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Topological phases of one-dimensional fermions: An entanglement point of view
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The effect of interactions on topological insulators and superconductors remains, to a large extent, an open
problem. Here, we describe a framework for classifying phases of one-dimensional interacting fermions, focusing
on spinless fermions with time-reversal symmetry and particle number parity conservation, using concepts of
entanglement. In agreement with an example presented by L. Fidkowski and A. Kitaev [Phys. Rev. B 81,
134509 (2010)], we find that in the presence of interactions there are only eight distinct phases which obey a
Z8 group structure. This is in contrast to the Z classification in the noninteracting case. Each of these eight
phases is characterized by a unique set of bulk invariants, related to the transformation laws of its entanglement
(Schmidt) eigenstates under symmetry operations, and has a characteristic degeneracy of its entanglement levels.
If translational symmetry is present, the number of distinct phases increases to 16.
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I. INTRODUCTION

Topological phases of matter are not characterized by a
broken symmetry but rather by an underlying topological
structure that distinguishes them from other, topologically
trivial, phases. Such phases have attracted a great deal of
attention recently, especially since the theoretical prediction1–4

and subsequent experimental observation5,6 of both two-
and three-dimensional realizations of time-reversal invariant
topological insulators. These (as well as their predecessor,
the integer quantum Hall effect) can be thought of as band
insulators characterized by the topological structure of their
Bloch bands. Similarly, topological superconductors7–9 are
characterized by the topological nature of their fermionic
quasiparticle spectrum. All these systems can be understood
from a noninteracting point of view. A complete classification
of all topological phases of noninteracting fermions, given
their symmetries, has been given in Refs. 8–10.

In the presence of electron-electron interactions, the
Hamiltonian cannot be reduced to a single particle matrix.
Therefore, strictly speaking, the above classification scheme
of topological phases cannot be used. Nevertheless, in some
classes of topological insulators, the topological order has
been argued to be robust even in the presence of interactions
by generalizing the corresponding topological invariant to the
many-body case.10–12 In other classes, however, the situation
in the interacting case remains unclear.

In a recent breakthrough, Fidkowski and Kitaev studied
a one-dimensional model of spinless superconductors with
time-reversal symmetry.13 They found that in the presence
of interactions, the free-fermion classification breaks down
from Z to Z8, i.e., there are only eight distinct phases that
survive in the presence of interactions (as opposed to an
infinite number without interactions). To the best of our
knowledge, this is the first case where the noninteracting

picture in a class of topological phases is found to be
radically modified by interactions. Reference 13 constructs
an explicit path in Hamiltonian space through which phases
with different Z numbers mod(8) can be connected and also
discusses the stability of the edge states. However, a more
general understanding of the classification of distinct phases
in the presence of interactions (in particular, in terms of bulk
properties of the ground-state wave function) is left open.

In this article, we develop a framework for classifying
phases of interacting fermions in one dimension based on
bipartite entanglement of the ground-state wave function. The
fact that entanglement is a useful quantity to probe topological
properties of wave functions has been shown in several recent
publications; see, for example, Refs. 14–17. Our technique
is based on a method which was introduced in Ref. 18 for
classifying phases in spin systems. This method has also
been developed more fully and shown to give a complete 1D
classification by Ref. 19 (at least when translational symmetry
is not required). Here we generalize the method to fermionic
systems. We find that the eight phases found in Ref. 13 are
indeed topologically distinct and characterize them in terms
of a set of invariants. These phases cannot be continuously
connected by adding any kind of interaction as long as
time-reversal symmetry and fermion parity conservation are
preserved.

The basic idea is to examine the behavior of the entan-
glement (Schmidt) eigenstates of a segment in the bulk of the
system under the symmetry group of the system. Topologically
nontrivial phases can be recognized by the presence of
“fractionalized” modes in the entanglement spectrum, which
transform differently under the symmetry group from the
constituent microscopic degrees of freedom of the system
(analogous to the half-integer spins at the ends of the spin
one Heisenberg chain). The character of the entanglement
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spectrum cannot change without a bulk phase transition, at
which the nature of the ground state changes abruptly or the
correlation length diverges.

The behavior of the entanglement modes reflects the char-
acter of the physical topologically protected modes at the
boundary of the system. However, unlike the edge modes,
the entanglement spectrum represent a truly bulk property of
the ground-state wave function, and as such, it is not sensitive
to symmetry-breaking perturbations at the surface.

We start in Sec. II by introducing fermionic Hamiltonians
with pairing terms through the example of a single Majorana
chain model. The general framework to classify topological
phases based on symmetry properties of the entanglement
eigenstates is presented in Sec. III. We apply it to fermionic
systems with time-reversal invariance and fermion number
parity conservation and derive the invariants characterizing
the eight distinct phases and the degeneracies in their entan-
glement spectrum. These phases are shown in the next section
to have a Z8 group structure, defined through the rules for
combining phases with different invariants. In Sec. IV, we
demonstrate how to construct each phase by combining single
chains. In Sec. V, we discuss the additional phases which
arise if translational symmetry is imposed. The results are
summarized and discussed in Sec. VI.

II. FERMIONIC MODELS WITH PAIRING TERMS

We will investigate time-reversal invariant one-dimensional
systems of spinless fermions, in which the particle number is
conserved modulo 2. (The classification of topological phases
is most interesting in this case.) Such a situation can be realized
in a system in contact with a superconductor. As a simple
example, consider the following Hamiltonian20:

H0 = − t

2

∑
j

(c†j c
†
j+1 + c

†
j cj+1 + H.c.) + u

∑
j

c
†
j cj , (1)

with t,u � 0. The operators c
†
j (cj ) create (annihilate) a

spinless fermion on site j . The first term comprises hopping
of fermions as well as the creation and annihilation of pairs of
fermions while the second term acts as a chemical potential.
The fermion parity operator

Q = eiπ
∑

j nj

with nj = c
†
j cj commutes with H0 as the total number

of fermions Ntotal modulo 2 is conserved. Furthermore,
the Hamiltonian is time-reversal symmetric. (For spinless
fermions, time reversal is represented by complex conjuga-
tion.)

Let us begin by considering only the conservation of the
fermion number parity. This symmetry of H0 allows us to
distinguish two different phases. The system undergoes phase
transitions at t = u, but no local order parameter can be used
to distinguish the two phases on either side of the transition.
However, they can be distinguished by their edge states. In the
phase u > t , the ground state for an open chain is unique
while it is twofold degenerate for t > u.20 If u = 0, one
can check that these states are given by the equal weighted
superposition of all configurations with fixed fermion parity
(i.e., an even number or an odd number of particles). The

ground-state degeneracy in this case can be understood in
term of degrees of freedom at the two ends. The two ground
states cannot be distinguished by any local observable in
the bulk, because in any finite region of either state, the
parity can be either even or odd. However, the two states
are distinguishable when the opposite ends are compared to
one another: c

†
Nc1 + c

†
Nc

†
1 + H.c. has a different eigenvalue

for the two states. Furthermore, we can transform the two
ground states into each other by acting with either c1 + c

†
1 or

cN − c
†
N on the two ends of the chain. In other words, there

is a single fermionic state that is split between the ends of
the chain, and the observable described above measures its
occupation number. The two states are degenerate because
the only distinction between them is long range, while energy
measures only local correlations. In the phase t < u, however,
there is no such degeneracy. This picture remains true even
if we include interactions as the arguments can be stated in a
way that only requires the Hamiltonian to conserve the fermion
parity, as explained in the next section.

