern number of
occupied bands, is closely related to the presence of edge
states on the sample boundaries.33,34 For the time-reversal
invariant systems which belong to the universality class of
zero-charge Chern number, the Z2 index is then introduced
to characterize the topologically nontrivial states.7,8 However,
when the Hamiltonian of the system is composed of time-
reversal diagonal blocks,9 the Z2 invariant can be identified
with the parity of the Chern number for each block.11 Focusing
on the upper block of the thin-film Hamiltonian Eq. (8) [i.e.
h(k)], we can discuss the topology of the band structure. To
identify the existence of edge states, we can calculate the first
Chern number of each band and sum up for all occupied bands.
The Berry curvature for each band is defined as35,36

�n(k) = i

(〈
∂un,k

∂kx

∣∣∣∣ ∂un,k

∂ky

〉
−

〈
∂un,k

∂ky

∣∣∣∣ ∂un,k

∂kx

〉)
.

Then the Chern number is computed by integrating the
Berry curvature over the first Brillouin Zone (BZ): Cn =

1
2π

∫
BZ

d2k�n(k). For each block of the 2D lattice model, the
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Chern number can be given to each of the three bands. Tuning
the thickness of the quantum well L can inverse the band
structure near the � point, resulting in the change of Chern
number for the touching bands. Several critical thicknesses
for L can be found when there is a band touching at the
� point: L ≈ 30Å and L ≈ 20Å. The numerical result of
this integral divides the parameter space into three regions:
for L ∈ (30Å, + ∞), Chern number C = 1,0,−1 arranged
in sequence from the lowest energy band to the highest
(the same for the latter two cases); for L ∈ (20Å,30Å),
Chern number C = 2,−1,−1, and for L ∈ (0,20Å), Chern
number C = 2,−2,0. When the Fermi level lies between
the highest and the middle energy band, the TKNN integer
N = 1 for L ∈ (20Å, + ∞) and N = 0 for L ∈ (0,20Å).
The former case is topologically nontrivial [referred to in
Figs. 5(a) and 5(b)] and the latter is trivial [referred to in
Fig. 5(d)].

VI. QSHE AND DISORDER-ENHANCED
SPIN-HALL EFFECT

The edge state picture in thin films can be verified with
explicit Landauer-Büttiker calculations.37,38 We construct a
four-terminal Hall bar device using the tight binding version of
the Hamiltonian (8). Because the system keeps time reversal
symmetry (TRS), we need only consider a single block of
the 6 × 6 Hamiltonian. The transverse charge conductance of
each sub-block is defined as Gtc = G12 − G14. Gij denotes
the conductance between terminal i and j , which is given by
Gij = e2

h
Tr[�iG

R�jG
A]. �i = i[

∑R
i −∑A

i ] is the spectrum
function of lead i. GR/A is the retarded and advanced Green’s
function of the sample which has taken into account the four
semi-infinite leads through the self-energy

∑R/A

i : GR/A =
[E − Hc − ∑4

i=1

∑R/A

i ]−1. Hc denotes the Hamiltonian of the
shaded region of the sample.38–40 In a real system with TRS, the
transverse charge conductance calculated here corresponds to
the transverse “spin” conductance, which is defined as Gts =
G

↑
tc − G

↓
tc. The longitudinal conductance is defined as Gl =

G
↑
13 + G

↓
13. However, it should be noted that the “spin” up or

down here is only an index of each Hamiltonian sub-block
and does not mean real spin. The bases of each sub-block
are hybrids of j = ±1/2 and j = ±3/2 states of �6 and �8

bands.9

In Fig. 6, we show the result for a film whose thickness
is 25Å. In the clean limit, i.e., without disorder, in the
finite-size induced band gap, the Gl vanishes, Gts is quantized
as Gts = 2e2/h (with G

↑
12 = G

↓
14 = e2/h, G

↑
14 = G

↓
12 = 0),

which proves the existence of helical edge states in the
thin films and indicates the existence of quantum spin-Hall
effect (QSHE).41–45 In the conduction band, the edge states
coexist with the bulk states. Gts there is not quantized, which
implies that the bulk states themselves carry transverse spin
conductance that partly cancels out the quantized spin-Hall
conductance carried by the edge state channels. In the valence
band, similarly, the second-type edge states coexist with bulk
states. Notice that the confinement in the x,y dimension also
generates a finite-size gap in the edge state itself, which is
indicated by the arrow in Fig. 6 where Gts vanishes.

FIG. 6. (Color online) Four terminal Landauer-Büttiker calcula-
tions for thin films. Four identical semi-infinite leads are attached
to the cross-bar device, which is shown schematically in the inset.
Disorders are put on the central area (shaded areas). 200 disorder
samples are taken for each disorder strength W . The arrow indicates
the position of finite-size gap of the helical edge states.

Disorder is recently known to play an important role in
some exotic phenomena in TIs.46,47 In real materials, dirty
impurities are inevitable. It is even possible to control them
artificially.48,49 Here we consider the effect of disorder impu-
rities to the transport properties of the thin films. Anderson-
type white noise is introduced on the lattice model, which
are spin independent on-site random potentials in the range
[−W/2,W/2]. TRS is not violated by disorder. In Fig. 6 we
show the transverse spin conductance Gts of the four-terminal
device at various disorder strength W . The quantized Gts

in the band gap shows robustness against modest disorder
strength, which is expected because the disorder we apply
does not couple the TRS sub-blocks of the Hamiltonian and
thus brings no backscattering between different spin-edge
channels.7,9 Interestingly, Gts is significantly enhanced in both
conduction and valence bands even with weak disorder. While
Gts quickly becomes suppressed in the conduction band when
disorder increases, it still remains enhanced in the valence
band. Notice that with modest disorder strength (3 eV in
Fig. 6), the longitudinal conductance Gl already vanishes in
the low-energy regime, but the transverse-spin conductance
remains enhanced in the valence band. Therefore with modest
disorder strength, we expect a strong-disorder-enhanced spin-
Hall effect in the valence band, which would manifest itself
through strong signals in nonlocal measurements. In a very
recent experiment a similar observation of the SHE difference
in valence and conduction bands has been reported with HgTe
quantum wells.50

VII. SUMMARY

We have demonstrated that the six-band Kane model can
be utilized to study the topological properties of both 3D
and thin-film realistic materials. By choosing proper model
parameters, it describes the band structure well in the low-
energy regime and captures the essential band topological
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features sufficiently. By calculating the LDOS on the system
boundary, the existence of topological surface states is explic-
itly demonstrated. Using the model parameters of HgTe, we
show that even though the system in semimetal surface states
already exists in the material as long as the band structure
is inverted. We also find in the strain-free condition, surface
states are divided into two parts in the spectrum, each of
different characteristics. We demonstrate that uniaxial strains
can generate an insulating gap and transform the semimetals
into true TIs, in which the gapless Dirac cone of surface
states is found in the bulk band gap. Because of the similar
band structures and band topologies, we expect that the same
physics applies to the recently discovered Heusler-related and
Li-based intermetallic ternary compounds, which are mainly
topologically nontrivial semimetals or metals.

We also demonstrate a crossover from a 3D topological
semimetal to 2D QSHE insulators. In the thin films made
of these materials, we predict the existence of helical edge
states and QSHE in the strain-free condition. And finally we
show that disorder plays an important role in the transport
properties in the thin films. It significantly enhances the SHE
in the valence bands.
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