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Localization in one-dimensional lattices with non-nearest-neighbor hopping:
Generalized Anderson and Aubry-André models
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We study the quantum localization phenomena of noninteracting particles in one-dimensional lattices based on
tight-binding models with various forms of hopping terms beyond the nearest neighbor, which are generalizations
of the famous Aubry-André and noninteracting Anderson models. For the case with deterministic disordered
potential induced by a secondary incommensurate lattice (i.e., the Aubry-André model), we identify a class of self-
dual models, for which the boundary between localized and extended eigenstates are determined analytically by
employing a generalized Aubry-André transformation. We also numerically investigate the localization properties
of nondual models with next-nearest-neighbor hopping, Gaussian, and power-law decay hopping terms. We find
that even for these nondual models, the numerically obtained mobility edges can be well approximated by the
analytically obtained condition for localization transition in the self-dual models, as long as the decay of the
hopping rate with respect to distance is sufficiently fast. For the disordered potential with genuinely random
character, we examine scenarios with next-nearest-neighbor hopping, exponential, Gaussian, and power-law
decay hopping terms numerically. We find that the higher-order hopping terms can remove the symmetry in
the localization length about the energy band center compared to the Anderson model. Furthermore, our results
demonstrate that for the power-law decay case, there exists a critical exponent below which mobility edges can
be found. Our theoretical results could, in principle, be directly tested in shallow atomic optical lattice systems
enabling non-nearest-neighbor hopping.
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I. INTRODUCTION

Quantum transport of matter waves in the presence of
disorder has long been a topic of interest for condensed-matter
physicists. For one-dimensional (1D) noninteracting systems,
one of the oldest and most extensively studied models for
quantum transport is the single-band, nearest-neighbor (nn)
tight-binding model,

t1(un+1 + un−1) + Vnun = Eun, (1)

where t1 is the nn hopping integral term and Vn is the on-site
disordered potential.1 One of the main merits of Eq. (1) is its
simple form, which lends itself to fast numerical analysis, as
well as exact theoretical statements on quantum transport in
some cases. Arguably the most well known of the latter is when
Vn is bounded, uncorrelated disorder (i.e., the noninteracting
Anderson model2), where it can be shown that all eigenstates of
the system are localized for any nonzero potential strength. An-
other well-known example is the 1D incommensurate problem
[in particular, Vn = V cos(2παn + δ), where α is irrational]
studied by Aubry and André where all eigenstates of the system
are extended for potential strength below a threshold value
(Vc = 2t1) and localized above this threshold.3 Conversely, this
simple form given by Eq. (1) makes it difficult to study directly
in solid-state systems, where the disorder is difficult to control
reliably and interactions can rarely be ignored. However, recent
advances in the manipulation of ultracold atoms in optical
lattices provide a powerful tool for directly examining quantum
transport in fundamental models such as Eq. (1). This has been
most notably demonstrated in recent experiments conducted
by Billy et al., where Anderson localization was directly
observed in a Bose-Einstein condensate (BEC) subjected to a

random laser speckle potential,4 and similarly in experiments
conducted by Roati et al., where Aubry-André duality was
directly observed in a BEC loaded into a quasiperiodic optical
lattice.5 These feats, which previously eluded experimental
observation for decades, illustrate the potential of ultracold
atomic systems to experimentally probe fundamental quantum
phenomena. Considering the degree of control afforded in
ultracold atomic systems, we can systematically relax, in a
controlled manner, basic assumptions inherent in Eq. (1) and
directly study their influence on quantum transport and how
it differs from the well-known Anderson and Aubry-André
results. It is this potential in ultracold atomic systems that
motivates our present work, where we examine quantum
transport in tight-binding, noninteracting models that are
extensions of Eq. (1). In particular, we relax the nn tight-
binding assumption and theoretically examine transport in
models with long- and short-range hopping schemes. Such
models should be representative of diffuse gases of ultracold
atoms loaded into fairly shallow optical lattices.

We can go beyond the nn coupling assumption while still
remaining in the tight-binding framework by including higher-
order hopping terms. The general form of such a model with
on-site disorder is given by∑

m

tmun+m + Vnun = Eun, (2)

where the tight-biding terms tm may assume a variety of forms.
There is a small, but growing body of numerical and analytical
work examining transport in the context of this generalized
model.6–13 In an effort to extend this growing body of work, we
wish to investigate transport through various forms of Eq. (2)
with both incommensurate and random on-site potentials. In
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particular, we study transport in tight-binding models with
next-nearest-neighbor (nnn) hopping (the t1 − t2 model) and
models incorporating an infinite number of hopping terms that
decay by an exponential, Gaussian, or inverse power law.
Since we examine both deterministic bichromatic potentials
and random potentials, this report is divided into two sections.
The first section examines the case of incommensurate
potentials by first studying the exponential hopping model,
which has been shown to have an analytical mobility edge,14

then approximately extrapolating these results to predict the
mobility edges in the nnn, Gaussian, and inverse-power-law
hopping models.15 The second section numerically examines
Eq. (2) with nnn, exponential, Gaussian, and inverse-power-
law hopping for randomly disordered potentials and high-
lights how localization in these models is markedly different
compared to what is seen in the case of the nn Anderson
model.

II. INCOMMENSURATE POTENTIALS

A. Self-dual models

One of the first models to examine quantum transport in
1D incommensurate potentials is the so-called Aubry-André
(AA) model.3 In this model, the on-site term in Eq. (1) is
a cosine with frequency incommensurate with the primary
lattice: Vn = V cos(2παn + δ) where α is an irrational number
and δ is an arbitrary phase. It has been shown that this model
is self-dual under the transformation,

un =
∑
m

fmeim(2παn+δ)eiβn, (3)

when V = 2t1 (i.e., fm satisfies the same eigenvalue equation
as un). Also, under Eq. (3), if the eigenstate un is spatially
localized, then the eigenstate of the dual problem, fm, is
spatially extended and vice versa. Using this property and the
Thouless formula for incommensurate potentials,16 it is argued
that all eigenstates are localized for V > 2t1 and extended for
V < 2t1. The case where V = 2t1 is especially interesting and
has been shown to yield a singular continuous eigenspectrum,
which forms a Cantor set in the thermodynamic limit.17

Furthermore, AA duality can be shown to have a more general
form.18 Consider the model,∑

m

tmun+m + V0vnun = Eun. (4)

If the on-site potential and the hopping terms satisfy the
relation

vn =
∑
m

tmeim(2παn+δ), (5)

then this model also possesses an AA-like duality.
Other models have been shown to possess self-duality

similar to the AA model.13,14 The particular model we consider
here, given by

Eun =
∑
n′ �=n

te−p|n−n′ |un′ + V cos(2παn + δ)un, (6)

is especially interesting because its self-duality condition nat-
urally predicts energy-dependent mobility edges, in contrast
to the AA model.14 To see this we now reiterate the results

given in the previous work on this model to show that Eq. (6)
does have a self-dual condition and we expand on the previous
work to show that this self-dual condition does indeed define
a mobility edge.