The edge properties have a simple explanation in a different
representation defined by the following transformation:

aj = cj + c
†
j (2)

bj = −i(cj − c
†
j ). (3)

aj and bj are Majorana operators; they obey the relations
{ai,aj } = {bi,bj } = δij , {ai,bj } = 0, a

†
i = ai , and b

†
i = bi .

The fermion parity, 1 − 2nj of a site, is given by ibj aj . Using
these operators, H0 can be written (up to a constant) as

H0 = i

2

⎛
⎝t

∑
j

bjaj+1 + u
∑

j

aj bj

⎞
⎠ . (4)

Observe that each unit cell now contains two operators. In
the case where t = 0,u = 1, the ground state is described
by iaj bj = −1, i.e., each site is vacant. In terms of these
variables, the phase t = 1, u = 0, is also simple: ibjaj+1 =
−1. (This can be regarded as the parity of a fermion
shared between sites j and j + 1.) This requirement does
not completely determine the ground-state wave function in
an open chain, though, because it leaves a1 and bN free.
There are therefore two degenerate states characterized by
the occupation of the fermion shared between the ends,
ibNa1.

The presence of time-reversal symmetry leads to addi-
tional distinctions between phases. Quadratic, time-reversal
invariant fermionic Hamiltonians with conservation of the
fermion number mod(2) have been shown8,9 to support phases
classified by an integer n ∈ Z (class BDI, according to
Ref. 8). Each phase is characterized by having n gapless
Majorana modes at each edge, and the different phases
cannot be smoothly connected to each other without closing
the bulk gap. It was later found13 that in the presence of
interactions this classification breaks down to Z8. Now we
will begin the main discussion, whose goal is to show how
the eight distinct phases in the general (interacting) case
can be understood and classified according to properties of
their entanglement eigenstates under the symmetries of the

075102-2



TOPOLOGICAL PHASES OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 83, 075102 (2011)

......

S EE

{ {{ L OBOA

FIG. 1. Illustration of a bipartition of a 1D chain into a segment (S)
of length L and a surrounding environment (E). The operators OA and
OB act on the edges of the segment.

system, namely time reversal and fermion number parity
conservation.

III. CLASSIFYING PHASES BY SYMMETRY PROPERTIES
OF THE ENTANGLEMENT EIGENSTATES

In the preceding section, we discussed physical edge
properties to characterize different phases. Below, we present
an alternative method of classifying the phases, which in-
volves only the bulk. This is achieved by examining the
“entanglement spectrum”16,18,21–23 of a finite (but arbitrarily
large) segment,14,15 embedded in an infinite system. The
transformation law of the entanglement (or Schmidt) states
under the symmetry group of the system can be used
to distinguish between different phases, as we describe
below.

We consider a bipartition of a 1D chain with periodic
boundary conditions into a segment (S) of length L and a
surrounding environment (E) of length N � L as shown in
Fig. 1. For the segment S, the reduced density matrix of the
ground-state wave function |ψ〉 is given by

ρS = trE(|ψ〉〈ψ |). (5)

It is convenient to define an “entanglement Hamiltonian” HS

such that

ρS = e−HS . (6)

Then, the low-“energy” states of HS are the most likely
states of the segment S when the entire system is in its ground
state. We call the eigenstates |φγ 〉S of HS “entanglement
eigenstates” and the eigenvalues Eγ “entanglement eigenval-
ues.” (These are the same as the Schmidt states defined by

|ψ〉 = ∑
e− Eγ

2 |φγ 〉S |χγ 〉E , where |χγ 〉E are the corresponding
Schmidt states of the environment.)

Our approach is based on an important observation for
the entanglement Hamiltonian HS : The low “entanglement
energy” excitations of HS in a d-dimensional system may be
well described by a (d − 1)-dimensional effective Hamiltonian
(see also Ref. 24 for an interesting discussion of this concept).
We consider the entanglement spectrum of a sufficiently large
one-dimensional segment S and focus on the “low-lying”
entanglement states with Eγ < Ecut (where Ecut is an arbitrary
constant).

We now make a crucial observation: in a gapped system
with a finite correlation length ξ ,25 these states can be
distinguished from each other only by their behavior within
a certain distance of the ends of the segment S. This is
justified by the following argument: suppose that we measure a
correlation function C(
) = 〈OEOS〉ψ , where OE acts on sites

in the environment E and OS acts on sites in the segment (far
away from the edges), respectively. 
 is the minimal distance
between the sites on which OE and OS act. We expect that
as 
 becomes large, C(
) → 〈OE〉ψ 〈OS〉ψ . Let us take for OE

an operator that projects onto a particular Schmidt state of the
environment, say |χγ 〉E . (OS can be any operator as long as
it acts far from the edges of S.) When applied to the ground
state, OE projects (through the entanglement between E and
S) also onto the corresponding entanglement eigenstate |φγ 〉S
of S. Thus, we have 〈OS〉φγ

≈ 〈OS〉ψ . That is, 〈OS〉 in each
eigenstate of HS is the same as in the ground state; i.e., far
enough from the edge of S, any eigenstate of HS behaves
essentially like the ground state. Therefore, an operator acting
far from the edge of S cannot distinguish different Schmidt
states; its expectation value must be the same in all of them.
(A simple generalization of the above argument, using an
off-diagonal OE , shows that OS cannot connect different
low-energy entanglement eigenstates if it is sufficiently far
from the boundary.)

Furthermore, one can show (see Appendix A for the
case of bosons) that any linear transformation applied to the
subspace of low-entanglement energy eigenstates of S can
be represented by a local operator acting on sites within a
distance 
 from either boundary of S with an accuracy that
improves exponentially with 
. In particular, every symmetry
operation of the system is a unitary operation acting on the
entanglement eigenstates26 and thus can be represented (within
the low-entanglement basis) as a product of two operators
OA, OB (Fig. 1), acting on sites near the left and right
edges of S, respectively. (Note that OA, OB are specific for
a particular ground state |ψ〉.) Thus, OA and OB form a
(projective) representation of the symmetry group. Classifying
the representations formed by OA, OB distinguishes different
phases, which cannot be adiabatically connected unless a
phase boundary is crossed. At the phase boundary, either the
character of the ground state changes discontinuously or else
the correlation length diverges and the two ends are no longer
independent.

