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Wood anomalies in resonant photonic quasicrystals
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A theory of light diffraction from a planar quasicrystalline lattice with resonant scatterers is presented. Rich
structure, absent in the periodic case, is found in specular reflection spectra, and interpreted as a specific kind of
Wood anomaly, characteristic of quasicrystals. The theory is applied to semiconductor quantum dots arranged in
Penrose tiling.
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I. INTRODUCTION

The discovery of quasicrystals initiated new fields of re-
search in solid-state photonics.1,2 These deterministic objects
allow Bragg diffraction of light, like conventional photonic
crystals, but are not restricted by the requirement of periodicity,
and thus can be more easily tailored to the desired optical
properties. Such an extra degree of freedom is especially
important for the control of light-matter interaction in resonant
photonic structures,3 where the constituent materials possess
resonant excitations, like excitons or plasmons. For example,
a one-dimensional polaritonic Fibonacci quasicrystal based
on quantum-well excitons has been realized in Ref. 4, while
the two-dimensional (2D) plasmonic deterministic aperiodic
arrays of metallic nanoparticles have been fabricated in
Ref. 5.

It is also known that the interaction of light waves with
diffraction grating can lead to the so-called Wood anomalies
in optical spectra.6–9 They can be defined as rapid variations
of the intensity of various diffracted spectral orders in certain
narrow frequency bands.6 Indeed, the incident plane wave
can undergo either specular reflection or diffraction. The
interference of these processes may result in intricate optical
spectra. However, to the best of our knowledge, no systematic
study of Wood anomalies in quasicrystalline gratings has
been performed yet, although their high importance for light
transmission through aperiodic arrays of holes in metallic thin
films has been mentioned in Ref. 10. Here we consider light
diffraction from the 2D resonant photonic quasicrystals and
crystals made of quantum dots. The main results of our paper
are summarized below:

(1) For the periodic quantum dot lattice tuned to the in-plane
Bragg diffraction condition, the specular reflection spectrum
is dominated by a single peak. A weakly resolved notch where
reflectivity turns to zero is present at the wing of this peak and
corresponds to the lattice Wood anomaly.

(2) In the quasicrystalline lattice, this notch is shifted
and an additional structured peak emerges in the reflection
spectrum. The second peak can be interpreted as a lat-
tice Wood anomaly of novel type, absent in the periodic
case.

The rest of the paper is organized as follows. In Sec. II we
formulate the problem and outline the calculation technique.
Section III presents approximate analytical results for the
reflection coefficient. Results of analytical and numerical
calculation are discussed in Sec. IV. Section V is reserved
for conclusions.

II. PROBLEM DEFINITION AND METHOD
OF CALCULATION

The structure under consideration consists of quantum dots,
arranged in the canonical Penrose tiling2,11 in the xy plane
and embedded in the dielectric matrix. The incident wave
propagates along the z axis, see Fig. 1(a). The Penrose tiling
shown in Fig. 1(b) has fivefold rotational symmetry and can be
defined as follows. First we introduce the basis of five vectors

en =
[

cos

(
2πn

5

)
, sin

(
2πn

5

)]
, n = 1, . . . ,5.

Then five sets of equidistant parallel lines rn,j are defined,
each set normal to the corresponding vector en: rn,j ·
en = j + (2/5), where index j accepts all integer values.
Finally, each cell in the obtained grid, bounded by the
lines r1,j1 ,r1,j1+1, . . . ,r5,j5 ,r5,j5+1, is mapped to the point
r = ar

∑5
n=1 jnen, belonging to the Penrose lattice with the

rhombus side equal to ar . Such an approach is termed as
the dual multigrid technique.12 It can be used to generate
quasiperiodic lattices with arbitrary degrees of rotational
symmetry. Other equivalent definitions of the Penrose tiling are
based on the cut-and-project technique.13 The lattice structure
factor

f (q) = lim
M→∞

1

M

M∑
j=1

e2iqrj =
∑

h1...h4

fGδ2q−Gh1 ...h4
(1)

is shown in Fig. 2. It consists of Bragg peaks at the
2D diffraction vectors Gh1...h4 = G∗ ∑4

n=1 hnen, where G∗ =
4πτ 2/(5ar ) and τ = (

√
5 + 1)/2 is the golden mean. The

structure factor f (q) has C5v rotational symmetry. It means that
each diffraction vector with an absolute value G > 0 belongs
either to the set of five vectors Gen (n = 1, . . . ,5) or to the
opposite set Gen. Within each set the structure factors are
identical. In what follows we will call each such set a “star” of
diffraction vectors. Since f−G = f ∗

G, an absolute value of the
structure factor is the same for both stars and thus has tenfold
rotational symmetry.

