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Spatiotemporal evolution of polaronic states in finite quantum systems
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We study the quantum dynamics of small polaron formation and polaron transport through finite quantum
structures in the framework of the one-dimensional Holstein model with site-dependent potentials and interactions.
Combining Lanczos diagonalization with Chebyshev moment expansion of the time evolution operator, we
determine how different initial states, representing stationary ground states or injected wave packets, after an
electron-phonon interaction quench, develop in real space and time. Thereby, the full quantum nature and
dynamics of electrons and phonons is preserved. We find that the decay out of the initial state sensitively depends
on the energy and momentum of the incoming particle, the electron-phonon coupling strength, and the phonon
frequency, whereupon bound polaron-phonon excited states may emerge in the strong-coupling regime. The
tunneling of a Holstein polaron through a quantum wall or dot is generally accompanied by strong phonon
number fluctuations due to phonon emission and reabsorption processes.
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I. INTRODUCTION

Electrons injected into low-dimensional quantum structures
with strong electron-phonon (EP) interaction can cause local
lattice deformations and thereby relax to “self-trapped” po-
laron states. Polaron self-trapping does not imply a breaking of
translational invariance. When the polaron forms, the electron
is being dressed by a phonon cloud, and the collective state
translates through the lattice. This indicates that vibrational
modes for polaron transport through nanoscale quantum
devices are of vital importance. The microscopic structure
of polarons and the contexts in which they appear are rather
diverse. Phonon and polaron effects have been investigated for,
e.g., molecular transistors,1 quantum dots,2 tunneling diodes
and Aharonov-Bohm rings,3 metal/organic/metal structures,4

and Carbon nanotubes,5,6 although primarily with respect to
steady-state properties. Recently, time-resolved spectroscopy
has made it possible to address also the dynamical aspects of
self-trapping, e.g., by directly time resolving the vibrational
motions associated with the localized carrier. Taking advantage
of the ultrashort pulse widths of recent lasers, the femtosecond
dynamics of polaron formation and exciton-phonon dressing
has been observed in pump-probe experiments.7

From a theoretical point of view, describing the time
dependence of small polaron formation requires a physics
that is related to particle and phonon dynamics on the scale
of the unit cell.8 The simplest model that captures such a
situation is the lattice-polaron Holstein model.9 This model
assumes that the orbital states are identical on each site
and the particle can move from site to site exactly as in a
tight-binding model. The phonons are coupled to the particle
at whichever site it is on. The dynamics of the phonons is
treated purely locally with Einstein oscillators representing the
intrasite (molecular) vibrations. After six decades of intense
research the equilibrium properties of the Holstein model
are well understood, at least in the single-particle sector (for
recent reviews, see Refs. 10 and 11). In contrast, there is a
rather incomplete understanding of time-dependent and out-
of-equilibrium phenomena. Some issues seem to be settled,
e.g., the charge-transfer and correlated charge-deformation

dynamics (but only for a two-site Holstein model),12 the
increase of the polaron formation time in two and three
dimensions due to an adiabatic potential barrier between
extended electron and self-trapped polaron states,13,14 and
the conditional hopping rate of an injected electron and the
vibrational relaxation time.15 Quite recently, the problem of
determining the polaron formation time has been tackled.16

Many questions remain at least partly unsolved, however.
For instance, in what way is quantum-dot polaron formation
different in the adiabatic and nonadiabatic regimes? How does
a bare particle evolve into a polaron after an “interaction
quench”? And how does a polaronic quasiparticle tunnel
through a potential barrier?

In this paper, we address some of these questions. To that
end, we calculate, by means of numerically exact Lanczos
diagonalization and Chebyshev expansion techniques, the
real space and time evolution of polaronic states in the
one-dimensional Holstein model with spatially and temporally
varying on-site potentials and/or EP interaction strengths.
The proposed approach is applicable to the dynamics of
quasiparticle formation in several branches of physics.

II. MODEL AND METHOD

A. Modified Holstein Hamiltonian

Focusing on polaron formation in one-dimensional finite
quantum structures with short-range nonpolar EP interac-
tion, we consider the generalized Holstein molecular crystal
model,9,17

H =
∑

i

�ini − t0
∑

i

(c†i ci+1 + H.c.)

−
∑

i

giω0(b†i + bi)ni + ω0

∑
i

b
†
i bi, (1)

where c
†
i (ci) and b

†
i (bi) are creation (annihilation) operators

for electrons and dispersionless optical phonons on site i,
respectively, and ni = c

†
i ci is the corresponding particle

number operator. In (1), the site-dependent potentials �i can
describe a tunnel barrier, a voltage bias, or disorder effects. t0
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denotes the nearest-neighbor electron transfer integral, and gi

gives the local interaction of an electron on Wannier site i to
an internal vibrational mode with frequency ω0.