Let us demonstrate these principles through the case of
an SO(3)-symmetric integer spin chain. If the segment S is
sufficiently long, there can be situations in which entanglement
states come in degenerate sets.18 This can be seen from the
fact that, according to the argument above, any SO(3) rotation
can be represented accurately (within the low-entanglement
energy subspace) in terms of two generators, SA and SB , which
act only within a distance 
 of the left and right edges of S,
respectively. Within this subspace, Stot ∼ SA + SB , where Stot

is the total spin. Both SA, SB can be block diagonalized into
irreducible representations of SO(3) with well-defined angular
momenta. Now, since Stot is an integer spin, there are two
possibilities: either all the blocks in SA and SB form integer
representations, or they all form half-integer representations.
This distinguishes two phases: a “trivial” phase, in which
SA, SB are both integers (e.g., a fully dimerized chain),
and a “nontrivial” phase, in which they are half-integers
(such as the Haldane phase of the spin-one chain27). In the
latter phase, all the entanglement energies of S must have
a degeneracy of at least 4,18 due to the even degeneracy at
each end, guaranteed by the presence of the half-integer spin
operators SA and SB . This is an alternative explanation of
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the symmetry protection of the Haldane phase, discussed in
Refs. 18,28–31.

A. Fermion parity

We now turn to discuss fermionic systems. Let us consider
a Hamiltonian H that conserves the fermion parity Q as
defined in (2) with Q2 = 11. We show that one can distinguish
two phases, a “trivial” phase and a “nontrivial” one. In the
“nontrivial” phase, a segment’s entanglement spectrum is
doubly degenerate. The double degeneracy is related to a
single fermionic degree of freedom, which is split between
the opposite ends of the segment.

Any eigenstate of H , and in particular the ground state
|ψ〉, is also an eigenstate of Q. Hence the resulting reduced
density matrix ρS and the entanglement Hamiltonian HS both
commute with Q. The eigenstates |φγ 〉 of HS may therefore
be classified by their Q eigenvalues (qS = +1 if the fermion
number NF is even and qS = −1 if NF is odd.)

We now posit that it is possible to find an effective expres-
sion for Q within the low-entanglement energy subspace, of
the form Q ∝ QAQB , where QA and QB are local operators
which act near the left and right edges of S, respectively. This
is analogous to the example of spin described in the previous
section, in which the total spin can be represented as a sum of
operators acting on the left and right edges. [In the fermionic
case, the decoupling of Q is multiplicative, since Q is itself a
unitary symmetry rather than an SO(3) generator.]

Now, QA and QB can have interesting relationships: QA

and QB may be two fermionic operators (that is, each contains
an odd number of creation or annihilation operators) or they
may both be bosonic. Note that QA or QB cannot contain a
sum of bosonic and fermionic terms, because Q ∝ QAQB is
bosonic.32

If QA, QB contain an odd number of fermionic operators,
then QAQB = −QBQA. To indicate when this “statistical
correlation” between the two ends is present, define an angle
μ = 0 or π , so

QAQB = eiμQBQA. (7)

For μ = 0 (π ), Q = QAQB (−iQAQB). The factor of i

must be introduced in the latter case for consistency with the
anticommutation of QA and QB , given that Q2 = (QA)2 =
(QB)2 = 11.

For example, consider the Hamiltonian in Eq. (1) with u =
0, t = 1. In this case, it is not difficult to show that there are
only two entanglement eigenstates on the segment S (with a
nonzero weight in the density matrix), the same two states as
the ground states of the original Hamiltonian restricted to this
segment. The fermion parity of these states is given by

Q = −iQAQB, (8)

where

QA = c1 + c
†
1

(9)
QB = −i(cL − c

†
L).

We see immediately that QA and QB anticommute and there-
fore μ = π . Furthermore, [HS,Q

A] = [HS,Q
B] = 0, which

is also true in general.

For any system with μ = π , the above commutation
relations imply that all the eigenvalues of HS come in
degenerate pairs. To see this, note that Q and HS can
be diagonalized simultaneously. Then, if HS |φλ〉 = Eλ|φλ〉
and Q|φλ〉 = qλ|φλ〉 (where qλ = ±1), then the state |ψλ〉 =
QA|φλ〉 is such thatHS |ψλ〉 = Eλ|ψλ〉 and Q|ψλ〉 = −qλ|ψλ〉,
i.e., |ψλ〉 is an independent eigenstate with eigenvalue Eλ.
Indeed, for the Hamiltonian (1) with u = 0, we find a doubly
degenerate entanglement level with E = log 2. (All other
entanglement levels in that system have E = ∞.)

Note that, unlike the Haldane chain example in Sec. III,
the entanglement spectrum is twofold (rather than fourfold)
degenerate. This is a consequence of the fact that the
degeneracy is not associated with either QA or QB alone;
it is related to the occupation of the fermionic level formed by
combining QA + iQB , i.e., it is shared between the two edges.

In a bosonic system, the states of the entanglement
eigenstates can be represented by |φγ 〉 = |αβ〉. Here α,β

describe the states of the left and right ends of the chain; that
is, they enumerate the eigenvalues of certain low-“energy”
combinations of observables that are functions of 
 sites at the
respective ends. This factorization is possible for fermionic
chains with μ = 0 as well. However, for chains with μ =
π , the extra qS variable describing the twofold degeneracy
cannot be written in terms of local observables belonging
to either end (i.e., the fermionic degrees of freedom cannot
be measured independently at the two ends of the segment).
Therefore, the entanglement states should be labeled by three
variables, |αβqS〉, with the fermion parity qS of the entire chain
represented explicitly.33

In a noninteracting system, the entanglement Hamiltonian
is also noninteracting.34,35 It can be represented in terms of
entanglement modes. The only subtlety is that some of these
modes may be Majorana modes, which satisfy m2 = 1; m† =
m. There are two topologically distinct phases, depending on
whether there are an even or an odd number of Majorana
modes at each end of the segment. The QA and QB operators
defined above can be found explicitly. Given that the left edge
has Nf low-energy fermionic entanglement modes, fA,α (α =
1, . . . ,Nf ), and Nm Majorana modes, mA,β (β = 1, . . . ,Nm),
QA is given by

QA =
(∏

α

(−1)f
†
A,αfA,α

) ⎛
⎝∏

β

mA,β

⎞
⎠ (10)

and similarly for QB . Note that QA is a bosonic operator if
Nm is even (corresponding to μ = 0) and a Majorana operator
if Nm is odd (μ = π ).

When interactions are included, only the “total parities”
QA, QB are well defined. The separate modes fα , mβ can
“decay” into other combinations of modes, but their total is
closely related to the symmetry Q, as we have just outlined.