Electric field E satisfies the wave equation

rot rot E(r) =
(

ω

c

)2

D(r), (2)

where the displacement vector D(r) = εb E(r) + 4π Pexc(r)
includes a nonresonant contribution, characterized by back-
ground dielectric constant εb, and excitonic polarization Pexc.
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FIG. 1. (Color online) (a) Schematic illustration of light reflection
from Penrose tiling of quantum dots. (b) Canonic Penrose tiling.

The material relation between the excitonic polarization and
the electric field reads14

4π Pexc(r) = T (ω)
∑

a

�(r − a)
∫

d3r ′�(r ′ − a)E(r ′),

(3)

where the resonant factor T (ω) is given by

T (ω) = πεba
3
BωLT

ω0 − ω − i�
. (4)

Equation (3) contains summation over all dots, centered at
the points a and characterized by excitonic envelope functions
�(r − a). Other excitonic parameters in Eq. (4) are as follows:
longitudinal-transverse splitting ωLT and Bohr radius in the
corresponding bulk semiconductor aB, resonance frequency
ω0, and phenomenological nonradiative damping �. In the
following calculations the excitonic envelope function is
taken in the Gaussian form �(r) = �0(πR)−3/2 exp(−r2/R2),
where R is the characteristic radius of the quantum dot. For a 1s

exciton, quantized in a parabolic potential as a whole, one has14

FIG. 2. Calculated diffraction image of Penrose tiling. The
diameter of each spot, located at the point corresponding to
the Bragg diffraction vector G, is proportional to the absolute value
of the structure factor |fG |. Only the spots with |fG| > 0.15 are
shown. Empty spots correspond to diffraction vector with length
G∗ ≈ (2π/ar ) × 1.05, where ar is the side of the rhombus in Penrose
tiling.

�0 = 2−3/2/

√
πa3

B. The results weakly depend on the details
of the shape of the envelope function for quantum dots that are
small compared to the light wavelength. For instance, similar
equations can be applied to the cluster of small metallic spheres
with the radius R � 2πc/ω

√
εb. In this case the functions

�(r) are constant for r < R and zero for r � R, and the factor
T (ω) should be replaced by the resonant susceptibility of the
metallic sphere near a given plasmon resonance.

Our calculation approach generalizes the methods used in
Refs. 15 and 16. Electric field dependence on the coordinates
x and y is described in the basis of plane waves. Different
plane waves are coupled due to the Bragg diffraction. Coupling
strength is determined by the structure factor coefficients. We
keep in the plane wave expansions only 61 diffraction vectors
G with the largest values of fG , shown in Fig. 2. Substituting
Eq. (3) into Eq. (2) and applying Fourier transformation
Ek = ∫

d3r exp(−ikr)E(r) we obtain a closed equation for
the electric field:

Ek = T (ω)�kÛk

k2 − q2

∑
a

e−ika
∫

d3k′

(2π )3
eik′a�k′ Ek′ + E(0)

k .

(5)

Here q = ω
√

εb/c, �k = �0 exp(−R2k2/4) is the excitonic
envelope in k space, and the matrix Ûk is defined by

[Uk]αβ = δαβ − kαkβ

q2
.

The inhomogeneous term E(0)
k in Eq. (5) describes the

incident wave. We will distinguish in-plane and perpendicular
components of all vectors and use the notation Q = ( Q‖,Qz),
Q‖ = (Qx,Qy). Introducing the structure factor

∑
a

ei(k−k′)a = (2π )2

S̄

∑
G

δ(k‖ − k′
‖ − G)fG, (6)

where S̄ ≈ 0.81a2
r is the mean area per lattice site in the

Penrose tiling,13 we obtain

Ek‖+G,kz
= T (ω)Ûk‖+G,kz

�k‖+G,kz

(k‖ + G)2 + k2
z − q2

∫
dk′

z

2πS̄

∑
G′

fG−G′

×�k‖+G′,kz
Ek‖+G′,k′

z
+ E(0)

k‖+G,kz
. (7)