The ratio ω0/t0 determines which of the two subsystems,
electrons or phonons, is the fast or the slow one. In the adiabatic
limit (ω0/t0) � 1, the motion of the particle is affected
by quasistatic lattice deformations, whereas in the opposite,
antiadiabatic limit (ω0/t0) � 1 the lattice deformation is
presumed to adjust instantaneously to the position of the
carrier.

The dimensionless EP coupling constant g2 normally
appears in (small polaron) strong-coupling perturbation theory,
where it describes the polaronic mass enhancement m∗/m =
eg2

(for homogeneous systems, gi = g). There is another
natural measure of the strength of the EP interaction, the
familiar polaronic level shift Ep. At strong EP coupling, Ep

gives the leading-order energy shift of the band dispersion.18

In general, there is no simple relation between g2 and Ep. If the
EP coupling is local and the phonon mode is dispersionless,
however, then g2 = Ep/ω0, and Ep is usually identified with
the polaron binding energy.19

The crossover from essentially free electronic carriers
to heavy polaronic quasiparticles is known to occur for a
translationally invariant system, provided that two conditions,
g2 > 1 and Ep/zt0 > 1 [z = 2 (in one dimension)], are
fulfilled.20 So while the first requirement is more restrictive
in the antiadiabatic case, the formation of a small polaron state
will be determined by the second criterion in the adiabatic
regime. This likewise holds for the generalized Holstein model
(1) where g2

i = Ep,i/ω0. [With a view to the different cases
studied in Sec. III we split Ep,i = εp + εp,i up into a constant
(εp) and a site-dependent part (εp,i).17]

When investigating the physically most interesting
crossover regime of the Holstein model where polarons
form, i.e., where the self-trapping transition of the charge
carriers takes place, standard analytical approaches fail to a
large extent. This is because, precisely in this situation, the
characteristic electronic and phononic energy scales are not
well separated. So far, quasi-approximation-free numerical
methods like quantum Monte Carlo simulations,21 exact
diagonalizations,22 and density-matrix renormalization group
techniques23 yield the most reliable results for the ground-state
and spectral properties of Holstein polarons.

B. Chebyshev expansion technique

To study the real space and time formation of a polaronic
quasiparticle from a bare electron, the time-dependent many-
body Schrödinger equation has to be solved. For systems with
moderate Hilbert space dimensions a full diagonalization of
the Hamiltonian allows for an exact calculation of the quantum
state at arbitrary times. Because of the phonon degrees of free-
dom the Hilbert space of the Holstein model is infinite, even
for a finite lattice and in the single-particle sector. Truncating
the Hilbert space of the phonons or constructing a variational
Hilbert space including multiple-phonon excitations,10,24 a
direct numerical integration of the Schrödinger equation can
be performed, yielding the polaron many-body wave function
at early times.16 Alternatively, one can exploit a Chebyshev
moment based expansion of the time evolution operator.25

Since this technique also applies to very general situations
and has been proven to be superior to direct integration and
other iterative Schrödinger-equation solution schemes as to
its efficiency (i.e., computational costs) and accuracy,26 the
remainder of this section briefly outlines this less-well-known
approach.

The time evolution of a quantum state |ψ〉 is described by
the Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉. (2)

If the Hamilton operator H does not explicitly depend on
time t , we can formally integrate this equation and express
the dynamics of an initial state |ψ(0)〉 in terms of the time
evolution operator U (t,0) as

|ψ(t)〉 = U (t,0)|ψ(0)〉, (3)

where

U (t,0) = e−iH t/h̄. (4)

The time evolution operator U (t + �t,t) = U (�t) for a
given (usually small) time step �t can be expanded in a finite
series of NC first-kind Chebyshev polynomials of order n,

Tn(x) = cos[n arccos(x)]. (5)

We obtain25–28

U (�t) = e−ib�t/h̄

[
c0(a�t/h̄) + 2

NC∑
n=1

cn(a�t/h̄)Tn(H̃ )

]
.

(6)

Prior to the expansion, the Hamiltonian has to be shifted and
rescaled such that the spectrum of H̃ = (H − b)/a is within
the definition interval of the Chebyshev polynomials, [−1,1].29

The parameters a and b are calculated from the extremal
eigenvalues of H as b = 1

2 (Emax + Emin) and a = 1
2 (Emax −

Emin + ε). Here we introduced ε = α(Emax − Emin) to ensure
the rescaled spectrum |Ẽ| � 1/(1 + α) lies well inside [−1,1].
In practice, we use α = 0.01. The Chebyshev expansion also
applies to systems with Holstein-type unbounded spectra.29

Here we can truncate the infinite Hilbert space to a finite
dimension by restricting the model on a discrete space grid or
using an energy cutoff. In this way we ensure the finiteness of
the extreme eigenvalues.