B. Time-reversal symmetry

We shall now examine the consequences of time-reversal
symmetry for the degeneracies of the entanglement energies.
It turns out that the combination of time reversal and fermion
parity conservation can have nontrivial effects.
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1. Bosonic models

Let us introduce the approach by reiterating the results for
a bosonic chain in the presence of time-reversal symmetry
with [HS,T ] = 0. The eigenstates |φγ 〉 can be represented
by |φγ 〉 = |αβ〉, where α,β enumerate the low-“energy” states
associated with the two edges. Entanglement eigenstates which
differ in their α (β) index can be connected by a local operator
close to the left (right) edge, respectively. The transformation
of the eigenstates of HS factors into parts referring to the two
ends (see Appendix A).

It can therefore be represented as a product of two unitary
transformations UA,UB acting on the ends of the segment so

T |α,β〉 =
∑
α′,β ′

UA
α′αUB

β ′β |α′β ′〉 (11)

and [UA,UB] = 0. For a discussion of subtleties related to
the antiunitarity of T , see Appendix B. Applying T to an
eigenstate twice yields

T 2|αβ〉 =
∑

α′,β ′,α′′,β ′′
UA

α′′α′U
B
β ′′β ′ (UA)∗α′α(UB)∗β ′β |α′′β ′′〉.

(12)

Using T 2 = 11 and that the two ends of the segment are
independent, it follows that

UA(UA)∗ = UB(UB)∗ = exp(iκ)11, κ = 0,π. (13)

We can thus distinguish two different phases, corresponding
to κ = 0,π . Let us now focus on the consequences for the
entanglement spectrum. Assume that |φγ 〉 is an eigenstate of
HS with eigenvalue Eγ ; then UA|φγ 〉, UB |φγ 〉, UAUB |φγ 〉
are also eigenstates with the same eigenvalue because HS

commutes with UA and UB . If κ = π , the unitaries UA,UB

are antisymmetric and thus the four states are mutually
orthogonal, resulting in a fourfold degeneracy of the entan-
glement spectrum. If κ = 0, the entanglement spectrum does
not necessarily have any degeneracies. For example, in the
Haldane phase of spin-1 chains, we find κ = π and therefore
the entire entanglement spectrum of a segment S is fourfold
degenerate.18,36

This method may be generalized to give a classification of
phases with any given set of symmetries. For each relationship
between the physical symmetries (e.g., T 2 = 11 in the case just
described), there is a corresponding relationship between the
factored symmetries of the entanglement spectrum,18 in which
certain phases (e.g., κ) can appear. Certain combinations of
these phases are “gauge invariant” (independent of how the
phases of the factored symmetries are chosen). These combi-
nations distinguish between topological phases. In fermionic
models, an additional possibility is that symmetry operators
at opposite ends may either commute or anticommute, as
described in the previous section.

2. Fermionic models

We now consider a Hamiltonian which has both fermion
parity conservation with Q2 = 11 and time-reversal symmetry
with T 2 = 11. In the presence of both symmetries, we show that
each of the two phases defined in the previous section (μ =
0,π ) can be subdivided into four different phases. Furthermore,

we discuss the consequences for the entanglement spectrum
in each case. As T simply takes the complex conjugate (spin
degrees of freedom are not considered here), it does not change
the total fermion number and thus [T ,Q] = 0. We will now
classify the phases by examining how the properties of the
factored versions of Q and T depart from the relations of the
full transformations, T 2 = 11, [T ,Q] = 0.

We first consider the case μ = 0, i.e., [QA,QB] = 0.
Then, both QA and QB are bosonic operators and can be
diagonalized simultaneously. Then, we distinguish two cases:
QAT = eiφT QA with φ = 0,π , and similarly for QB . Note
that φ has to be the same for QA and QB , since Q = QAQB

satisfies [T ,Q] = 0. If φ = π , time reversal changes the parity
of the fermion number in either end. (A similar situation
occurs at the vortex cores of time-reversal invariant topological
superconductors.37) We now examine the two cases φ = 0,π

separately, showing how to define a third angle κ in each case.
(μ = 0, φ = 0, κ = 0 or π ): The case φ = 0 is analogous

to the bosonic case considered above, with two phases,
one corresponding to κ = π , characterized by a fourfold
degenerate entanglement spectrum of a segment, and one
to κ = 0, in which there is no necessary degeneracy in the
entanglement spectrum.

(μ = 0, φ = π, κ = 0 or π ): If φ = π , UA and UB

(defined through T = UAUB ; see Appendix B for a precise
explanation of this factorization.) are both fermionic oper-
ators, since they change the fermion parity. We know that
T 2 = UAUB(UAUB)∗ = −UAUA∗UBUB∗ = 11. This can be
satisfied only if UA(UA)∗ = exp(iκ)11 and UB(UB)∗ =
− exp(iκ)11 with κ = 0,π . To understand the degeneracies,
note that {QA,UA} = 0 and {QB,UB} = 0, where both UA

and UB commute with HS . ({·,·} denotes an anticommutator.)
Therefore, each entanglement level is fourfold degenerate,
where the degeneracy corresponds to states with all possible
combinations of QA = ±1 and QB = ±1.

Next, we consider the case μ = π . In this case, {QA,QB} =
0, so these two operators cannot be diagonalized simultane-
ously. Rather, every entanglement eigenstate can be labeled by
the eigenvalue q = ±1 of the parity operator Q = −iQAQB ,
where |αβ,q = ±1〉 are degenerate. Since [T ,Q] = 0, we
must have either [T ,QA] = 0 and {T ,QB} = 0 or vice versa.
Therefore, we define a parameter φ = 0,π such that T QA =
eiφQAT and T QB = ei(φ+π)QBT .

In this case (μ = π ), phases with φ = 0 and π behave very
similarly. To see this, we just note that if φ = π then QT

commutes with QA. Therefore, we will define a modification
of time reversal that commutes with QA, T ′ := QT if φ = π

and T ′ := T if φ = 0. Let the factors of T ′ be T ′ = UA′
UB ′

.
One can check that UA′

,UB ′
are bosonic. The entanglement

spectrum can be divided into two sectors with a fixed value
of q. The operator UA′

, being bosonic, depends only on α,β

and hence acts the same way on both sectors. Define κ by
eiκ11 = UA′

UA′∗ = UB ′
UB ′∗. The possible values for κ are 0

and π .
(μ = π, φ = 0 or π, κ = 0): If κ = 0, each entanglement

eigenstate in each q sector can be singly degenerate. Therefore,
counting the q = ±1 degeneracy, each entanglement eigen-
state has a minimal degeneracy of 2.

(μ = π, φ = 0 or π,κ = π ): If κ = π , the spectrum in
each of the ±q sectors is fourfold degenerate (for the same
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TABLE I. Degeneracies and addition table. All possible phases
of fermions are realized by simply taking copies of some number of
Majorana chains (see next section); the first column is the number
of chains. The next column gives the parameters classifying a given
state. The third column gives the degeneracy of the Schmidt spectrum,
counting both ends.

