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Effects of vertex corrections on diagrammatic approximations
applied to the study of transport through a quantum dot
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In the present work, we calculate the conductance through a single quantum dot weakly coupled to metallic
contacts. We use the spin-1/2 Anderson model to describe the quantum dot, while considering a finite Coulomb
repulsion. We solve the interacting system using the noncrossing approximation (NCA) and the one-crossing
approximation (OCA). We obtain the linear response conductance as a function of temperature and energy
position of the localized level. From the comparison of both approximations we extract the role of the vertex
corrections, which are introduced in the OCA calculations and neglected in the NCA scheme. As a function of
the energy position, we observe that the diagrams omitted within the NCA are really important for appropriately
describing transport phenomena in Kondo systems as well as in the mixed valence regime. On the other hand, as
a function of temperature, the corrections introduced by the OCA partly recover the universal scaling properties
known from numerical approaches such as the numerical renormalization group.
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I. INTRODUCTION

Large-N expansions, with N representing the angular
momentum degeneracy, are commonly used to solve the
Anderson impurity model (AIM) and to study Kondo physics.
In particular, the so-called noncrossing approximation (NCA)
in its infinite Coulomb repulsion limit captures the formation of
the Kondo resonance at finite temperatures.1 When compared
with the numerical renormalization group (NRG), the NCA
scheme also provides the correct Kondo temperature (TK ).2

This successful match results from the fact that the NCA
collects, in a self-consistent way, all diagrams up to order 1/N .
However, it is well known that the Fermi liquid properties are
not properly described.3–5

When a finite value of Coulomb repulsion U is allowed,
the NCA gives a severely underestimated value of TK .6 The
leading crossing diagrams that restore the proper energy scale
were introduced in the early work by Pruschke and Grewe
within the framework of the enhanced-NCA (ENCA), also
called the one-crossing approximation (OCA).7 Unlike NRG
and quantum Monte Carlo, the OCA method can be extended
to multiorbital systems without much numerical effort. It also
works on the real axis and can go to temperatures far below the
Kondo one. These features make the OCA a powerful impurity
solver when combined with electronic structure calculations
within the context of the dynamical mean-field theory.8

Due to the interesting advantages mentioned above, it is im-
portant to check the role of vertex corrections on diagrammatic
techniques in the calculation of different properties. Recently,
the influence of vertex functions incorporated by the OCA has
already been studied for general lattice problems,9 multiorbital
Anderson models10 and dynamic susceptibilities of the AIM,11

among others.
In this work, we study the effect of vertex corrections on

transport properties, in particular transport through a quantum
dot (QD) weakly coupled to metallic contacts. The NCA
results for the conductance, in the linear-response regime,
were previously analyzed by Gerace et al.12 The aim of our

contribution is to compare the equilibrium conductance, as
a function of temperature and gate voltage, as calculated
by NCA and OCA methods. Furthermore, we analyze the
scaling properties of the conductance by comparison with the
empirical formula extracted from NRG calculations.

We observe that the diagrams omitted within the NCA
are really important for appropriately describing transport
phenomena. Furthermore, the vertex corrections introduced
by the OCA partially recover the universal scaling behavior of
the conductance as a function of temperature.

The paper is organized as follows. In Sec. II we introduce
the model and the calculation methods. In Sec. III we present
and discuss numerical calculations. Finally, in Sec. IV some
conclusions are drawn.

II. MODEL AND METHOD

To describe the system in which the QD is coupled to two
leads we use the spin-1/2 Anderson Hamiltonian

H =
∑
kνσ

εkνσ c
†
kνσ ckνσ +

∑
σ

Edndσ + Und↑nd↓

+
∑
kνσ

Vkνd
†
σ ckνσ + H.c., (1)

where the operator c
†
kνσ represents a conduction electron

with momentum k and spin σ in lead ν; ν = L,R labels the
left and right leads; the operator d†

σ stands for an electron
in the dot; and ndσ is the number operator for a given
spin in the QD. The parameters Ed and U represent the
energy of a single electron and the Coulomb repulsion in the
dot, respectively. The coupling parameter and hybridization
functions between the leads and the QD are given by Vkν and
�ν(ω) ≡ π

∑
κσ V 2

κνδ(ω − εkνσ ), respectively.
Our starting point is an auxiliary particle representation

of the Hamiltonian given by Eq. (1).13 In this representation,
the physical operator is given by the following combination
of the auxiliary particles: d†

σ = f †
σ b + σa†f−σ . Operators b,
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FIG. 1. (Color online) Sketch of the self-consistency OCA
scheme for self-energies and vertex corrections of the auxiliary
particles. The solid, wiggly, dashed, and curly lines stand for pseud-
ofermion, empty boson, conduction electron, and doubly occupied
boson propagators, respectively.

fσ , and a label vacuum, single-, and doubly occupied states,
respectively. Within the OCA scheme, the self-energies of
the auxiliary particles and the vertex functions are obtained
self-consistently. The set of OCA equations are sketched in
Fig. 1.7

Once the spectral functions of the auxiliary particles are ob-
tained, the physical spectral function, ρd (ω) = −1/πIGd (ω),
follows from direct convolution of the auxiliary ones and the
vertex functions, where Gd (ω) represents the retarded Green
function of the QD.