From now on, we restrict consideration to the case of normal
incidence, E(0)(r) = e0 exp(iqz) and k‖ = 0. To solve Eq. (7),
we multiply each equation by �G,kz

and integrate over kz. This
procedure leads to the following linear equations

�G = iχLGÛG

∑
G′

fG−G′�G′ + δG,0e0 (8)

for in-plane vectors

�G = 1

�q

∫
dkz�G,kz

EG,kz
, (9)

determining the Fourier components of electric field. Other
quantities in Eq. (8) are the dimensionless susceptibility

χ = �0

ω0 − ω − i�
, �0 = πqa3

BωLT(�0)2e−(qR)2/2

2S̄
,
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and complex coefficients

LG = q

qG

erfc

(
iqGR√

2

)
, qG =

√
q2 − G2. (10)

The complementary error function in Eq. (10) is defined as

erfc(x) = 1 − 2√
π

∫ x

0
exp(−t2)dt.

We note, that since erfc(x) vanishes with asymptotics
exp(−x2)/(

√
πx) at x → ∞, both quantities LG and �G

quickly decay at G � 1/R, ensuring the convergence of the
sum over G′ in Eq. (8).

After the vectors �G are found from system (8), the electric
field is found by substitution of Eq. (9) into Eq. (7). At the large
distances from the plane with quantum dots (|z| 
 R,1/q) the
field can be presented as

E(r) =
∑

G

eiGρ ×
{

e−iqGz E(r)
G , (z → −∞),

eiqGz E(t)
G , (z → +∞),

where ρ = (x,y) and the vectors E(r)
G and E(t)

G determine the
amplitudes of the reflected and transmitted waves, respectively.
In particular, we get

E(r)
G e−iqGz = T (ω)

∫
dkz

2π
�q�G,kz

eikzzÛG,kz

k2
z − q2

×
∑

G′
fG−G′�G′ , (z → −∞), (11)

and a similar expression for E(t)
G . The result reads

E(r)
G = ÛG,qG

SG, E(t)
G = e0δG,0 + ÛG,−qG

SG, (12)

SG = iχ
q

qG

∑
G′

fG−G′�G′ . (13)

Thus, the specular reflection coefficient is given by
R(ω) = |S0|2. Due to the fivefold rotational symmetry of the
Penrose tiling, the reflected wave amplitude S0 is parallel to
e0, and its magnitude is independent of the orientation of e0.
We note that for zero exciton nonradiative decay (� = 0), the
energy flux conservation condition along the z direction holds,
i.e.,

|S0|2 + |1 + S0|2 + 2
∑

0<G<q

qG

q

[
|SG|2 − |GSG|2

q2

]
= 1, (14)

where three terms in the left-hand side correspond to specularly
reflected, transmitted, and diffracted waves, respectively.
Equation (14) can be rigorously derived from Eqs. (8)–(13)
taking into account that Re LG = q/qG for G < q.

Reflection coefficient r(ω) ≡ S0(ω) has a simple analytic
form only if the in-plane diffraction is totally neglected,
i.e., only one vector G = 0 is included in the plane wave
expansions of Eqs. (7) and (8). The result reads

r(ω) = i�0

ω̃0 − ω − i(� + �0)
, (15)

where

ω̃0 = ω0 + �0 Im erfc

[
iq(ω0)R√

2

]
. (16)

Thus, the quantity �0 can be interpreted as exciton radiative
decay (evaluated neglecting diffraction), while ω̃0 is the
exciton resonance frequency renormalized by the interaction
with light. In Eq. (16) we have neglected the frequency
dependence of the argument of the error function; it is
evaluated at ω = ω0. Equation (15) is similar to the reflection
coefficient from the quantum-well exciton resonance.14 It is
valid only if inter-dot distances are small compared to the
light wavelength, ar � 2π/q. If ar � 2π/q, the in-plane
diffraction must be included into theoretical consideration.
Generally it can be done only numerically. The analytical
expression for the reflection coefficient, obtained taking into
account the diffraction vector G = 0 and the star of given
diffraction vector G, is presented in the next section. We note,
that although experimental realization of the coupling between
spatially separated quantum dots via an electromagnetic field
is a challenging task, substantial progress has been recently
achieved for dots in the microcavities.17,18

III. REFLECTION COEFFICIENT IN THE TWO-STAR
APPROXIMATION

In this section we consider general quasicrystalline tiling
with N -fold rotational symmetry. The specular reflection coef-
ficient of the normally incident light is calculated analytically.
We take into account N + 1 diffraction vectors, belonging to
the two stars, namely, the trivial star with single vector G = 0
and the star of the given vector G∗, including N diffraction
vectors