Number of chains (μ,φ,κ) Degeneracy of segment

1 (π,0,0) 2
2 (0,π,π ) 4
3 (π,π,π ) 8
4 (0,0,π ) 4
5 (π,0,π ) 8
6 (0,π,0) 4
7 (π,π,0) 2
8 (0,0,0) 1

reasons as in the bosonic case above with κ = π , i.e., there
is a Kramer’s doublet at each edge). Taking the q = ±1
degeneracy into account, every entanglement eigenstate is at
least eightfold degenerate.

There are therefore eight different phases classified by
triplets (μ,φ,κ), where each entry is 0 or π . μ = π if there
are Majorana modes at the ends of the segment, φ = π if time
reversal and QA anticommute, and κ = π if UA(UA)∗ = −11
(leading to Kramers’ doublets at the edges of the segment).
Since, as long as the time reversal and fermion parity
symmetries are preserved, (μ,φ,κ) can take only the values 0
or π , and they cannot change smoothly; the only way for them
to change is through a nonanalytic change of the ground-state
wave function, i.e., a quantum phase transition.

The eight different phases and their corresponding minimal
degeneracies are summarized in Table I. The degeneracies
illustrate a distinction between interacting and noninteracting
systems. As we will show in Sec. IV, the eight distinct phases
can be realized by taking M copies of a single chain in the
large t phase, where M = 1, . . . ,8. Without interactions, the
degeneracy of the Schmidt spectrum would be equal to 2M .
Interactions can partly lift this degeneracy but cannot connect
the eight phases defined by (μ,φ,κ) adiabatically.

IV. ADDITION OF PHASES

The eight phases we have just obtained obey a group
structure, which is defined by the rules of “adding” them
together. This group turns out to be Z8. The addition rules
reveal interesting distinctions between bosons and fermions.
We will work out the addition table in some detail.

Two systems can be added together by placing them side
by side: hence if one system is in phase P1 and another is in
P2, then the combined “ladder” system is in phase P1 + P2.
(The combined system then remains in P1 + P2 even when the
two constituent systems are coupled, as long as the coupling
Hamiltonian is symmetric under time-reversal and fermion
parity, and the bulk gap does not collapse.) This rule creates a
finite group for a given set of symmetries. In particular, every
element in this group has an inverse and the trivial phase is the
identity element.

The distinction between fermionic and bosonic systems is
related to the inverse operation. If the system consists only of
bosons, then the inverse element of any phase P is its complex
conjugate (i.e., its time reversal):

P + P ∗ = trivial phase. (14)

For an example, consider a spin one Heisenberg chain. A
single chain cannot be adiabatically connected to the trivial
phase because its ends transform as spin 1/2 degrees of
freedom. However, as shown in Ref. 38, two coupled chains
can be connected continuously to the rung singlet phase (i.e.,
a product state of spin zeros on the rungs). The two chains are
no longer distinguished from the trivial phase by their ends
because the two half-integer spins couple to form integer spin
states.

In general, phases of bosonic chains are distinguished by
the projective representation of the symmetry groups acting
on the entanglement eigenstates (see Ref. 18). Each element
in the symmetry group

∑
is represented in the entanglement

eigenbasis as a left-hand unitary matrix UA (�) acting on
the left index of the state and a right-hand matrix UB (�)
acting on the right index. Then the combined operation of
two elements �1 and �2 is represented by UA (�1�2) =
eiρA(�1,�2)UA (�1) UA (�2), and similarly for UB . To see that
P + P ∗ is trivial, consider the eigenstates of the entanglement
Hamiltonian for a segment in the combined system

|αβ〉coupled = |α1β1〉P |α2β2〉P ∗ . (15)

The left-hand matrix UA representing a symmetry � for the
coupled system is

U
A,coupled
α′

1α
′
2;α1α2

(�) = UA
α′

1α1
(�)UA∗

α′
2α2

(�), (16)

where the second factor is complex conjugated because the
second chain is time reversed. Hence, the phase factors
cancel, UA,coupled(�1)UA,coupled(�2) = UA,coupled(�1�2), and
the resulting system is in a trivial phase.

Now we can try to build more complicated phases out
of simpler ones by placing them side by side. For bosonic
systems, this procedure does not generate new phases in the
presence of time-reversal symmetry. Time-reversal symmetry
and Eq. (14) imply that P + P = 0. Hence starting from one
phase, it is not possible to get more than two phases (the
original phase and the trivial phase). There may be additional
phases that would have to be built up from independent starting
points. The group is always a product of Z2’s, in other words.

However, for fermionic spin chains, P and P ∗ are not
necessarily inverses. The p-wave superconducting state P1

described by Eq. (1) with t > μ which is an order 8 phase,
as discovered by Fidkowski and Kitaev,13 is an illustration.
Equation (16) breaks down because operators on the two chains
can anticommute with each other. In fact, starting from a single
Majorana chain, we can generate all possible combinations of
μ, φ, and κ . We now demonstrate this idea for a number of
examples. We start with the Majorana chain and double it
repeatedly until we return to the trivial phase.

(i) Consider the Majorana chain, the ground state of
Eq. (1) with t > u which is in the (μ,φ,κ) = (π,0,0)
phase. When two copies are combined together, the resulting
phase has (μ,φ,κ)coupled = (0,π,π ), i.e., the ends are not
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Majorana fermions any longer, but time reversal changes
the fermion parity of the ends. The fermion parity for the
segment of the combined chain is given by Q = Q1Q2 =
(iQA

1 QB
1 )(iQA

2 QB
2 ) = (QA

1 QA
2 )(QB

1 QB
2 ), where the QA

n ,QB
n

are fermionic parity operators of a chain n with Majorana
ends (see Sec. III A). One can measure the parities of the ends
separately because QA = −iQA

1 QA
2 and a similar operator on

B are bosonic operators, so μcoupled = 0. On the other hand,
φcoupled = π because T anticommutes with QA on account of
the factor of i. Furthermore, one finds that κcoupled = π . (See
Appendix B.)

(ii) Consider two chains with (μ,φ,κ) = (0,π,π ). QA
1 , QA

2
are bosonic, therefore QA

coupled = QA
1 QA

2 is bosonic as well,
and μcoupled = 0. Time reversal acting on the left edge is
represented as UA

coupled = UA
1 UA

2 . It anticommutes with QA
1 ,

QA
2 but commutes with their product, therefore φcoupled = 0.

Since both UA
1 , UA

2 change the fermion parity, they both have
to be fermionic. Therefore {UA

1 ,UA
2 } = 0 and we get that

UA
coupledU

A∗
coupled = (

UA
1 UA

2

) (
UA

1 UA
2

)∗

= −UA
1 UA∗

1 UA
2 UA∗

2

= −11. (17)

Hence κcoupled = π , and the resulting phase is labeled by
(0,0,π ).