We begin by defining the parameter, p0 > 0 such that

(E + t) − V cos(2παn + δ) = �Tn, (7)

Tn = cosh(p0) − cos(2παn + δ)

sinh(p0)
, (8)

� =
√

(E + t)2 − V 2. (9)

Then it follows that (E + t)/V = cosh(p0) and we can rewrite
Eq. (6) as

�Tnun =
∑
n′

te−p|n−n′ |un′ . (10)

If we now consider the transformation

ũm =
∑

n

eim(2παn+δ)Tnun (11)

and note that for p > 0 we have the identity

T −1
n =

∑
m

e−p|m|eim(2παn+δ), (12)

then it follows that the state ũm satisfies the equation

�T̃mũm =
∑
m′

te−p0|m−m′|ũm′ , (13)

where T̃m is given by

T̃m = cosh(p) − cos(2παm + δ)

sinh(p)
. (14)

We see that Eq. (10) is self-dual under the transformation
Eq. (11) when p = p0, or equivalently cosh(p) = cosh(p0)
for p,p0 > 0. Thus, the duality condition for Eq. (6) is given
by

cosh(p) = E + t

V
. (15)

Since the transformation given by Eq. (11) transforms local-
ized states to extended states and vice versa [similar to Eq. (3)],
we expect that the eigenstates of the system are critical (neither
localized nor extended) when Eq. (15) is satisfied.

Similar to the arguments made by Aubry and André for
the AA model, we now expand on the conjecture made in
the previous work14 and argue that the eigenstates of Eq. (10)
are localized for p > p0 and extended for p < p0 [i.e., that
Eq. (15) does, indeed, define a mobility edge]. Since the
Thouless formula used by Aubry and André was derived for
models of the form of Eq. (1), we cannot use it for our particular
model. Therefore, our first step is to generalize the idea of the
Thouless formula for the long-range hopping model. To do
so, we treat � as the eigenvalue and consider the Green’s
matrix,

G(�)m,n = (�I − H)−1
m,n (16)

= cofactor(�I − H)m,n∏
β(� − �β)

, (17)
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FIG. 1. (Color online) Energy eigenvalues and inverse participation ratios of Eq. (6) with 500 lattice sites and α = (
√

5 − 1)/2 for
(a) p = 1, (b) p = 2, (c) p = 3, and (d) p = 4. The solid line represents the analytical boundary between spatially localized and spatially
extended states.

where the cofactor is the appropriately signed determinant with
the mth row and nth column removed and H is the Hamiltonian
corresponding to the eigenvalue equation given in Eq. (10)
where we have set t = 1 without loss of generality; I is the
identity matrix. Assuming a nondegenerate eigenspectrum,
the Green’s matrix has a simple pole for each eigenvalue,
�μ. Since, by definition, the residue of G(�(μ))m,n is the
product of the mth and nth elements of the eigenvector
(i.e., Res[G(�)m,n,�μ] = u

(μ)
m u

(μ)
n ),16 we have for the product

of the first and last elements of the eigenvector

u
(μ)
1 u

(μ)
N = cofactor(�μI − H)1,N∏

β �=μ(�μ − �β)
. (18)

If the state is exponentially localized about the site n′,
then we expect un ∼ exp(−γ |n′ − n|), where γ � 0 is the
characteristic (or Lyapunov) exponent. Therefore, the product
u1uN ∼ exp[−γ (N − 1)]. Thus, the characteristic exponent

for large N is given by

γ (�μ) = lim
N→∞

−(N − 1)−1 ln
∣∣u(μ)

1 u
(μ)
N

∣∣
= lim

N→∞
(N − 1)−1

[ ∑
β �=μ

ln |�μ − �β |

− ln |cofactor(�μI − H)1,N |
]
. (19)

This is the generalized Thouless relation for the characteristic
exponent of a wave function. For the case where H is given by
Eq. (10), the cofactor takes on the form

cofactor(�μI − H)1,N = �N−2
μ e−(N−1)pT −1

N . (20)

Then we have for the characteristic exponent

γ (�μ) = p − ln |�μ| + lim
N→∞

(N − 1)−1
∑
β �=μ

ln |�μ − �β |.

(21)
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We now compare the characteristic exponents of the
eigenvectors of Eq. (10), which we denote as γ (�), with the
exponents of the dual problem Eq. (13), denoted as γ̃ (�). Since
the eigenvalue � is not changed by the transformation given by
Eq. (11), we expect the summation term on the right-hand side
of Eq. (21) to be equal for both Eqs. (10) and (13). Therefore,
the characteristic exponents have the following relation:

γ (�) = γ̃ (�) + (p − p0). (22)

Considering the case when p > p0, since γ̃ (�) � 0, it
follows that γ (�) > 0 and therefore the eigenstate, un is
localized while the dual state, ũn is extended. Similarly, when
p0 > p, we can argue that γ̃ (�) > 0 and therefore the dual
state, ũn, is localized while un is extended. Therefore, returning
to the original problem given by Eq. (6) and using the fact that
cosh(p0) is a monotonically increasing function of p0 > 0,
it follows that the eigenstates are localized for (E + t)/V <

cosh(p) and extended for (E + t)/V > cosh(p).
Similar to the AA model, the self-duality described above

has a general form, considering, again, a model of the form
given in Eq. (4). The model will have this form of self-duality if
the on-site potential and the hopping terms satisfy the relation

A

B − vn

=
∑
m

tmeim(2παn+δ), (23)

where A and B are constants. In particular, the constant B

gives the slope of the the duality condition (i.e., B = E/V0).
We now numerically examine localization in Eq. (6) [and

equivalently Eq. (10)] by calculating the inverse participation
ratio (IPR) of the wave functions, given by

IPR(i) =
∑

n

∣∣u(i)
n

∣∣4(∑
n

∣∣u(i)
n

∣∣2)2 , (24)

0 50 100 150 200 250 300 350 400 450 500
site number

|u
n|

(a) low E state below edge

(b) high E state above edge

(c)state near boundary

FIG. 2. (Color online) Eigenstates of Eq. (6) with 500 lattice
sites, α = (

√
5 − 1)/2, V = 1.8, and p = 1.5 for different energy

eigenvalues: (a) low-energy localized state below the mobility edge,
(b) high-energy extended state above the mobility edge, (c) critical
state near the mobility edge.