In (6), the expansion coefficients cn are given by

cn(a�t/h̄) =
∫ 1

−1

Tn(x)e−ixa�t/h̄

π
√

1 − x2
dx = (−i)nJn(a�t/h̄);

(7)

Jn denotes the nth order Bessel function of the first kind.
In order to calculate the evolution of a state |ψ(t)〉 from one

time grid point to the adjacent one,

|ψ(t + �t)〉 = U (�t)|ψ(t)〉, (8)

we have to accumulate the cn-weighted vectors

|vn〉 = Tn(H̃ )|ψ(t)〉. (9)

Since the coefficients cn(a�t/h̄) depend on the time step but
not on time explicitly, we need to calculate them only once.
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Instead of evaluating Eq. (5) with x = H̃ , the vectors |vn〉 can
be computed iteratively, exploiting the recurrence relation of
the Chebyshev polynomials,

|vn+1〉 = 2H̃ |vn〉 − |vn−1〉, (10)

with |v1〉 = H̃ |v0〉 and |v0〉 = |ψ(t)〉. Evolving the wave
function from one time step to the next requires NC matrix
vector multiplications (MVMs) of a given complex vector
with the sparse Hamilton matrix of dimension D. Of course,
to proceed from t = 0 to t , the procedure has to be performed
t/�t times.

Note that such a Chebyshev expansion may also be applied
to systems with time-dependent Hamiltonians, but there the
time variation of H (t) determines the maximum �t by which
the system may be propagated in a single time step. For time-
independent H , in principle, arbitrary large time steps are
possible at the expense of increasing NC. We may choose NC

such that for n > NC the modulus of all expansion coefficients

|cn(a�t/h̄)| ∼ Jn(a�t/h̄) (11)

is smaller than a desired accuracy cutoff. This is facilitated by
the fast asymptotic decay of the Bessel functions,

Jn(a�t/h̄) ∼ 1√
2πn

(
ea�t

2h̄n

)n

for n → ∞. (12)

Hence, for 2h̄n � ea�t the expansion coefficients cn decay
superexponentially, and the series can be truncated with
negligible error.25 In the numerics in Sec. III, we work with
NC � 10, such that the last moment retained |JNC | � 10−9,
i.e., the Chebyshev expansion can be considered as quasiexact,
and permits a considerably larger time step than, e.g., the
Crank-Nicholson scheme.26,30 Of course, the ground-state
energy E0(t) is unaltered during the simulation time.

Besides the high accuracy of the method, the linear scaling
of computation time with both time step and Hilbert space
dimension are promising in view of potential applications to
more complex systems. Here almost all computation time is
spent in sparse MVMs, which can be efficiently parallelized,
allowing for a good speedup on parallel computers. We use
a memory-saving implementation of the MVM where the
nonzero matrix elements are not stored but recomputed in each
sparse MVM step, limiting the overall memory consumption
of our implementation to five vectors of size D. In this context
we can access a massively parallel sparse MVM code, which
has proven to be sufficient to compute the ground state of
the model (1) up to D = 3.5 × 1011 very efficiently on more
than 5000 processor cores.31 For the single polaron dynamics
presented here, the matrix dimension is about D = 6 × 108,
and we run the Chebyshev approach on 18 processors of an SGI
Altix4700 compute server, accessing a total of approximately
60 GB of main memory and consuming less than 1500 CPU
hours to compute, e.g., the results presented in Sec. III C.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we combine exact diagonalization and
Chebyshev expansion methods,24,25,29 working in the tensorial
product Hilbert space of electrons and phonons. We set h̄ = 1
and give all energies in units of t0. The time t will be measured

with respect to the characteristic electronic and phononic
time scales τe = t−1

0 and τph = (ω0/2π )−1, respectively. We
consider the case of a single electron only.

A. Interaction quench

To understand the basic features of the polaron formation
process in the time domain, we first study a single oscillatory
site to which the Holstein molecular crystal model applies,
sandwiched between two “wires” where electrons are not
coupled to phonons (εp = 0). The system size is N = 17
with open boundary conditions (OBCs) at sites i = 1, 17.
We consider the case �i = 0. The deformable site is located
midway, i = 9. Before time t = 0 the system is assumed
to be in the noninteracting (free-electron) ground state; its
energy is E0 = −1.9696. Then, at t = 0 the EP interaction
at site 9 is abruptly switched to a positive value εp,9 (an
interaction “quench”), which means that the electron and
phonon subsystems are locally linked hereafter. Since the
whole system is isolated from the environment, the total energy
is conserved during the quench.

The time evolution of various quantities after such an
interaction quench is shown in Figs. 1–9 for characteristic
situations, ranging from weak to strong EP coupling and
adiabatic to antiadiabatic cases. As can be seen from Figs. 1–9,
the quantum dynamics after the quench depends on the EP cou-
pling strength and phonon frequency in a very sensitive way.