(iii) Combining two chains with (0,0,π ) finally gives the
trivial phase, because all the symmetries are represented
by bosonic operators, therefore κ simply doubles to give
0 mod (2π ). This conforms with the fact that the Majorana
chain is an order 8 element of the group.

Working out the addition rule in general gives the table
of phases which are summarized in Table I. A concise
way to describe the general addition rule is to define λ ≡
κ + φ(mod 2π ). Then we represent a state by a three-digit
binary number ( λ

π
,

φ

π
,
μ

π
). These numbers add modulo 8 when

the phases are combined.

V. TRANSLATIONAL INVARIANCE AND θ

If, in addition to fermion parity conservation, translational
invariance is also present, the number of distinct phases is
doubled. Below, we derive the associated invariant, θ , which
can take the values 0 or π , independent of the invariants
(μ,φ,κ) described above. The degeneracy of the entanglement
spectrum, however, is not modified in either the θ = 0 or π

phases and is given by Table I.
Let us consider a fermionic chain with translational in-

variance. According to the Sec. III A, the fermion parity of a
segment S = [1,L] extending from j = 1 to j = L (where L

is much larger than the correlation length ξ ) can be written as

Q (1,L) = e−i
μ

2 f (L) QA (1) QB (L) . (18)

Here, we have kept track explicitly of the position of the
operators QA and QB and of an overall constant sign f (L)
(which was absorbed into the definition of QA and QB before).
Translational invariance removes the necessity of choosing
the sign of QB (and QA) separately for each segment. This
symmetry also allows us to write the parity operator of

the segment [1,L] in terms of those of the two segments
S1 = [1,L′] and S2 = [L′ + 1,L] (where L′,L − L′ � ξ ) as

Q(1,L) = Q(1,L′)Q(L′ + 1,L)

= e−i
μ

2 f (L′)f (L − L′)

×QA(1)
[
e−i

μ

2 QB(L′)QA(L′ + 1)
]
QB(L). (19)

Equating Eqs. (18) and (19) gives that, within the low-
entanglement subspace, we must have

f (L′)f (L − L′)
[
e−i

μ

2 QB(L′)QA(L′ + 1)
] = f (L). (20)

Equation (20) can hold for every state in the low-
entanglement subspace only if these states are all eigenstates
of e−i

μ

2 QB(L′)QA(L′ + 1). The signs of QA and QB can be
defined in such a way that the corresponding eigenvalue is 1.
Then, we get that f (L′)f (L − L′) = f (L), which is solved
by

f (L) = eiθL. (21)

From the requirement that [Q (1,L)]2 = 11, we get that θ can
only take the values 0 or π . Thus, each of the eight phases found
in the previous section is further split into two distinct phases,
corresponding to the two allowed values of θ . For example,
for the Majorana chain model [Eq. (1)], t = 0, u = +1 and
t = 0, u = −1 describe distinct phases, although both have
μ = 0. The ground state has all sites occupied or unoccupied,
corresponding to θ = π or θ = 0, respectively.

Note that both θ and μ have a concrete consequence not
only for the entanglement spectrum but also for the parity of
the ground state in periodic chains. If the length of the chain
is much larger than the correlation length, the parity depends
only on μ and θ and the chain length, (−1)(μ+θL)/π . Thus, a
phase with μ = π has an odd number of fermions on a chain
of an even length.20 The phase θ determines whether the parity
of the ground state alternates as a function of L. This is shown
in Appendix C.

VI. SUMMARY AND OUTLOOK

We have described a systematic procedure for classifying
the phases of 1D interacting fermions. We focused on spinless
fermions with time-reversal symmetry and particle number
parity conservation. In the noninteracting case, these models
are classified by an integer number, i.e., by Z.8,9 We used
concepts of entanglement to classify the phases in the
presence of interactions. We derive an effective description
of the dominant entanglement states which then allows
us to recognize “topological” features based on projective
representations of the symmetries. We found, in agreement
with the results of Fidkowski and Kitaev (Ref. 13), that in the
presence of interactions there are only eight distinct phases.
Each of these eight phases is characterized by a unique set
of bulk invariants (μ,φ,κ), which can take the values 0 or
π . These invariants are related to the transformation laws of
the entanglement eigenstates under symmetry operations, and
the phases have a characteristic degeneracy of entanglement
levels. Furthermore, the phases obey a Z8 group structure and
each of the eight phases can be generated by adding single
chains together. All possible phases and the addition rules
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are summarized in Table I. If translational symmetry is also
present, the number of distinct phases increases to 16.

The symmetries we have focused on describe only one of
the 10 Altland-Zirnbauer classes39 of topological insulators.
The framework described here can also be used to show how
the phases in the other classes are modified by interactions.
To analyze each of the classes of topological insulators, one
only has to determine the appropriate algebra of symmetries
and then determine the possible projective representations of
this algebra.

Interactions cause the meaning of the Altland-Zirnbauer
classes to bifurcate, however. At the mean-field level, a
superconductor has an emergent particle-hole symmetry in
its band structure. Thus, the classes which have a particle-hole
symmetry can be interpreted as describing either superconduc-
tors or systems that have a true particle-hole symmetry (such as
the Hubbard model for fermions with spin on a bipartite lattice
at half-filling). When interactions are included, these two
interpretations are distinct. Thus, the class BDI, for example,
has particle-hole and time-reversal symmetry. This can be
interpreted as describing superconductors. This means that
one symmetry, particle conservation, breaks down, and only
fermion parity Q is left. The only two symmetries are T and Q,
giving the problem treated here. BDI can be interpreted instead
as describing systems with a true particle-hole symmetry C

that reverses the sign of 〈ni〉 − n̄. (Here, ni is the occupation
number of a site and n̄ is the mean occupation number.) In this
case, particle number N is conserved, and besides this there
are two other symmetries T and C. These satisfy the algebra
T 2 = C2 = 11, CN + NC = 2n̄L, where L is the length of
the system. (Every other pair of these symmetries commute.)
The set of phases differs for the two interpretations; particle
number conservation rules out Majorana fermions. A complete
classification of systems in all Altland-Zirnbauer classes in
one dimension, following either of the two interpretations
of particle-hole symmetry mentioned above, would be an
interesting project for future work.

A generalization of these results to higher-dimensional
systems is an interesting (and challenging) open problem.
In some of the symmetry classes of topological insulators
and superconductors, strong arguments have been given
that the noninteracting classification does not change when
interactions are included. This is particularly clear when
the topological invariant is related to a quantized physical
response, e.g., in the integer quantum Hall effect11,12 and in
3D time-reversal invariant topological insulators.10 However,
for other classes, the situation is less clear. For example, the
noninteracting classification of 3D chiral superconductors is
Z,8,9 similar to the one-dimensional case considered here. It
would be interesting to consider the effect of interactions on
the phase diagrams of such systems.