FIG. 3. Eigenspectrum of Eq. (10) with varying α for (a) p = 1,
(b) p = 2, and (c) p = 3.

where the superscript i denotes the i- eigenstate. The IPR
approaches zero for spatially extended wave functions and
is finite for localized wave functions and hence has a
useful diagnostic role. Figure 1 plots energy eigenvalues (or
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FIG. 4. (Color online) Inverse participation ratios and energy eigenvalues of all eigenstates of Eq. (25) with 500 lattice sites and α =
(
√

5 − 1)/2 for t2/t1 = (a) 0.05, (b) 0.1, (c) 0.3, and (d) 0.5. The solid curves represent the approximate boundary between spatially localized
and spatially extended states.

eigenstate number) and the IPR of the corresponding wave
functions for Eq. (6) as a function of potential strength, V ,
with α = (

√
5 − 1)/2 and p = 1, 2, 3, or 4. The solid curves

in the figures represent the boundary given in Eq. (15). From
the figure we see that IPR values are approximately zero for
energies above the boundary and are finite for energies below
the boundary. This supports our assertion that the mobility
edge is, indeed, given by Eq. (15).

In Fig. 2, we directly examine sample eigenstates in each
regime (i.e., localized, extended, and near the mobility edge)
for p = 1.5 and V = 1.8. We see that the wave function
is localized for low energies [Fig. 2(a)], extended for high
energies [Fig. 2(b)], and critical near the boundary [Fig. 2(c)].

Finally, we examine the eigenvalues of Eq. (10) for different
values of α at the duality point (p = p0) where we expect the
eigenspectrum to form a fractal set for large N . The results
of this are given in Fig. 3. In the figure, we see that for large

values of p, the eigenspectrum closely resembles the well-
known Hofstadter’s butterfly, which results from the solutions
of Harper’s equation.19,20 For smaller values of p, however,
we see a generalized form of Hofstadter’s butterfly that is not
symmetrical about the the band center, but skewed toward
lower eigenvalues. The self-similarity in the figure suggests
that the eigenspectrum does, indeed, form a Cantor set at the
duality point in the thermodynamic limit.

B. Nondual models

General realizations of Eq. (2) with an incommensurate
potential should not be expected to satisfy either Eq. (5)
or Eq. (23). Thus, the mobility edges in nondual incom-
mensurate problems may not be discernible by theoretical
means. However, approximate theoretical statements can be
made for some nondual models with hopping terms that fall
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FIG. 5. (Color online) Inverse participation ratios and energy eigenvalues of all eigenstates of Eq. (26) with 4096 lattice sites and
α = (

√
5 − 1)/2 for σ = (a) 1.0, (b) 0.5, (c) 0.25, and (d) 0.10. The solid curves represent the approximate boundary between spatially

localized and spatially extended states.

off in some general manner. If this fall off is fast enough,
then the localization transitions in these models are largely
determined by the ratio t2/t1. This ratio can be used to
determine an approximately equivalent model of the form of
Eq. (6), which, as shown in the above section, has an exact
theoretical localization boundary. To show this possibility,
we numerically examine the eigenstates of several nondual
models. In particular, we examine the t1 − t2 model, the
Gaussian hopping model, and the inverse-power-law hopping
model with an incommensurate potential and see how closely
the approximate localization boundary matches with the
numerically observed one.

The t1 − t2 model is the nnn extension of the AA model
and is given by

(
t2(un+2 + un−2) + t1(un+1 + un−1)

+V cos(2παn + δ)un

)
= Eun. (25)

The parameters of the approximately equivalent exponential
hopping model [Eq. (6)] are given by p = ln(t1/t2) and
t = t1e

p. Using Eq. (15), we can approximate the boundary
between localized and extended states. To examine this
approximation we calculate the IPR of the eigenstates of
Eq. (25). The results are given in Fig. 4 for 500 lattice sites,
α = (

√
5 − 1)/2 and various values of the ratio t2/t1. The solid

lines in the figure give the approximate mobility edge given by
Eq. (15). From the figure, we see that for small values of t2/t1,
the approximate boundary is in good qualitative agreement
with the numerical IPR results. For larger values (t2/t1 � 0.3),
however, the boundary differs considerably from the linear
condition in Eq. (15).

The tight-binding incommensurate model with Gaussian
hopping has the form∑

n′ �=n

e−σ |n−n′ |2un′ + V cos(2παn + δ)un = Eun. (26)
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FIG. 6. (Color online) Inverse participation ratios and energy eigenvalues of all eigenstates of Eq. (27) with 2000 lattice sites and
α = (

√
5 − 1)/2 for various values of r . The solid curves represent the approximate boundary between spatially localized and spatially

extended states.

Similar to the t1 − t2 model, the approximately equivalent
exponential hopping model can be determined from the ratio
t2/t1, which yields p = 3σ . The IPR results for this model are
given in Fig. 5 [again, α = (

√
5 − 1)/2]. In this figure, we see

that the approximate boundary is in good qualitative agreement
with the numerical results for larger values of σ . Small values
of σ , however, result in very interesting energy-dependent
mobility edges that are not linear in potential strength, which
is similar to the t1 − t2 results for large values of t1/t2.

For power law decay in the hopping terms, we examine the
model: ∑

n′ �=n

un′

|n − n′|r + V cos(2παn + δ) = Eun. (27)

In this case, the exponential coefficient, p is given by p =
r ln(2). Figure 6 gives IPR results for this model with α =
(
√

5 − 1)/2 and r = 1/3 [Fig. 6(a)], r = 2 [Fig. 6(b)], and
r = 3 [Fig. 6(c)]. In each of these cases, the approximate

localization boundary is in good qualitative agreement with
the numerical results.