It should be pointed out that the NCA equations are
recovered from the OCA when the vertex corrections are
neglected in the self-energies and physical Green function
bubbles.

As already stated, our aim in this work is to analyze the role
of the crossing diagrams on equilibrium transport properties.
In particular, the conductance through a QD within the linear-
response regime is given by14

G = 4
e2

h
π

∑
σ

∫ ∞

−∞
dω[−f ′(ω)]�T (ω)ρd (ω). (2)

In Eq. (2), �T (ω) = �L(ω)�R(ω)/�(ω), where �(ω) =
�L(ω) + �R(ω) represents the total coupling between leads
and the QD and f (ω) = 1/(1 + eβω) is the Fermi function.

III. NUMERICAL RESULTS

In this section, we present the results obtained for spectral
density and conductance as a function of temperature and
position of the QD level within both the NCA and OCA
schemes. When solving the self-consistency equations, we
consider the case of symmetric couplings, �L = �R , and
the hybridization functions to be step functions �ν(ω) =
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FIG. 2. (Color online) Physical spectral function of the QD for
the symmetric case, Ed = −U/2 = −6 and D = 20�. The insets
show a zoom of the region near the Fermi energy ω = 0.

�νθ (D − |ω|) with bandwidth D several times larger than
�ν . From now on, we choose the total hybridization � = 1 as
our unit of energy.

The numerical procedure used to solve the NCA and OCA
equations follows the method proposed by Kroha et al. to
describe the spectral densities of the auxiliary and physical
particles.15 The procedure guarantees the resolution of the sets
of integral equations for the auxiliary particles’ self-energies
to a high degree of accuracy down to low temperatures.

As a first step, we obtain the physical spectral function
for the symmetric Anderson model (Ed = −U/2) within the
NCA and the OCA. Figure 2 shows the results for Ed = −6
at the same temperature T = 0.1TK in units of each TK , with
T NCA

K = 0.000 17 and T OCA
K = 0.009. For the definition of

Kondo temperature, TK , we adopt the temperature for which
G(TK ) ≡ G0/2 with G0 = 2 e2

h
.

As it was shown previously by Haule et al.,6 from Fig. 2 it
is clear that the charge-transfer peaks, located around Ed and
Ed + U , are insensitive to vertex corrections. On the other
hand, the width of the Kondo resonance peak (left inset of
Fig. 2), which also represents the Kondo temperature, increases
orders of magnitude within the OCA as compared to the NCA.
The larger value of TK provided by the OCA can be traced
back to the incorporation of the lowest-order vertex corrections
necessary to produce the correct Schrieffer-Wolff exchange
coupling.

We are interested here in the modification induced on the
conductance by the enhancement of the Kondo scale and on
the different shape of the Kondo resonance when scaled by the
corresponding TK . In Fig. 3 we present the conductance as a
function of the energy level Ed , which is proportional to gate
voltage, in both NCA and OCA schemes at a high temperature,
T = 0.8. Figure 3 also shows the NCA occupation of the QD
as a function of Ed . We observe that there is no difference
between NCA and OCA occupations. This results from the fact
that this magnitude is a static one, that is, energy-integrated,
and therefore weakly dependent on temperature. The value
of the occupation number indicates the different regimes of
the QD. In particular, 〈n〉 ∼ 1 stands for the Kondo regime.
As it is seen, at this temperature value, there is no formation

073301-2



BRIEF REPORTS PHYSICAL REVIEW B 83, 073301 (2011)

0 10 20 30
-Ed

0

0.5

1

1.5

2

<
n>

T=0.8

0

0.1

0.2

0.3

0.4
G

[2
e2 / h

]

NCA
OCA

FIG. 3. (Color online) Conductance in the linear-response regime
and occupation (dotted curve) of QD at high temperature, T = 0.8�,
as a function of the energy position Ed . Parameters: U = 32, D = 43.

of the Kondo resonance within NCA or within OCA. The
conductance presents two separate peaks at the gate voltages
for which the charge-transfer peaks traverse the Fermi level.
Due to the absence of the Kondo peak at this temperature (see
Fig. 1 of Ref. 12) there is no qualitative difference between
NCA and OCA conductances, further reinforcing what we
pointed in the spectral density of Fig. 2.