Gn = G∗(cos nϕ, sin nϕ), (17)

where n = 1, . . . ,N and ϕ = 2π/N . Coupling between plane
waves corresponding to G = 0 and G = Gn is described by the
structure factor coefficient fG∗ . It is also essential to consider
the coupling between the wave vectors within the star of
vector G∗. This coupling is characterized by structure factor
coefficients

fm ≡ fGm+n−Gn
, (18)

and shown for a Penrose tiling (where N = 5) in Fig. 2(b).
Solid and dashed lines correspond to two possible values of
coupling coefficients fm. Under normal incidence of the wave
e0 exp(iqz), all vectors � lie in the xy plane. Thus, Eqs. (8)
are reduced to

�n = iχLG∗ÛGn

(
N−1∑
m=0

fm�m+n + fG∗�0

)
, (19)

�0 = iχL0f
∗
G∗

N∑
n=1

�n + e0, (20)

where �n ≡ �Gn
for n = 1, . . . ,N . The system (8) includes

2(N + 1) linear equations for the Cartesian components of
the vectors �. To solve it, we use the CNv symmetry of the
problem. The solutions of Eqs. (19) and (20) can be sought in
the form

�0 = 
0e0, (21)
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and(

n,x


n,y

)
= C0

(
e0,x

e0,y

)

+C2

(
cos(2nϕ)e0,x + sin(2nϕ)e0,y

− cos(2nϕ)e0,y + sin(2nϕ)e0,x

)
. (22)

The vector �0 in Eq. (21) is parallel to e0 and its magnitude
is independent of polarization. The structure of Eq. (22)
is more complex. Let us examine it for the C5v point
symmetry group19 of the Penrose tiling. Both terms in Eq. (22)
are transformed by symmetry operations like vectors, and
belong to the irreducible representation E1. They stem from
the direct product D × E1, where D = A1 + E1 + E2 is
a reducible representation describing the transformation of
functions δ(k‖ − Gn), and the representation E1 describes the
transformation of the polarization vector components e0,x and
e0,y . First and second terms in Eq. (22) originate from the
invariant A1 and irreducible representation E2 contained in D,
respectively.

The set of vectors � in Eqs. (19) and (20) is characterized
only by three unknown coefficients 
0, C0, C2. From Eq. (19)
we find that

C0

C2
= 1 + η − 2η(A − B)

η − 1
,

C0


0
= G

Nf ∗
G∗

, (23)

where η = 1 − G2/q2,

A = iχLG∗

N−1∑
m=0

fm cos2 mϕ, B = iχLG∗

N−1∑
m=0

fm sin2 mϕ,

and

G = iNχLG∗ |fG∗ |2
2

1 + η − 2η(A − B)

1 − (η + 1)A + η(A2 − B2)
. (24)

Making use of the second part of Eq. (23) in Eq. (20), we find


0 = 1

1 − iχL0G
.

The reflection coefficient r(ω) ≡ e0 · S0 is found from
Eq. (13):

r(ω) = iχe0 ·
(

�0 + f ∗
G∗

N∑
n=1

�n

)

≡ iχ (
0 + Nf ∗
G∗C0). (25)

The final expression for the reflection coefficient reads

r(ω) = i�0[1 + G(ω)]

ω0 − i� − i�0L0[1 + G(ω)] − ω
. (26)

The coefficientG represents the effect of in-plane diffraction on
the specular reflection coefficient; at G = 0, Eq. (26) reduces
to Eq. (15). Expression (24) can be simplified for the Bragg
structure with q(ω0) = G∗. In this case the coefficient η can
be neglected and

G = iNχLG∗ |fG∗ |2
2(1 − A)

.

FIG. 3. Schematic illustration of the coupling between five wave
vectors of the star G∗en in the Penrose tiling due to Bragg diffraction.

Moreover, near the Bragg resonance the function LG∗(ω) can
be approximated by the following expression

LG∗ ≈
√

ω0

2(ω − ω0)
. (27)

We note, that for odd number N of vectors in a star we have
to include in the analytical calculation also the set of vectors

G−
n = −G∗(cos nϕ, sin nϕ), (28)

opposite to the vectors Gn in Eq. (17). For the Penrose tiling,
where N = 5, it turns out that the two stars (17) and (28)
are not coupled by diffraction and interact independently
with the wave G = 0. Absolute values of the structure factor
coefficients are the same for both stars. Thus, the two-star
approximation Eq. (17) can be easily extended to include
three stars with 2N + 1 diffraction vectors by making the
replacement G → 2G in Eq. (26):

r(ω) = i�0[1 + 2G(ω)]

ω0 − i� − i�0L0[1 + 2G(ω)] − ω
. (29)

For Penrose tiling the values of structure factors corresponding
to G∗ = 4πτ 2/(5ar ) ≈ 1.05 × 2π/ar are |fG∗ | = 0.38, f±1 =
0.47 (solid lines in Fig. 3), f±2 = 0.76 (dashed lines in Fig. 3).