Note. As we were writing this article, we learned that a
similar classification is being worked out by Fidkowski and
Kitaev.40 Our results are consistent with theirs.
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APPENDIX A: LOW-ENERGY OPERATORS AND
THE ENDS OF THE CHAIN

An intuitive argument, given above, suggests that low-
energy operators acting on the entanglement eigenstates may
be represented approximately by operators located near the
ends of the chain: in each Schmidt state |αβ〉S the expectation
values of the spin and other operators have some particular
spatial dependence near the ends of the chain depending
on α and β, but this decays exponentially to the ground
state away from the ends. Therefore it should be possible to
transform between these states by using operators defined on
just the ends. A special case is the effective representations of
symmetries in terms of operators at the ends of the segments,
which we used to define the topological phases.

To see that these effective operators exist, one can use a
matrix product state representation41 of the wave function.
(We focus here just on bosonic systems. For systems including
fermions a similar argument can be developed using bosoniza-
tion but the discussion of this general result gets complicated
in the μ = π phases.)

A basis for the low-energy operators can be constructed as
follows. For each fixed choice of α1 and α2 let OA(α2,α1) be
the operator that transforms α1 into α2.

We will now give an approximate representation for
OA(α1,α2) that gives the correct transformation of low-energy
states of HS . Let the matrices �m,� define the bulk state
(m varies over a basis for the physical Hilbert space). The
ground-state wave function of a ring of length N is given by

|ψ〉 =
∑
{mi }

tr
(
�m1��m2 . . . ��mN

�
)|m1m2 . . . mN 〉, (A1)

where �m,� can be brought into a canonical form, satisfying∑
m �m��

†
m = ∑

m �
†
m��m = 11, where � is a diagonal

matrix with non-negative entries.42,43 For a generic wave
function, �m, � are infinite dimensional.

Let us define the states |αβ〉1L of a segment of the chain
stretching from 1 to L, where L < N , as

|αβ〉1,L =
∑
{mi }

(
�m1��m2 . . . ��mL

)
αβ

|m1m2 . . . mL〉. (A2)

When L is large these states are nearly orthonormal, that is
|〈α′β ′|αβ〉1,L − δα′αδβ ′β | ∼ Ce

− L
ξ , where ξ is the length scale

for the decay and C is a constant depending on the indices.
In this limit, |αβ〉1L are the entanglement eigenstates of the
segment. On the other hand, if the length of the chain is fixed
and α,β,α′,β ′ increase, the orthonormality must eventually
break down for high enough α,β,α′,β ′ (since the Hilbert space
of a segment of length L is finite while the dimension of the
matrices is infinite for a typical wave function). Indeed, C

grows as a function of α,α′,β,β ′.
The ground-state wave function (A1) can now be written as

|ψ〉 =
∑
α,β

λαλβ |αβ〉1,L|αβ〉L+1,N . (A3)
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This gives the Schmidt decomposition into states of the
environment |αβ〉L+1,N and states of the chain |αβ〉1,L,
with a Schmidt eigenvalue λαλβ [or, equivalently, an en-
tanglement energy E = Eα + Eβ = −2(ln λα + ln λβ)]. The
Schmidt eigenstates become orthogonal to each other in the
limit N → ∞ and L → ∞.

We can now give an “effective” expression for OA in terms
of local operators acting on sites 1, . . . ,
 (near the left edge
of the segment [1,L]), valid for a low entanglement-energy
subspace with Eα < Ecut. Ecut is a cutoff which depends on

. The accuracy of our effective expression improves as 


becomes larger (provided that N � 
). Define

OA,eff
α2α1

=
χ∑

γ=1

|α2γ 〉1,
〈α1γ |1,
, (A4)

where χ is a cutoff of the entanglement spectrum that satisfies
Eγ=1,...,χ < Ecut. OA,eff

α2α1
acts only on the 
 first sites of the

segment [1,L].
We now apply OA,eff

α2α1
to the state Eq. (A2), with α � χ .

This state can be expanded
∑

γ ′ |αγ ′〉1
λγ ′ |γ ′β〉
+1,N . Using
the approximate orthornormality of the states on the segment
from 1 to 
, we find that the operator in fact transforms α1

into α2. Intuitively, the sum over γ , the state of the internal
end of the 
-site segment ensures that this operator keeps the
right type of entanglement between the left and right side of
the “cut” at 
. The error of (A4) scales as F (χ )e− 


ξ , where
F (χ ) is a function of χ . [F (χ ) grows with χ , hence, to deal
with a larger range of “energies,” a larger value of 
 must be
used. This is because, as the “energy” of a state increases, it
penetrates further into the bulk.]

Note that OA,eff
α2α1

does not transform high-entanglement
energy states correctly, that is states such as |αβ〉1N with
α > χ . This is because |α1γ 〉 and |αγ ′〉 are orthonormal only if
they are both low-energy states. This limitation is unavoidable:
it is not possible to find a perfect representation for an operator,
such as Q, in terms of just the 
 sites near each end. One can
add an extra particle somewhere outside of the reach of these
sites, changing the value of Q but not of an observable on
the ends of the chain. The physical energy of this state may
not be much greater than the gap. However, not being able to
describe states like this is not a problem when one is studying
the ground state of the system: its entanglement energy is large,
which means that it contributes negligibly to the value of any
observable in the ground state.

APPENDIX B: FACTORING ANTIUNITARY OPERATORS

In the analysis of time-reversal symmetry, we defined
a parameter κ by factoring T into two operators UA and
UB , acting near the two opposite edges of the segment. To
determine how chains add to one another, it is necessary to
know the commutation and anticommutation properties of
these operators. We ignored a small detail, however: since
T is antiunitary, it cannot be factored either as the product of
two unitary or two antiunitary operators. One solution is just to
explicitly write how T transforms the basis states as we did in
Eqs. (11) and (12). This becomes cumbersome after a while,
however, and later in the text we have treated UA and UB

as unitary operators in Hilbert space, without keeping explicit
track of their indices. Here we will explain the meaning of this.

We will first discuss the bosonic case. Equation (11) gives
the action of T only on basis states. Taking a superposition
gives a factorization of T that is correct for any state:

T = UAUBK, (B1)

where UA and UB are unitary operators at the two ends and
K is defined by

K
∑
αβ

aαβ |αβ〉 =
∑
αβ

a∗
αβ |αβ〉, (B2)

where aαβ are arbitrary coefficients. We can now define κ

by (UAK)2 = eiκ11. Thus, UAK is an antiunitary symmetry
squaring to −11 in the nontrivial phase as in Kramers’ theorem.
Note that this equation is equivalent to the definition given
above, Eq. (13). This is because KUAK−1 = UA∗ when the
matrices are represented in the basis |αβ〉. (Note that the
complex conjugate of a matrix depends on the basis being
used, unlike the adjoint.)