1. Adiabatic regime

Figure 1 illustrates the time evolution of the particle density
at the oscillatory site after the interaction quench for weak-to-
intermediate EP couplings and phonon frequencies ω0 smaller
than the electronic transfer integral t0. We note that the electron
is not uniformly spread over the lattice even at t < 0, where
εp,9 = 0 because of the OBCs: 〈n9〉(0) = 1/9 is roughly twice
the mean electron density 1/17.

After the local EP interaction is turned on, the electron
can couple to the molecular vibrations at site 9. The basic
interaction process is the absorption and emission of a phonon
by the electron with a simultaneously change of the electron
state. At the same time the lattice is distorted locally. Such
a lattice distortion may trap the charge carrier if the EP
coupling is strong. As a result, the local particle density is
enhanced. Since the trapping potential itself depends on the
carrier’s state, this highly nonlinear feedback phenomenon is
called “self-trapping”.32,33 Figure 1 clearly shows an initial
strong increase of the local particle density in time. Since the
characteristic nearest-neighbor hopping time of a bare electron
is τe, all “electrons” initially moving toward the central site will
reach this site within t/τe � 8. (Dealing with a single particle,
we actually thereby think of electronic contributions.) This
explains the small hump on the left shoulder of the first 〈n9〉
increase at about t/τe ∼ 8. Electrons that move away from
the central site will reach it after reflection at the boundaries
within the time interval 8 < t/τe � 17. So if the particle is
held at the molecular site by the EP coupling, it is trapped to
the greatest possible extent at about t/τe ∼ 17 (which almost
coincides with the first maximum in 〈n9〉 at t (1)

max/τe � 20).
Self-evidently, the maximum is enhanced as εp,9 increases.

When an electron reaches site 9, it can emit a phonon to
lower its energy. The phonon period is τph. Hence, for the
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FIG. 1. (Color online) Time dependence of the (top) particle
density and (bottom) phonon number at the deformable “molecular
crystal” site 9, starting out from the free-electron ground state of a
17-site chain with OBCs. The phonon frequency ω0 = 0.3. The EP
coupling εp,9 is switched on at t = 0, and different curves belong to
εp,9 values increased by 0.1. In the numerical calculations we take into
account up to M = 100 phonons and NC = 10 Chebyshev moments,
and we use a time step �t/τe = 0.01.

adiabatic regime discussed in Fig. 1, the phonon excited by
the first arriving “part of the electron” is still present when
the last part of the electron arrives (cf. the phonon time scale
displayed in the graphs at the opposite x axes). Because of
this retardation effect the number of phonons at molecular
site 9 steadily increases, and 〈b†9b9〉 develops, for ω0 = 0.3, a
maximum in time slightly before 〈n9〉 reaches its maximum. As
time proceeds further, the particle starts hopping farther away
from the oscillatory site (recall that the system is no longer in an
eigenstate after the interaction quench), and 〈n9〉(t) decreases
until the whole process recurs. Importantly, the particle density
〈n9〉(t) at its first minimum around t (1)

min ∼ 2t (1)
max � 40τe is

substantially larger than at t = 0 above the “critical” EP
coupling εp,9/2t0 � 1. This gives a first indication that indeed a
polaron is formed at site 9, in contrast to the weak EP coupling
case.
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FIG. 2. (Color online) Time dependence of the (top) particle
density and (bottom) phonon number at molecular crystal site 9 in
the intermediate EP coupling adiabatic regime. The initial state is the
same as in Fig. 1; εp,9 now is increased in steps of 0.04.

Figures 2 and 3 demonstrate that at larger EP couplings
the particle density at oscillatory site 9 evolves in almost the
same manner for a relatively long time span. This especially
holds for the strong-coupling case displayed in Fig. 3, where
every incoming electron sticks to the molecular site. Therefore,
the total phonon number increases with increasing εp,9. Then
the interesting question is, of course, whether (or to what
extent) the excited phonons are incorporated in the polaronic
quasiparticle or rather will be uncorrelated. In our case, where
the EP coupling acts on a single site only, the electron cannot
carry a phonon cloud away (this more realistic situation will
be investigated in Secs. III B and III C). Nevertheless, we can
address this question by analyzing the phonon distribution
function, |cm|2(t) with

∑M
m=0 |cm|2(t) = 1, yielding the weight

of the m-phonon contribution in the wave function |ψ(t)〉.24

Figure 4 gives |cm|2(t) for different EP interaction strengths,
ranging from weak to strong couplings. For comparison, the
corresponding phonon distribution functions of the stationary
ground states (where εp,9 > 0 ∀t) is shown. At small εp,9,
|ψ(t)〉 basically is a zero-phonon state at any time. As a matter
of course, a few phonons will be emitted but immediately
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FIG. 3. (Color online) Time dependence of the (top) particle
density and (bottom) phonon number at site 9 in the strong EP
coupling adiabatic regime. Initial state is as in Fig. 1; εp,9 is increased
in steps of 0.32.