IV. RESULTS AND DISCUSSION

In this section we analyze light reflection from periodic
and quasicrystalline lattices. Before considering the quasicrys-
talline case, it is instructive to examine the periodic lattice
of quantum dots. To test Eq. (26) we focus on quadratic
lattice analyzed in Ref. 15. In this case fm = fG∗ = 1 and
A = B = (N/2)χLG∗ , where N equals 4 or 8 depending on
the value of G∗. Thus, we get

G = iNχLG∗[1 − (G∗)2/2q2]

1 − iNχLG∗ [1 − (G∗)2/2q2]
,
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and

rper(ω)

= i�0

ω0 − i�0{L0 + NLG∗ [1 − (G∗)2/2q2]} − i� − ω
,

(30)

in agreement with Ref. 15. This expression has a pole at
the frequency determined by the sum of contributions of the
stars, corresponding to the vectors G = 0 and G = G∗. The
reflection spectrum R(ω) from the periodic Bragg structure
where

ω0 = ωG∗ ≡ cG∗/nb (31)

is illustrated by dashed curves in Figs. 4(a) and 4(b). We stress
that in Eq. (30) it is important to take into account the singular
dependence of LG∗ on ω, which is approximately described by
Eq. (27). Substituting Eq. (27) into Eq. (30) we obtain a simple
result for the reflection coefficient from the periodic structure:

rper(ω) ≈ i�0

ω0 − ω − i� − i�0L0 − N�0

√
ω0

8(ω0−ω)

. (32)

Equation (32) differs from Eq. (15) by the presence of the
last term in the denominator. This term with the square root
singularity leads to the standard Wood anomalies in periodic
lattices.7 However, it turns out that for the relatively weak
quantum dot exciton resonances (�0/ω0 � 1), the features
due to this singularity are weakly resolved in the spectrum of

FIG. 4. (Color online) (a) Specular reflection coefficient R(ω)
from a Penrose quasicrystal tuned to the Bragg condition ωG∗ = ω0.
(b) Same curves as in (a) but in a semilogarithmic scale. Calculation
was performed for the following set of parameters: �0/ω0 = 10−3,
�/�0 = 0.1, R/ar = 0.2. Solid curve presents numerical calculation
including all diffraction vectors from Fig. 2, while dotted curve is the
analytical result (29), obtained including 11 vectors. Dashed curve
corresponds to the reflection coefficient from a periodic square lattice,
Eq. (30), where N = 4. Other parameters are indicated in text.

the periodic structure. Indeed, the function R(ω) ≡ |rper(ω)|2
has a maximum at

ω1 ≈ ω0 − �0

(
N2ω0

8�0

)1/3

, R(ω1) ≈
(

�0

�0 + �

)2

, (33)

then turns to zero at ω = ω0 and has a second maximum at

ω2 ≈ ω0 + �0

(
N2ω0

16�0

)1/3

,

(34)

R(ω2) ≈ 44/3

5N4/3

(
ω0

�0

)−2/3

,

see dashed curves in Fig. 4. The characteristic notch at ω = ω0

between the two maxima at ω1 and ω2 represents the Wood
anomaly in the optical spectrum. Since R(ω1) 
 R(ω2), this
notch is manifested only in logarithmic scale, see Fig. 4(b).
In the linear scale of Fig. 4(a), only one Lorentzian peak is
resolved in the reflection spectrum at ω1 ≈ ω0 − 12�0. The red
shift ω0 − ω1 of the peak frequency from the exciton resonance
is due to radiative corrections. The absolute value of the shift
is large compared to �0, because the structure is tuned to the
Bragg condition (31).

We now proceed to the quasicrystalline case. Dotted
curves in Fig. 4(a) and Fig. 4(b) depict analytical result (26)
for a Penrose tiling, tuned to the Bragg resonance (31) at
the diffraction vector |G| ≡ G∗ = 4πτ 2/(5ar ). The spectrum
was calculated using Eq. (29) and taking into account the
diffraction vector G = 0 and ten vectors ±G∗en, belonging to
two opposite stars; see empty spots in Fig. 2.