From the above numerical results, we see that the localiza-
tion boundary for the exponential hopping model gives a good
qualitative agreement for the Gaussian and inverse-power-law
hopping models with large-enough decay coefficients (i.e., r

and σ � 1). Thus, we believe that the localization boundary
for any tight-binding model with hopping terms that decay fast
enough can be approximated by the results of the exponential
hopping model. In general, however, we see that the energy-
dependent mobility edges in the nondual models are not linear
in V as with the case in the exponential hopping model.
Whether there is an exact theoretical statement to describe
these peculiar mobility edges is still an open question.

III. RANDOM DISORDER

We examine the case of a random potential in the tight-
binding framework in the context of both the nnn model
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FIG. 7. (Color online) Suface plot of the base 10 logarithm of the IPRs for the t1 − t2 model with a random, binary potential for
5000 lattice sites.

(i.e., the t1 − t2 model) and extended schemes where the
coupling may be short ranged in the sense of decaying
exponentially (or more rapidly, as in a Gaussian decay) or
long-ranged with a power-law decay.

We examine the effects of a random potential directly in
the context of characteristics of the eigenstates, by studying
the IPR, which provides information as to the extent of
localization. We calculate the IPR versus eigenstate number
for a range of random potential strengths, which will tend to
localize states.

We produce surface graphs of the IPR to show the
characteristics of the eigenstates with respect to localization.
In addition, one may calculate histograms of the IPR instead
of preparing surface plots with respect to eigenstate number
and the width of the potential. The former complement the
latter by showing how the statistical weight for a particular
IPR value evolves with increasing system size.

We find in both the surface plots and in the histograms
a convergence toward bulk behavior, where self-averaging in
sufficiently large systems reduces the differences in the char-

acteristics of the eigenstates corresponding to independently
generated random potential realizations. In the thermodynamic
limit, the type of tight-binding coupling scheme and the
overall statistical characteristics of the random potential are
the factors which determine the distribution of the properties
of the eigenstates.

In implementing the on-site random potential, we operate
either in terms of a binary potential where the potential at
a particular site assumes the value V or −V with equal
probability or a continuous one which is chosen with uniform
probability between the bounds V and −V . In either case,
the strength of the random potential may be considered to be
parameterized by V . We begin by studying the t1 − t2 model
with random on-site disorder. Figure 7 gives the IPR as a func-
tion of the disorder strength, V , and the eigenstate number, i,
for the eigenstates of the t1 − t2 tight-binding model with a
binary random on-site potential and 5000 lattice sites. In the
figure we see that for t2 = 0, we have the 1D Anderson model
where localization is relatively weak at the band center and
comparatively strong near the band edges.1 However, as we
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(a)t2 = 0

(b)t2 = 0.2

FIG. 8. (Color online) Surface plots
of the base 10 logarithm of the IPRs
for the t1 − t2 model with a random,
uniformly distributed potential for 5000
lattice sites.

increase t2, we see that the weakly localized states shift to
higher energies toward the top band edge. Moreover, as the
relative value of t2 is increased, cross sections of the IPR
along the eigenstate number axis develop a bimodal profile.
In the case where t2 = 0.8 [Fig. 7(d)] the bimodal structure
is particularly stark. In this case we begin to see two distinct
regions of weakly localized states, in contrast to the Anderson
case, where the localization is weakest in the band center,

giving way to more strongly localized states at the band edges.
We also obtain qualitatively similar results when we consider
a uniformly distributed, rather than binary, random potential
(Fig. 8).

In addition to surface plots produced for a single realization
of the random potential, we also generate surface plots of
the IPR with respect to V and eigenstate number where
the results are averaged over a large number of random
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(b)t2 = 0.2

FIG. 9. (Color online) Surface
plots of the base 10 logarithm of the
IPRs for the t1 − t2 model averaged
over 100 realizations of random, uni-
formly distributed potentials with 500
lattice sites.

configurations. In particular, in Fig. 9, we average the IPR over
100 different realizations of an on-site, uniformly distributed
random potential for the t1 − t2 model with 500 lattice sites.
The qualitative similarities among Figs. 7, 8, and 9 suggest
that the localization behavior is self-averaging in the sense
that statistical fluctuations play a small role in determining the

characteristics of the system if the system size N is sufficiently
large.

We now study the randomly disordered tight-binding model
with a Gaussian decay in the hopping terms. Figures 10 and
11 give the IPR as a function of potential strength, V , and
eigenstate number, i, of the eigenstates of the Gaussian decay
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(a)σ = 0.25

(b)σ = 1

FIG. 10. (Color online) Surface
plots of the base 10 logarithm of the
IPRs for the Gaussian hopping model
with a random, binary potential for 5000
lattice sites.

tight-binding model [i.e., tm = exp(−σ |m|2)] with a random
binary and random uniform on-site potential, respectively, and
5000 lattice sites. In both Figs. 10 and 11, we see that for
small σ , the weakly localized states appear at higher energies in
comparison to the Anderson model (similar to the t1 − t2 model
for large t2). For larger σ , the IPR is qualitatively similar to that
of the Anderson model case as would be expected given the
very rapid decay which strongly suppresses hopping beyond

the nns for which the Anderson model is an idealization with
hopping confined strictly to nns. We also average the IPR over
100 different realizations of an on-site, uniformly distributed
random potential for the Gaussian decay hopping model with
500 lattice sites and report the results in Fig. 12. Again, the
qualitative similarities among Figs. 10, 11, and 12 suggest that
self-averaging is at work in the localization characteristics
of the eigenstates. The averaging over many realizations of
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(a)σ = 0.25

(b)σ = 1

FIG. 11. (Color online) Surface
plots of the base 10 logarithm of the
IPRs for the Gaussian hopping model
with a random, uniformly distributed
potential for 5000 lattice sites.

disorder has the effect of removing much of the graininess due
to statistical fluctuations which would not appear in the bulk
limit and seem to be finite size artifacts, while preserving more
smoothly varying characteristics which appear to be associated
with the bulk limit.