after will be reabsorbed as the particle passes the molecular
site. Therefore, no long-living lattice distortion appears that
might trap the carrier. The situation dramatically changes
as εp,9 exceeds the critical coupling strength for polaron
formation. Now, the phonon distribution of the ground state
is Poisson distributed with maxima at about 4 (εp,9 = 2),
9 (εp,9 = 3.32), and 15 (εp,9 = 4.92). |ψ(t = 20τe)〉 is a
multiphonon state as well. Since ω0 is rather small, an adiabatic
potential (energy) surface emerges that retains the incoming
electron contributions so that the formation of an adiabatic
Holstein polaron9,33 can occur. The initial energy of our system
(E0 = −1.9696), however, does not allow the particle to access
the polaronic ground state having E0(εp,9 = 2) = −2.521,
E0(3.32) = −3.628, and E0(4.92) = −5.126. As can be seen
from Fig. 4, the form of the phonon distribution function
reflects the phonon distribution of excited displaced harmonic
oscillator states, indicating that excited states of the polaron
were realized instead. These states are known to be separated
in energy by ω0.10 Indeed, in going, e.g., from εp,9 = 3.32 to
εp,9 = 4.92, five additional phonons were created (all bound
to the polaron), giving rise to a polaron excited state. Note
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FIG. 4. (Color online) Contribution of the m-phonon state to
|ψ(t)〉 at different times t (given in units of τe). Results for various
εp,9 were compared to the phonon distribution function of the
system’s ground state (εp,9 > 0 ∀ t , no interaction quench). The
phonon frequency is ω0 = 0.3.

that such kinds of phonon distributions were found for the
Raman- and infrared-active intrinsic localized modes in quasi-
one-dimensional mixed-valence transition-metal complexes.34

The bottom panel of Fig. 4 yields some insight on the time
scale on which the polaron formation process takes place. Up
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FIG. 5. (Color online) Electron densities on the one-dimensional
chain at different times t/τe. Initial state is as before; ω0 = 0.3.
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FIG. 6. (Color online) Time dependence of the (top) particle
density and (bottom) phonon number at molecular crystal site 9 in
the weak EP coupling antiadiabatic regime. The phonon frequency
ω0 = 8. The EP coupling is switched on at t = 0; different curves
belong to εp,9 values increased by 0.1.

to t/τe = 10 the electron radiates successive phonons that are
still uncorrelated, however. Therefore, all phonon states below
a certain threshold are equally well represented in |ψ(t)〉. The
zero-phonon state has a larger weight, of course, because
parts of the electron still reside outside the molecular site.
At about t/τe = 15 the phonons become correlated, i.e., they
are increasingly tightly bound to the electron. This process is
completed at t/τe ∼ 20.

In Fig. 5 we show snapshots of the electron density
distribution along the whole chain at various points in time. We
see that by increasing the EP interaction in such a way that the
energy of the initial state matches one of the polaron excited
states (starting out from the well-established polaronic state at
εp,9 = 3.32; see Figs. 3 and 4), the spatiotemporal variation of
the various excited states is the same, even for very long times
and away from the central molecular site (cf. the curves marked
by squares, diamonds, and circles for εp,9 = 3.64, 3.96, and
4.28, respectively, in Fig. 5). In contrast, if we choose an EP
coupling that does not match the ground-state energy E0 by
lowering the polaron-level ladder, after a while, the densities
evolve quite differently [cf. data for εp,9 = 3.80 (stars)].
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FIG. 7. (Color online) Time dependence of the (top) particle
density and (bottom) phonon number at molecular crystal site 9 in
the strong EP coupling antiadiabatic regime.

2. Antiadiabatic regime

We next investigate the limit of large phonon frequencies.
Now τph is comparable or even smaller than τe, which means
that a phonon can be excited and reabsorbed instantaneously
when the electron enters the molecular site. During this
process the electron will become (partly) dressed by phonons,
provided the EP interaction is sufficiently strong. In this case
a nonadiabatic Lang-Firsov-type polaron is formed.33,35 This
will not happen in the weak EP coupling regime illustrated in
Fig. 6. Because of the extremely large phonon energy, only a
very few phonons can be radiated by the electron (see Fig. 6,
bottom). The molecular-site particle density shown in the top
panel of Fig. 6 is weakly modulated by the phonon emission-
absorption processes on the time scale τph and “oscillates”
on a time scale related to the system size N = 17 (within
t/τe = 17, all electrons have visited the central site once). No
retardation phenomena are observed (in contrast to Fig. 1).
The dip around t/τe = 10 is because electrons continuously
leaving the dot and those arriving at this time mostly come
from the boundary where the electron density at t = 0 was very
small. The situation becomes more complex as εp,9 increases,
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FIG. 8. (Color online) Time dependence of the (top) particle
density and (bottom) phonon number at molecular crystal site 9
in the extremely strong EP coupling antiadiabatic regime. The EP
interaction is increased in steps of ω0. For N = 21 the particle and
phonon numbers are displayed at site 11.

and the electron at the molecular site will be partly dressed,
leading to stronger fluctuations of the phonon number.