In the quasicrystalline system, Eqs. (24) and (29) for the
reflection coefficient are more complex than in the periodic
case. To find the positions of the maxima and minima of
the reflection coefficient |r(ω)|2, one has to solve quintic
equations, so it is impossible to generalize Eqs. (33) and (34)
directly. However, the calculation clearly demonstrates that the
spectrum for the Penrose tiling remarkably differs from that
in the periodic case. Comparing dashed and dotted curves in
Fig. 4(a), we conclude that the single peak at ω ≈ ω1, given by
Eq. (33) is transformed in a quasicrystal into two distinct peaks
at ω ≈ ω − 12�0 and ω ≈ ω − �0. The dotted curve has also
a dip with R = 0 at ω ≈ ω0 − 9�0, revealed in the logarithmic
scale of Fig. 4(b). This dip is analogous to the Wood anomaly
in the periodic case at ω = ω0. However, the dip frequency
is shifted from ω0. Therefore, it is not given by the condition
of diffraction channel opening q(ω0) = G∗, as in the periodic
structure.

The results of numerical calculation for the Penrose tiling,
including 61 diffraction vectors from Fig. 2(a), are shown by
the solid curve in Fig. 4. Comparing solid and dotted curves,
we see that the spectrum is well described by the analytical
approximation (29). Indeed, since the structure is tuned to the
specific Bragg resonance (31), the spectrum does not change
considerably when extra diffraction vectors with G �= 0, G �=
G∗ are taken into account. The solid curve has only a narrow
additional dip at the right wing of the peak at ω ≈ ω0.

We conclude from Fig. 4 that the reflectivity from the
quasicrystalline lattice tuned to the grating resonance differs
from that from the periodic one by (i) the shift of the position
of the notch where R(ω) = 0 and (ii) the presence of a
second distinct peak in the spectrum. The magnitude of the
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FIG. 5. (Color online) Specular reflection coefficient from Pen-
rose quasicrystals with different lattice constants ar , calculated for
ωG∗/ω0 = 0.985, 1, 1.05, 1.2. For better presentation, each following
curve is shifted upward by 0.4 from the preceding one. Horizontal
lines mark corresponding zero levels. Other parameters are the same
as in Fig. 4.

splitting between the two peaks in the reflectivity spectrum
of the quasicrystal is on the order of �0(ω0/�0)1/3 and can
considerably exceed �0. We interpret the two-peak spectral
shape as a Wood anomaly, emerging due to the quasicrystalline
order. Such spectral structure may be also observed in a slightly
distorted 2D periodic resonant structure16 and in 2D resonant
photonic crystals with a compound elementary supercell.20 To
obtain the spectra with the shape similar to the solid and dotted
curves in Fig. 4 it suffices to tune the structure to the Bragg
condition with the structure factor coefficient large but less
than unity.

Figure 5 illustrates the effect of detuning from the resonant
Bragg condition (31). One can see that the splitting between
the two peaks increases with detuning for ωG∗ < ω0. The
low-frequency peak becomes sharper and its position for
the large detuning, |ω0 − ωG∗ | 
 �0(ω0/�0)1/3, is close to
ωG∗ . For ωG∗ > ω0 the value of the splitting decreases. With
the further increase of detuning the two peaks merge into
one peak with structured dips, similar to what occurs in the
one-dimensional Fibonacci multiple quantum wells.21 The
qualitative difference between spectral shapes for ωG∗ < ω0

and ωG∗ > ω0, revealed in Fig. 5, can be understood taking
into account that the diffraction channel with G = G∗ is closed
for ωG∗ > ω0, i.e., the corresponding wave exp(iqG∗ |z|) is
evanescent.

V. CONCLUSIONS

To summarize, we have developed a theory of light
diffraction on the 2D quasicrystalline planar array of quantum
dots. An analytic expression for specular reflection coefficient
has been derived. While for the periodic lattice the specu-
lar reflection spectrum has a single distinct peak near the
exciton resonance frequency, for the quasicrystalline lattice
the spectrum consists of two peaks. This two-peak structure
of the spectrum is related to the interplay between specular
reflection and in-plane light diffraction, and represents a lattice
Wood anomaly, specific for the quasicrystalline structure. The
reflection spectrum for the quasicrystalline lattice also has a
notch with zero reflectivity, being a fingerprint of the Wood
anomaly known in literature. However, contrary to the periodic
case, the position of this notch does not correspond to the
diffraction channel opening condition.
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