Similar results can be seen in the randomly disordered
tight-binding model with exponentially decaying hopping
terms. Figures 13 and 14 give the IPR as a function of potential

strength, V , and eigenstate number, i, of the eigenstates
of the exponential hopping tight-binding model [i.e., tm =
exp(−p|m|)] with a random, binary and random, uniform
on-site potential, respectively, and 5000 lattice sites. Similar
to the Gaussian decay model, we see that for small p, the
weakly localized states appear at higher energies compared to
the Anderson case, and for larger p, the IPR approaches that
in the Anderson case. Moreover, just as we saw in the t1 − t2
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FIG. 12. (Color online) Surface
plots of the base 10 logarithm of the
IPRs for the Gaussian hopping model
averaged over 100 realizations of ran-
dom, uniformly distributed potentials
with 500 lattice sites.

and Gaussian models, evidence of self-averaging may be seen
by examining the average of the IPR over 100 realizations of
a uniform random potential with 500 lattice sites (Fig. 15).

We now turn to the randomly disordered tight-binding
extended model with hopping terms that decay by an inverse
power law. Since this slow form of decay essentially allows
for long-range hopping, the localization characteristics of this

model differ more from those of the Anderson model, where
the hopping scheme is short-ranged, than those of the other
models we have investigated. In Figs. 16 and 17, we show
the IPR for a random, binary and random, uniform on-site
potential, respectively as a function of potential strength, V ,
and eigenstate number, i, of the eigenstates of the tight-binding
model with hopping terms that fall off as tm = 1/|m|r . In
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(a)p = 1

(b)p = 2

FIG. 13. (Color online) Surface
plots of the base 10 logarithm of
the IPRs for the exponential hopping
model with a random, binary potential
for 5000 lattice sites.

these figures, we see that the states near the top band edge are
weakly localized, and the top band edge is possibly delocalized
for r = 1/3 and r = 1. This supports earlier theoretical and
numerical work which suggests that there is, indeed, a mobility
edge at the top band edge for long-range hopping.9–11 We
revisit this question by examining the statistical distribution of
the IPR for successive system size doublings. As in the case
of the previous models with short-range hopping, we again

find evidence of self-averaging in the surface IPR plots in this
model with hopping terms decaying slowly, as power laws,
by examining the average of the IPR over 100 realizations of
a uniform random potential with 500 lattice sites (Fig. 18).
Again, averaging over multiple realizations of disorder yields
a smoother IPR plot by removing minor noisy features
which are essentially statistical fluctuations about the bulk
limit.
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(a)p = 1

(b)p = 2

FIG. 14. (Color online) Surface
plots of the base 10 logarithm of
the IPRs for the exponential hopping
model with a random, uniformly dis-
tributed potential for 5000 lattice sites.

The surface plots show the structure of the IPR with respect
to measures of the random potential strength such as V and the
eigenstate number index. Alternatively, one may concentrate
on the frequency of particular values of the IPR as a way
to obtain a statistical description of the characteristics of the
eigenstates with respect to localization. Although we lose spe-
cific information for individual eigenstates, we gain in return
the ability to observe trends in the statistical characteristics of

the IPR distributions with respect to increasing system size; in
this way, we determine in a rigorous manner what portion of
the states are localized and what portion, if any, have extended
character.

Localized states are associated with a finite IPR value,
whereas the IPR will tend to zero for extended states. Hence,
if in the bulk limit (i.e., in the limit of very large N ) all of
the states for a particular random potential strength V are
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FIG. 15. (Color online) Surface plots
of the base 10 logarithm of the IPRs
for the exponential hopping model av-
eraged over 100 realizations of random,
uniformly distributed potentials with 500
lattice sites.

localized, the histogram will cease to change and take the form
of a constant profile independent of N , which is determined
only by the strength of the random disorder and the extended
coupling scheme.

On the other hand, if a finite portion of the states have
genuine extended character, the IPR will continue to decrease
for a fraction of the eigenstates, and a portion of the histogram

total weight will move steadily toward lower IPR values. In
the case of short-ranged models such as the nn Anderson
model, we find the IPR histogram to eventually shift to a
profile which is converged with respect to increasing system
size N , and no further variation is seen in the shape or
position of the IPR histogram curve. With this in mind,
we focus our efforts on the long-range hopping model
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(c)r = 2

(b)r = 1

(a)r = 1/3

FIG. 16. (Color online) Surface plots of the base 10 logarithm
of the IPRs for the inverse-power-law model with a random, binary
potential for 5000 lattice sites.

(i.e., power-law decay in hopping terms) and examine the
scaling of the IPR histograms with system size to determine
the presence of mobility edges, which are suggested by the IPR
surface plots.

In preparing the IPR histograms, it is important to average
away statistical fluctuations by sampling a sufficient number
of eigenvalues; for each system size we considered, we
sample at least neig = 4 × 105 eigenvalues. We obtain the
required statistics by diagonalizing Nsamp = neig/N Hamil-
tonian matrices; the number of separate matrices to be
considered decreases with increasing system size N as self-
averaging within an individual random potential configuration
supplies more statistics for larger systems. Hence, whereas
40 000 matrices are analyzed for N = 100, for the largest
system, N = 6400, we examine only 80 random potential
realizations.

In Fig. 19, the tunneling matrix element decreases relatively
rapidly with r = 2.0 for the decay power, and the histograms
shown in panels (a), (b), (c), and (d) are consistent with the
scenario in which all eigenstates are localized in the bulk limit,
even for small values of V or weak random potentials. In
each of the panels (a), (b), (c), and (d) of Fig. 19, histogram
curves corresponding to various systems sizes N are shown,
where the sequence of system sizes is chosen to facilitate
the study of the effect of successive doubling of N on the
histogram profile. In panels (a) and (b), convergence to an
invariant histogram curve corresponding to localized states is
relatively swift, while the approach to the limiting profile is
more gradual in the curves shown in panel (c), where V = 0.5,
and panel (d) with V = 0.125. Nevertheless, the graphs in
Fig. 19 indicate a stabilization of the results with respect to
doubling N for each random potential strength shown, and we
conclude for the hopping term decay exponent r = 2.0 that
essentially any random on-site potential strength (irrespective
of the strength V ) is sufficient to localize states in the bulk
limit).