At “intermediate” couplings εp,9 = 10 (note that εp,9 =
10/ω0 is of the order of 1), the ground-state energy E0(10) =
−10.1215, and the system comes into “resonance” with the
initial state (having E0 ∼ −2) by exciting just one phonon
(see Fig. 7). Since g2

9 > 1, a polaron will evolve; that is,
the phonon is bound to the electron. The same happens at
εp,9 = 18 [E0(18) = −18.0622], but now two phonons will
be excited and incorporated. There are two points worth
mentioning. First, as the system oscillates on its t/τe = 17
period, it can adjust far better in order to form a polaron at the
sequent tmax points. Second, putting εp,9 only somewhat out
of tune, both 〈n9〉 and 〈b†9b9〉 are substantially reduced for all
t ; that is, polaron formation is suppressed.

In the strong EP coupling regime displayed in Fig. 8, the
nonadiabatic Lang-Firsov polaron has been fully developed.
In this case the arriving electronic contributions stay at the
molecular site for such a long time that 〈n9〉 reaches 0.8. Note
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FIG. 9. (Color online) Contribution of m-phonon states to |ψ(t)〉
at different EP couplings and points of time. Results were compared
to the stationary phonon distribution function of the system’s true
ground state. The phonon frequency is ω0 = 8.

the increase of t (1)
max as compared to Figs. 6 and 7. (In order

to demonstrate that t (1)
max is, indeed, determined by the system

size we included results for a system with N = 21 sites.) The
bottom panel in Fig. 8 makes clear that now, on average, many
more phonons (∝ g2

9) were incorporated.
The phonon distribution function shown in Fig. 9 corrob-

orates this scenario. As for the adiabatic case (cf. Fig. 4),
we observe a transition from an uncorrelated few-phonon
state to a correlated multiphonon polaron state. The phonon
distribution function shows that |ψ(t (1)

max)〉 corresponds to an
excited polaron with two (four) bound phonons at εp,9 = 18
(εp,9 = 33.7).
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FIG. 10. (Color online) Spatiotemporal evolution of a free elec-
tron Gaussian wave packet injected with wave vector K = π/2 at
t = 0 into an 18-site molecular crystal chain with PBCs. Model
parameters are εp = 1 and ω0 = 0.5. Displayed is the time evolution
(in units of τe) of the local particle densities 〈ni〉 (black solid lines,
open circles), phonon numbers 〈b†

i bi〉 (red dot-dashed lines, stars),
and local EP correlations χi,i (blue dashed lines).
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B. Wave-packet injection

A bare electron injected into a quantum wire coupled to
the lattice vibrations at every lattice site is another instructive
example for the quantum dynamics of polaron formation.16 To
this end, at t = 0, we place a Gaussian wave packet with a
width σ 2

0 = 3/ ln 10 and momentum K centered at site l0 = 4,

|ψ(0)〉 = A

7∑
l=1

e
[− (l−l0)2

2σ2
0

]
eiK(l−l0)c

†
l |0〉, (13)

and let it evolve. (A is a normalization constant to ensure
〈ψ(0)|ψ(0)〉 = 1.) Again, �i = 0 ∀i.

Figure 10 shows snapshots of the local particle densities
〈ni〉 and phonon numbers 〈b†i bi〉 for intermediate EP couplings
(εp = 1 at all sites) and adiabatic phonon frequencies (ω0 =
0.5). In addition, we include results for the on-site particle-
phonon correlations

χi,i = 〈ni(bi + b+
i )〉. (14)
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FIG. 11. (Color online) Spatiotemporal evolution of a free elec-
tron Gaussian wave packet injected with (top) wave vector K = π/9
and (bottom) K = π/2 at t = 0. Model parameters are εp = 3 and
ω0 = 2. Notation is as in Fig. 10.

The particle injected at site 4 is launched to the right (K =
π/2). Shortly after, the electron is not yet dressed and moves
nearly as fast as a free particle (see black curves in the panels
for t/τe = 0.02,1,2, and 3 in Fig. 10).16 At the same time
the electron emits (creates) phonons along its path in order
to reduce its energy to near the bottom of the band. In view
of the high initial energy E0(t = 0) = 0 and an intermediate
EP coupling strength, most of the phonons radiated are
uncorrelated and therefore continue to stay near the particle’s
starting point. Nevertheless, the particle drags some phonons
with it, and finally, a (coherent) polaron wave packet is formed,
characterized by enhanced local particle-phonon correlations.
(See sites 5–7 in the panels for t/τe = 6–8 in Fig. 10; note that
the polaronic quasiparticle moves with a reduced velocity.16,25)
Owing to the moderate EP coupling, these signatures are rather
weak, however, and are further smeared out when the polaronic
wave packet dissolves in time.