We can argue physically that operators UA and UB satis-
fying Eq. (B1) can always be found. Consider the ratio T K−1

between T , which is represented by complex conjugation
in terms of the microscopic degrees of freedom, and K

which describes complex conjugation in the entanglement
eigenstate basis. This operator is unitary. Furthermore it
acts independently on the two ends: one may check that
KOA,BK is an operator acting on end A or B respectively, by
expressing it in the basis of entanglement eigenstates. Hence
T K−1OA,B(T K−1)−1 also has this property.

The operator UAK used to define κ is nonlocal. It does not
commute with operators at end B, because it takes complex
conjugates of them. However, we can still argue that κ is well
defined: Square Eq. (B1): 11 = UAUBKUAUBK . Since K2 =
11, we can write this also as 11 = UAUB(KUAK)(KUBK).
KUAK is an operator which acts on end A, therefore it com-
mutes with UB . Hence 11 = [UA(KUAK)][UB(KUBK)].
Since the two factors are local, each must be a pure phase,
hence (UAK)2 = eiκ11.

Now the operators UA and UB are not uniquely defined be-
cause complex conjugation, K , is basis dependent. Changing
the basis of eigenstates in which Eq. (B2) is imposed (e.g.,
multiplying the entanglement states by phase factors) changes
K . This does not change topological properties like the value of
κ , however: the unitary transformation that changes the basis
can be carried out continuously, starting from the identity. In
this process, κ cannot change because it can only be 0 or π .

For fermionic systems with μ = 0, one can decompose T

using Eq. (B1). When μ = π , the situation is more complicated
because the parity eigenvalue q cannot be associated with
either one of the edges. We have to make sure that K still maps
operators at each end of the system to other operators at that
end. In particular, KQAK must be a local operator at end A.

This condition is satisfied if K is defined to be complex
conjugation in the basis |αβq〉 provided that QA and QB are
represented by either purely real or purely imaginary matrices
in that basis. One way to satisfy this requirement is to first
choose a basis for q = +1 and then to construct the states in the
sector from them, |αβ,q = −1〉 = QA|αβ,q = +1〉. Then QA
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is represented by σx , acting in the q = ±1 basis. In this basis,
each state is an eigenstate of Q = σ z. Last, QB = iQQA =
σy . Since QA is real and QB is imaginary, the two ends are
not mixed by applying K . (If the relative phases of the basis
states are changed, then simple complex conjugation would
mix QA and QB into one another.) We have implicitly taken
the convention that QA is real and QB is imaginary throughout
the paper.

Now let us show how to calculate κ when two (μ,φ,κ) =
(π,0,0) chains are combined. The factorization T = UAUBK

must be carried out in a basis of states of the form |αβ〉,
according to our conventions. One basis for the states on the
two chains together is given by {|±〉1| ± 〉2} (where the sign
represents the values of q1,q2. (We do not explicitly write the
bosonic indices α,β.) These states map to themselves under
time reversal. However, UA and UB cannot be the identity
because we know they must be fermionic; the error is that
this is the wrong basis for defining K by simple complex
conjugation.

We must transform the states to a basis in which there
is no entanglement between the ends; we use states that are
eigenvectors of the local operators QA = −iQA

1 QA
2 and QB =

iQB
1 QB

2 , namely |qAqB〉. (The relative minus sign between QA

and QB ensures that the total parity is qAqB = q1q2.)
To construct the basis, first find an eigenfunction of QA and

QB with eigenvalues +1, (choose the phase arbitrarily):

| +A +B〉 = 1√
2

(|+〉1|+〉2 − i|−〉1|−〉2). (B3)

Now generate the other basis states from this by applying QA
1

and QB
1 :

| −A +B〉 := QA
1 | +A +B〉 = 1√

2
(|−〉1|+〉2 − i|+〉1|−〉2)

| +A −B〉 := −iQB
1 | +A +B〉 = 1√

2
(|−〉1|+〉2 + i|+〉1|−〉2)

| −A −B〉 := QA
1 | +A −B〉 = 1√

2
(|+〉1|+〉2 + i|−〉1|−〉2).

(B4)

The phases are just conventions in the first two definitions, and
the phase in the third equation follows from the independence
of the ends: QA

1 has to act on qA the same way no matter what
the value of qB is. Now it is clear that T switches the fermion
parity of each end in this basis, since changing the sign of i

exchanges the states |qAqB〉 and |−qA,−qB〉.
Now we can define K to map each of these basis states to

itself. Clearly, T = Q2 because Q2 exchanges the same pairs
of wave functions as T or, more precisely, T = Q2K . Hence
UA = −iQA and UB = QB . One can check that (UAK)2 =
−11, so κ = π .

Note that, in spite of all this trouble, the value of κ in a phase
with μ = 0,φ = π does not have any physical significance—
the fourfold degeneracy of the spectrum is already explained
by the fact that φ = π . The reason T changes fermion parity
at the ends is that the two ends can only be disentangled by a
change of basis that includes complex phases.

APPENDIX C: PARITY OF THE GROUND STATE ON A
PERIODIC CHAIN

The parity of the ground state on a periodic chain is given
by ei(θL+μ). This follows from a fact in Sec. V: Consider
two subsegments of the chain, one ending at X and the
other starting at X + 1. The ground-state wave function is
an eigenfunction of the following:

e−i
μ

2 QB(X)QA(X + 1)|ψ〉 = |ψ〉. (C1)

When μ = π , this relation describes the correlations between
the Majorana degrees of freedom in adjacent segments of the
chain.

We now suppose the periodic chain has length L and
break it at two places, between L′ and L′ + 1 and be-
tween L and 1. The total fermion parity of the ground
state is the product of the parity on the two segments,
[ei(θL′− μ

2 )QA(1)QB(L′)][ei(θ(L−L′)− μ

2 )QA(L′ + 1)QB(L)]. Re-
arranging and using Eq. (C1), the ground-state parity comes
out as ei(θL+μ). The extra minus sign when μ = π comes from
anticommuting the Q operators.
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43R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).

075102-11

http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.105.260401
http://dx.doi.org/10.1103/PhysRevLett.105.260401
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1103/PhysRevLett.100.167202
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevB.77.094431
http://dx.doi.org/10.1103/PhysRevB.77.094431
http://dx.doi.org/10.1103/PhysRevB.77.245119
http://dx.doi.org/10.1103/PhysRevB.77.245119
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://arXiv.org/abs/arXiv:0909.4059
http://dx.doi.org/10.1088/1742-5468/2004/06/P06004
http://dx.doi.org/10.1103/PhysRevB.69.075111
http://dx.doi.org/10.1103/PhysRevB.69.075111
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevB.64.224412
http://dx.doi.org/10.1103/PhysRevB.64.224412
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevB.78.155117