For the graphs shown in Fig. 20, the vertical axis represents
the base 10 logarithm of the histogram amplitude, and the
random potential strengths V are identical to those of the
corresponding graphs in Fig. 19. A salient feature of the curves
is the convergence to a profile which terminates for a particular
IPR with no histogram weight above this upper-limit IPR
value. For sufficiently large values of the decay exponent r

(i.e., for at least r � 2.0), there is a minimum value IPRmin

where the histogram amplitude abruptly falls to zero, and
there is no probability of finding states with a lower IPR, a
condition indicating the absolute localization of all states in
the bulk limit.

As the decay exponent r is decreased, there seems to be a
threshold value rc where the properties of the IPR histogram
change in a qualitative manner with respect to increasing
N . Figures 21 and 22 show histogram curves for r = 1.2,
whereas Figs. 23 and 24 display IPR histograms for the case
r = 1.5 where the decay of the tunneling coefficients is faster.
A salient common characteristic in the graphs obtained for
r = 1.2 and r = 1.5 suggests both decay exponents are below
the threshold value rc. In contrast to the r = 2.0 case, where the
histogram profiles converge to a curve which does not change
with successive doubling of the size N (a behavior compatible
with the localization of all states), for both the cases r = 1.5
and r = 1.2, there is a steady advance of the leftmost edge of
the histogram curve toward smaller IPR values in the low-IPR
regime. The size of the increment appears to be essentially
the same each time the size of the system is doubled. On the
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(a)r = 1/3

(b)r = 1

(c)r = 2

FIG. 17. (Color online) Surface plots of the base 10
logarithm of the IPRs for the inverse-power-law model
with a random, uniformly distributed potential for 5000
lattice sites.

other hand, for larger IPR values, the rightmost parts of the
histogram converge and cease to change with increasing N .

The shift of the leftward edge toward lower log10(IPR)
values occurs at a constant rate with doubling of the size N

of the system, a phenomenon seen for all of the histograms

obtained for r = 1.2 and r = 1.5. While a bimodal structure
may be seen in both the graphs obtained for r = 1.2 and
r = 1.5, dual peaked character is most prominently manifest
for the slower decay exponent r = 1.2 and for lower values
of V corresponding to weaker random potentials. The two
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FIG. 18. (Color online) Surface plots of the base 10 logarithm
of the IPRs for the inverse-power-law model averaged over 100
realizations of random, uniformly distributed potentials with 500
lattice sites.

peaks behave very differently with increasing N . Whereas the
rightmost peak, corresponding to relatively higher IPR values
and hence more localized character does not shift significantly
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FIG. 19. (Color online) Histograms are shown versus log10(IPR)
for the decay power r = 2.0 for systems ranging in size (by successive
doubling) from N = 100 to N = 6400. Panels (a), (b), (c), and (d)
correspond to V = 2.0, 1.0, 0.5, and 0.125, respectively.

in location, the peak on the left migrates steadily toward lower
IPR values with successive doubling of N . In addition, the
peak height appears to decrease at a geometric rate each time
the system size is doubled.

The curves shown in Figs. 22 and 24, where the amplitude of
the IPR histogram is presented as a base 10 logarithm, highlight
an important feature for the histograms in the cases r = 1.2
and r = 1.5 absent in the case of the more rapidly decaying
scheme where, for example, r = 2.0. For large (but finite) N

the log-log curves for r < rc may be divided, crudely speaking,
into three regimes. Moving leftward along the horizontal
log10(IPR) axis, one first sees a rapid rise to a maximum, and
the curve then begins to decrease with decreasing log10(IPR).
For intermediate values of the logarithm of the IPR, the
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FIG. 20. (Color online) Histograms with the amplitude given as
a base 10 logarithm are shown versus log10(IPR) for the decay power
r = 2.0 for systems ranging in size (by successive doubling) from
N = 100 to N = 6400. Panels (a), (b), (c), and (d) correspond to
V = 2.0, 1.0, 0.5, and, 0.125, respectively.
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FIG. 21. (Color online) Histograms are shown versus log10(IPR)
for the decay power r = 1.2 for systems ranging in size (by successive
doubling) from N = 100 to N = 6400. Panels (a), (b), (c), and (d)
correspond to V = 2.0, 1.0, 0.5, and 0.125, respectively.

logarithm of the histogram amplitude decreases linearly with
decreasing log10(IPR). Finally, the curve rises again to reach a
second maximum before beginning a rapid decline.

The intermediate regime where the logarithm of the
histogram amplitude decreases linearly is a salient common
feature which becomes broader as N is increased (extending
further and further leftward). For r = 1.2 and V = 0.125,
the region where the dependence is approximately linear is
more difficult to discern, but would be more readily seen for
systems sizes beyond the largest (Nmax = 6400) we consider
in the context of this study. However, even though the linear
dependence may not be readily visible, the leftward peaks in
the log-log graph decrease in height at a linear rate even for
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FIG. 22. (Color online) Histograms with the amplitude given as
a base 10 logarithm are shown versus log10(IPR) for the decay power
r = 1.5 for systems varying in size (by successive doubling) from
N = 100 to N = 6400. Panels (a), (b), (c), and (d) correspond to
V = 2.0, 1.0, 0.5, and 0.125, respectively.
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FIG. 23. (Color online) Histograms are plotted versus log10(IPR)
for the decay power r = 1.5 for systems ranging in size (by successive
doubling) from N = 100 to N = 6400. Panels (a), (b), (c), and (d)
correspond to V = 2.0, 1.0, 0.5, and 0.125, respectively.

weaker potentials (e.g., V = 0.125) where the intermediate
linear region is more difficult to discern. (The linear decline of
the peak height in the log-log plot with successive system size
doublings is compatible with the geometric decline evident
in the semilogarithmic graphs.) Simple extrapolation would
suggest that as the bulk limit is approached, the leftward
edge of the histogram curve will continue to advance at a
constant rate to the left; ultimately, in the thermodynamic
limit, the asymptotically linear decrease in the logarithm
of the histogram amplitude would continue for arbitrarily
small log10(IPR). Hence, in terms of the histogram density
φIPR, the support for states decreases with decreasing IPR,
ultimately vanishing as the IPR heads to zero (i.e., for bona fide
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FIG. 24. (Color online) Histograms with the amplitude given as
a base 10 logarithm are shown versus log10(IPR) for the decay power
r = 1.5 for systems ranging in size (by successive doubling) from
N = 100 to N = 6400. Panels (a), (b), (c), and (d) correspond to
V = 2.0, 1.0, 0.5, and 0.125, respectively.
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extended states). Although the statistical weighting decreases
with decreasing IPR for all values of r considered, the decline
is much less abrupt if r < rc.