As Fig. 11 shows, polaron formation becomes more
pronounced at larger EP couplings (εp = 3; note the different
scale of the ordinate compared to Fig. 10), even if the
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FIG. 12. (Color online) (top) Time dependence of the total
number of phonons excited in the molecular crystal chain as the free
electron wave packet evolves into a polaron. (bottom) Time evolution
of the kinetic energy part Ekin.
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phonon frequency is enhanced as well (ω0 = 2, nonadiabatic
regime). The phonon distribution and enhanced on-site EP
correlations indicate that more phonons are in the phonon
cloud that travels with the particle. Therefore, the polaron
inertial mass is increased. Again, some unbound phonons stay
at the point where the particle takes off. While in the top
graph in Fig. 11 the particle is injected with an energy of
about the phonon energy above the bottom of the band, its
energy is much lower in the bottom graph, where K = π/9.
This difference is mainly reflected in the number of unbound
phonons; in both cases the polaronic quasiparticle emerges
at about t/τe = 8, . . . ,10 and shows the same characteristics
afterward.

Since the system is not in an eigenstate, we expect to
find (decaying) oscillations on the time scale of τph in the
process of polaron formation, at least, if τe and τph do not
differ too much and the EP coupling is not too small. This is
illustrated by Fig. 12, showing the variation in time of the total
number of phonons in the system and of the kinetic energy

part,

Ekin = −t0
∑

i

〈c†i ci+1 + H.c.〉. (15)

For ω0 = 2 (main panels) these oscillations can be clearly
detected in both quantities. The kinetic energy Ekin(εp =
3,ω0 = 2) = −1.316 for the ground state of a polaronic system
having the same parameters. We find that this value can be
much better (periodically) approached, injecting a particle with
lower energy, i.e., K = π/9. The minima in Ekin are reached
when the particle has absorbed some phonons. Afterward,
the particle radiates the phonons again, and its kinetic energy
increases. The oscillations are weaker at K = π/2. While the
wave vector of the injected wave packet (13) is a continuous
variable, finite chains with periodic boundary conditions
(PBC) have only a finite set of “allowed” K vectors. Because
π/2 is not an allowed wave vector of the periodic 18-site
system, we included data for K = 4π/9 (located next to
K = π/2) as well, but, as expected, the results do not change
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FIG. 13. (Color online) Quantum dynamics of polaron formation and polaron tunneling through a potential barrier �12 = �w = 2. Model
parameters are εp = 1, ω0 = 2. The barrier or quantum dot is located at site 12 and has a total EP coupling (εp + εp,w). OBCs were used at
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qualitatively. The insets in Fig. 12 give the total phonon
number and kinetic energy for the parameters of Fig. 10, i.e.,
for the adiabatic case. Here we can clearly distinguish two
regimes: Until t/τe ∼ 6 many unbound phonons were created
to lower the particle’s total energy; then polaron formation
sets in, and the particle attains a kinetic energy close to
the polaron’s ground-state kinetic energy Ekin(εp = 1,ω0 =
0.5) = −1.823.

C. Polaron tunneling

Finally, we investigate the tunneling of a polaronic quasi-
particle through a potential barrier �12 ≡ �w = 2 (quantum
wall or dot), with additional EP interaction εp,12 ≡ εp,w. For
i �= 12 we fix �i = 0. The other model parameters are chosen
to be εp = 1 and ω0 = 2. In the numerics we account for all
states with up to M � 11 phonons and have checked that in
the ground state the weight of basis states containing exactly
M = 11 phonons is, for the largest εp,w, less than 10−5.

The wave packet injected has energy E0(0) = 0 and moves
to the right with K = π/2 (see Fig. 13). We apply OBCs, so
the particle cannot avoid the barrier coming from behind. The
top left graph in Fig. 13 describes the situation with a barrier at
site 12 only. After the polaron is formed at t/τe ∼ 6, it hits the
quantum wall at t/τe ∼ 8 − 10 and there it is mostly reflected.
Besides this backscattered particle current a minor part of the
particle tunnels through the barrier, thereby partly stripping
and recollecting its accompanied phonons (cf. Fig. 15 below).
Envisaging a vibrating molecular quantum dot located at site
12 (Fig. 13, top right), an additive EP interaction εp,w leads to
a local polaronic level shift that softens the barrier. As a result,
the particle is transmitted to a much greater extent than in the
former case (compare the results for t/τe = 14 − 16). If the
quantum dot possess a very strong EP interaction, the polaron
digs at the dot site and stays there for a long time (see Fig. 13,
bottom). Then, of course, both the reflected and transmitted
particle currents are low.