In particular, we infer the explicit dependence for the IPR
density φIPR for r < rc will be log10(φIPR) = α log10(IPR) +
β, a relation which would hold in the bulk limit for reasonably
large values of log10(IPR). Inverting for φIPR yields φIPR =
f (r,v)(IPR)α(r,v), where f (r,v) and α(r,v) depend on the
hopping decay exponent r and the random potential strength V

(f would also depend on the specific type of random disorder,
be it generated in a binary fashion or sampled from a uniform
distribution). For fixed potential strength V , we anticipate that
α(r,v) will rise sharply in the vicinity of r = rc, where the
decay of the histogram weight becomes much more rapid than
for r < rc.

The sudden shift in the behavior of the IPR histograms
as the system size is successively doubled suggests an abrupt
transition from the condition where the asymptotic dependence
of the histogram density is a relatively slow decay with
decreasing IPR, φIPR = f (r,V )(IPR)α(r,v) to a much more
rapid decrease. The transition is likely signaled by a divergence
in the exponent α at a critical value rc of the decay exponent
in the extended hopping scheme.

IV. CONCLUSION

We have shown with numerical calculations and analytical
results that (1D) tight-binding models with on-site disorder and
higher-order hopping terms exhibit interesting and nontrivial
localization phenomena that can vary considerably from the
well-known results of the nn tight-binding models. In the
specific case where the on-site potential is an incommensurate
potential (particularly the bichromatic problem), we have
shown that for a general expression for the decay in the hopping
terms with range, the energy-dependent mobility edges can be
predicted approximately based on the ratio of the nn and nnn
hopping terms, t1/t2, for sufficiently fast decay.

We have also considered the case of bounded, uncorrelated
disorder, where we have shown that in the examined models,
the higher-order hopping terms can remove the symmetry in
the localization length about the energy band center compared
to the nn Anderson model. Broadly speaking, it appears that
eigenstates with lower energies tend to localize with shorter
localization lengths (i.e., higher IPR values) compared to
higher-energy eigenstates due to the presence of the higher-
order hopping terms.

There is also the curious case of inverse-power-law hopping
terms where a mobility edge may manifest itself at the top band
edge if the decay exponent is smaller than a certain critical
value.

We have prepared histograms of the IPR to determine the
statistical characteristics of the IPR distribution for the model
with power law decay hopping. For relatively short-range
hopping schemes, the histogram weight falls to zero for finite
IPR values, suggesting that all states are localized in the bulk
limit. However, if the hopping terms decay sufficiently slowly
with distance, the histogram density is still zero in the low IPR
limit, but the decay has a much slower asymptotic dependence
with the form f (r,v)(IPR)α(r,v).

Our results are especially relevant to current experimental
efforts as we consider alternatives to solid-state systems to
study quantum transport, such as cold atoms in shallow optical
lattices. Such systems may not be as strongly binding as solid-
state systems and, therefore, do not fit well with the nn tight-
binding assumption. Given this and the considerable degree
of control given to experimentalists in optical lattices, these
results can be observed experimentally within cold atomic
systems. In particular, the current experiments in cold atomic
gases4,5 have already verified the basic (and long-established)
features of 1D quantum localization properties in the Anderson
and the Aubry model. Experiments in shallow lattices allowing
longer-range hopping should enable a deeper understanding of
the localization properties discussed in the current work.

We conclude with some discussion of some of the open
questions in this subject, which may be of importance for
future studies. One important issue completely beyond the
scope of the current work is the effect of interaction on our
predicted mobility edges in the generalized one-particle AA
model. In general, the solid-state experimental systems are
many-particle systems, and interaction is invariably present.
In atomic systems where the interaction is often short-ranged,
it is possible to approach the noninteracting limit by having a
very dilute system, and this is one reason behind the recent
experimental success in studying localization properties in
Refs. 4 and 5. It is also obvious that, while our one-electron
localization theory applies both to fermions and bosons
since quantum statistics are irrelevant in the single-particle
limit, the many-particle interacting situation is different for
fermions and bosons and must be studied independently. In
principle, this is a formidable task, although in one dimension
progress is feasible by combining numerical and analytical
methods.

The interacting bosonic problem is easier to
study theoretically, and for the strict nn-hopping
AA model,3 the conclusion—based on extensive
density-matrix-renormalization-group (DMRG) studies
of the problem—appears to be that the main features of
the minimal AA model is preserved although a complex
phase diagram now emerges in the presence of both
interaction and incommensurate potential manifesting a
complex interplay between superfluid and Mott insulating
phases.21 Such numerical studies using DMRG or perhaps
the time-evolving-block-decimation technique should, in
principle, be possible for our extended AA model, and it will
be an interesting future direction to pursue in this problem.
An alternative technique for studying the bosonic problem in
the presence of both the incommensurate AA potential and
interaction is to utilize the nonlinear Schrödinger equation
approach using the so-called Gross-Pitaevski equation (GPE).
Such a study has recently been carried out22 for the Anderson
model in the bosonic case where the interplay of disorder
and interaction was studied both numerically and analytically
with the conclusion that the basic qualitative feature of
the noninteracting model is not modified by the presence
of interaction (i.e., all states remain localized even in the
presence of interaction). Again, such a GPE-based study
should, in principle, be possible for our generalized AA
model, although it is likely to be numerically challenging.
Based on the existing results,21,22 our best guess is that
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our conclusion in the current work about the existence of a
mobility edge in the generalized AA model in the presence of
non-nearest neighbor hopping will remain valid for bosonic
systems even in the presence of interaction, but more work is
necessary to establish this point.

Studying the interacting system becomes much more
difficult and complex for fermions where the interplay of inter-
action and localization is notoriously difficult to study. It is well
known that in general (repulsive) interaction leads to effective
delocalization since the interacting particles want to stay away
from each other. On the other hand, strong interaction also
causes Mott transition and Wigner crystallization (where the
system becomes pinned in the presence of disorder), and
thus enhances localization effects in some situations. Direct
numerical diagonalization and other works for the fermionic
Hubbard model in the presence of disorder23 indicate that
interaction tends to increase the localization length without
modifying the basic localization properties of the 1D Anderson
model. Although no detailed investigation of the AA model for
fermions in the presence of interaction has yet been undertaken
in the literature, it is reasonable to assume, based on the results

of the corresponding interacting Anderson model, that the
basic picture of the noninteracting AA model would remain
valid qualitatively even in the presence of interaction. We
therefore believe that the existence of mobility edges in the
generalized AA model discussed in the current work will
remain valid even in the presence of interaction for both bosons
and fermions, but much more work will be needed to settle this
issue decisively. This remains an interesting and important
problem for future studies. We also mention in this context a
recent work24 which draws an interesting distinction between
the AA model and the Anderson model with respect to the
nature of the underlying localization properties, and it will
be interesting to investigate whether such an analysis sheds
insight into our discovery of a mobility edge in the generalized
Aubrry-Andre model in the presence of non-nearest-neighbor
hopping.
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3S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980).
4J. Billy et al., Nature (London) 453, 891 (2008).
5G. Roati et al., Nature (London) 453, 895 (2008); M. Modugno,
New J. Phys. 11, 033023 (2009).

6J. Biddle, B. Wang, D. J. Priour, and S. Das Sarma, Phys. Rev. A
80, 021603(R) (2009).

7D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Phys. Rev.
A 75, 063404 (2007).

8R. Riklund, Y. Liu, G. Wahlstrom, and Z. Zhao-bo, J. Phys. C 19,
L705 (1986).

9F. A. B. F. de Moura, A. V. Malyshev, M. L. Lyra, V. A. Malyshev,
and F. Domı́nguez-Adame, Phys. Rev. B 71, 174203 (2005).

10A. V. Malyshev, V. A. Malyshev, and F. Domı́nguez-Adame, Phys.
Rev. B 70, 172202 (2004).

11S.-J. Xiong and G.-P. Zhang, Phys. Rev. B 68, 174201 (2003).
12A. Rodrı́guez, V. A. Malyshev, G. Sierra, M. A. Martin-Delgado,

J. Rodriguez-Laguna, and F. Dominguez-Adame, Phys. Rev. Lett.
90, 027404 (2003).

13S. Das Sarma, A. Kobayashi, and R. E. Prange, Phys. Rev. Lett. 56,
1280 (1986).

14J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601
(2010).

15Mobility edges or the existence of extended states in disordered
1D systems are not unique to tight-binding models with higher-
order hopping terms. See, for example, C. M. Soukoulis and E. N.
Economou, Phys. Rev. Lett. 48, 1043 (1982); S. Das Sarma, S. He,
and X. C. Xie, Phys. Rev. Lett. 61, 2144 (1988); X. C. Xie and
S. Das Sarma, Phys. Rev. Lett. 60, 1585 (1988); V. W. Scarola and
S. Das Sarma, Phys. Rev. A 73, 041609 (2006).

16D. J. Thouless, J. Phys. C 5, 77 (1972).
17J. Bellissard and B. Simon, J. Funct. Anal. 48, 408 (1982).
18J. B. Sokoloff, Phys. Rep. 126, 189 (1985).
19P. G. Harper, Proc. Phys. Soc. London, Sect. A 68, 874 (1955).
20D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
21G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwock,

and T. Giamarchi, Phys. Rev. A 78, 023628 (2008); X. Cai, S. Chen,
and Y. Wang, ibid. 81, 023626 (2010).

22S. Fishman, Y. Krivolapov, and A. Soffer, Nonlinearity 22, 2861
(2009); Y. Krivolapov, S. Fishman, and A. Soffer, New. J. Phys.
12, 063035 (2009); B. Deissler et al., Nat. Phys. 6, 354 (2010);
M. Larcher, F. Dalfovo, and M. Modugno, Phys. Rev. A 80, 053606
(2009).

23R. Kotlyar and S. Das Sarma, Phys. Rev. Lett. 86, 2388 (2001);
T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325
(1988).

24M. Albert and P. Leboeuf, Phys. Rev. A 81, 013614 (2010).

075105-22

http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1088/1367-2630/11/3/033023
http://dx.doi.org/10.1103/PhysRevA.80.021603
http://dx.doi.org/10.1103/PhysRevA.80.021603
http://dx.doi.org/10.1103/PhysRevA.75.063404
http://dx.doi.org/10.1103/PhysRevA.75.063404
http://dx.doi.org/10.1088/0022-3719/19/30/004
http://dx.doi.org/10.1088/0022-3719/19/30/004
http://dx.doi.org/10.1103/PhysRevB.71.174203
http://dx.doi.org/10.1103/PhysRevB.70.172202
http://dx.doi.org/10.1103/PhysRevB.70.172202
http://dx.doi.org/10.1103/PhysRevB.68.174201
http://dx.doi.org/10.1103/PhysRevLett.90.027404
http://dx.doi.org/10.1103/PhysRevLett.90.027404
http://dx.doi.org/10.1103/PhysRevLett.56.1280
http://dx.doi.org/10.1103/PhysRevLett.56.1280
http://dx.doi.org/10.1103/PhysRevLett.104.070601
http://dx.doi.org/10.1103/PhysRevLett.104.070601
http://dx.doi.org/10.1103/PhysRevLett.48.1043
http://dx.doi.org/10.1103/PhysRevLett.61.2144
http://dx.doi.org/10.1103/PhysRevLett.60.1585
http://dx.doi.org/10.1103/PhysRevA.73.041609
http://dx.doi.org/10.1088/0022-3719/5/1/010
http://dx.doi.org/10.1016/0022-1236(82)90094-5
http://dx.doi.org/10.1016/0370-1573(85)90088-2
http://dx.doi.org/10.1088/0370-1298/68/10/304
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevA.78.023628
http://dx.doi.org/10.1103/PhysRevA.81.023626
http://dx.doi.org/10.1088/0951-7715/22/12/004
http://dx.doi.org/10.1088/0951-7715/22/12/004
http://dx.doi.org/10.1088/1367-2630/12/6/063035
http://dx.doi.org/10.1088/1367-2630/12/6/063035
http://dx.doi.org/10.1038/nphys1635
http://dx.doi.org/10.1103/PhysRevA.80.053606
http://dx.doi.org/10.1103/PhysRevA.80.053606
http://dx.doi.org/10.1103/PhysRevLett.86.2388
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevA.81.013614