Figure 14 gives the temporal variation of particle density
and phonon number at the quantum wall or dot site. Obviously,
the phonons somewhat lag behind the electron (retardation
effect). During the tunneling process the phonon number
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strongly fluctuates. The εp,w = 4 curve clearly signals the
self-trapping of the electron at the dot site. The second bump
series is due to electronic contributions being retained after
being reflected at the system’s boundary (site 18).

The total transmitted electron density is displayed in Fig. 15
for εp,w = �w and various momenta of the injected wave
packet (top panel) as well as for different εp,w at K = π/2
(bottom panel). Of course, a higher initial energy enhances the
transmission through the tunnel barrier (compare the K = π/2
and K = π/9 curves). The bottom panel shows the time delay
of the polaron in reaching the barrier compared to a free particle
(dotted line). More notably, we observe that for εp,w = 2 the
transmission is as high as for free particles, despite the fact that
the particle is dressed by phonons in a significant way. Note
that the dimensionless EP coupling parameters at the dot site
are 3/2t0 and g2

12 = 1.5. This points toward the importance of
vibration-mediated tunneling processes (doorway vibrons).17

IV. SUMMARY

In this work, we have presented an efficient numerical
method to calculate the time evolution of the many-body
wave function of an interacting electron-phonon system. The
approach is based on Chebyshev moment expansion, applied
to the time evolution operator. We focused on the process of
small polaron formation in finite low-dimensional quantum
structures described by a generalized Holstein Hamiltonian.
Both electron and phonon quantum dynamics were treated
exactly.

We first started from a noninteracting ground state and
analyzed the real-time dynamics of the particle density and
phonon number after a sudden switching-on of the electron-
phonon coupling at a single oscillatory (molecular quantum
dot) site. As a consequence of this interaction quench, the
originally free particle can be trapped at the “impurity” site
after a while. The self-trapping process differs in nature for
the adiabatic and antiadiabatic regimes of small and large
phonon frequencies, respectively. In the former case, where
the phonons are slow and retardation effects play an important
role, a static lattice distortion evolves that causes an effective
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attractive potential for the electron. As a result, a Holstein
polaron is formed. In the latter case, phonons can follow the
electron motion almost instantaneously. Hence, we observe
very fast phonon emission and reabsorption processes, which,
at large EP interaction strengths, give rise to a dynamical
dressing of the charge carrier that enhances the particle’s
mass and finally leads to its immobilization. In both cases
the phonon distribution function signals the existence of
excited bound polaron-phonon states. Since our initial state
is not an eigenstate of the interacting system, we observe the
phenomenon of recurrence at later times.

Next, we launched a free-electron Gaussian wave packet in
a one-dimensional system, subjected to EP coupling at every
site. The injected bare particle is found to radiate phonons to
lower its energy to near the bottom of the band. Therefore,
part of the phonons stay near the electron’s starting point, and
if the EP coupling is sufficiently strong, another part of the
phonons will be embedded in a phonon cloud attached to the
(moving) particle. The latter polaron quasiparticle formation
process takes a period of time that depends on the characteristic
electron and phonon times scales, the EP interaction strength,
and the initial conditions in a very sensitive way. We agree
with the findings of previous work16 that the question of how
long it takes a polaron to form has no simple answer because
there are multiple time scales in the dynamics.

In the last part we investigated the transmission of a
polaron through a quantum wall or vibrating quantum dot.
Depending on the barrier height to electron-phonon interaction
strength ratio and the characteristic electron and phonon

times scales, we found opposed behaviors: strong reflection,
phonon-mediated tunneling, and intrinsic localization of the
polaron. Most notably, we showed that if the polaronic
level lowering just compensates the repulsive dot potential
and the electron and phonon time scales are comparable, a
rather heavy small polaron, regardless of its phonon cloud,
tunnels like a free electron. On the other hand, if there is a
mismatch between both quantities, we observe strong phonon
fluctuations at the dot site, and transport through the quantum
dot becomes significantly suppressed. This might motivate
further investigations of deformable quantum-dot systems,
e.g., with respect to applications as a current switch.

In conclusion, we have demonstrated that polaron formation
is a subtle nonlinear dynamical process that is affected by
multiple time and energy scales. The proposed long-time
Chebyshev expansion method, in combination with exact
diagonalization techniques, is capable of addressing such
complex problems, which raises the expectation that our
approach can also be used to study the time evolution of
quasiparticles in more general situations.
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H. Röder, and H. Fehske, ibid. 53, 9666 (1996); J. Bonča, S. A.
Trugman, and I. Batistić, ibid. 60, 1633 (1999).
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