When the temperature decreases, due to the formation of
the Kondo resonance at the Fermi level, the conductance valley
showed in Fig. 3 tends to raise as soon as the occupation in
the QD is close to one (this means within the Kondo regime).
For low enough temperatures as compared to the Kondo one,
the Kondo effect is fully developed and the Kondo peak of the
spectral density reaches the limit imposed by Friedel’s sum rule
[ρ(0) = 1/π�]. As a consequence, the conductance valley
evolves into a plateau at G0. This feature of the conductance
is found by solving the spectral density of the QD using, for
example, the slave bosons approach and the NRG.16 In the
present case, the effect of low but finite temperature is shown
in Fig. 4 for T = 0.013 within the OCA. The conductance has a
minimum at the symmetric case and then increases far from this
due to the increment in the Kondo temperature. For the same
absolute temperature, the NCA results still show a pronounced
valley; left panel of Fig. 4. To obtain a similar behavior using
the same set of parameters, it would be necessary to go to
temperatures several orders of magnitude smaller than within
the OCA.

When compared at the same temperature in units of each TK

for the symmetric case, right panel of Fig. 4, we observe a lower
value of the NCA conductance at the symmetric point. This is
related to the lower value of the spectral function at ω = 0 as
it is shown in Fig. 2. In this case, we present the calculations at
T = 0.2TK of the symmetric case, for which the unitary limit
is not exceeded by the OCA within the whole range of selected
Ed values. Near the symmetric case, the NCA results increase
faster than the OCA ones and when some charge fluctuations
are allowed, we obtain a violation of the unitary limit for the
NCA conductance. This represents an important improvement
in the OCA performance over the NCA one.
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FIG. 4. (Color online) Conductance through the QD at low
temperatures as a function of the energy position Ed . Parameters:
U = 8, D = 20

As we mentioned previously, when comparing the spectral
function in units of TK (right inset of Fig. 2) and the
conductance as a function of Ed for the same temperature
in units of TK (right panel of Fig. 4), the NCA and the OCA
exhibit different scaling features. Thereafter, in what follows,
we focus on the study of the universal scaling properties of the
conductance as a function of temperature. NCA results for the
universal behavior of the conductance as a function of T/TK

were previously analyzed for different values of the energy
level Ed .12 Also, for different values of Coulomb repulsion U

close to the limit U → ∞.17 In Fig. 5 we present the results
for the conductance as a function of T/TK for the symmetric
case within the Kondo regime. In addition, we include the
empirical formula for G(T ) extracted from NRG calculations
for a spin-1/2,

GE(T ) = G(0)

[1 + (21/s − 1)(T/TK )2]s
, (3)

with s = 0.22.18

Due to the overestimation of Friedel’s sum rule within both
diagrammatic schemes below a pathology scale Tpath ∼ 0.1 −
0.01TK ,11 we restrict our scaling analysis up to T = 0.1TK ,
where there is no violation of the unitary limit G/G0 = 1.
Below this temperature, we observe that the conductance
still increases when saturation is expected; therefore it can
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FIG. 5. (Color online) Conductance as a function of T/TK for the
symmetric Anderson model. Left panel: Ed = 6, U = 12, D = 20.
The solid, dashed, and dot-dashed lines stand for NRG, OCA, and
NCA techniques respectively. Right panel: OCA conductance for the
symmetric case, U = 12, and far from this, U = 18 (dot-dashed line).
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be considered as the limit of accuracy for calculating the
conductance. As is shown in Fig. 5, left panel, we find that
the NCA and OCA conductances follow different scaling
behaviors in the whole range of temperatures. The OCA
conductance is closer to the exact prediction of the NRG than
the NCA is for both low and high temperatures. It must be
noted that vertex corrections not only change the Kondo scale
but also the whole temperature dependence. However, it can
be observed from Fig. 5 that the vertex functions introduced
by the OCA are not sufficient to recover the NRG prediction.
At this point, a set of self-consistent vertex equations should
be considered.6 As a last remark, it must be pointed out that
while the NCA in its U → ∞ limit follows the empirical law
given by Eq. (3), Ref. 17, the finite U versions presented here
fail for the symmetric case. The right panel of Fig. 5 shows the
conductance for the symmetric case and for a larger value of
U . We notice that for large U , the extra diagrams not included
within the OCA give a small contribution and as a consequence
the conductance agrees very well with the NRG prediction.

IV. CONCLUSIONS

In this work we obtain the conductance as a function of both
temperature and gate voltage, for a quantum dot modeled by
the Anderson impurity Hamiltonian. We calculate the spectral
density of the quantum dot by using the finite Coulomb

repulsion noncrossing and one-crossing approximations. The
comparison of both schemes lets us conclude about the role
of vertex corrections when calculating transport properties. At
high absolute temperatures there is no qualitative difference
between NCA and OCA conductances as a function of gate
voltage as well as between the occupations of the dot. On
the contrary, at the same low temperature in units of each
TK , the results severely differ as a function of both, gate
voltage, and temperature. This is related not only to the
underestimated Kondo scale within the NCA, but also to the
different hight of the Kondo resonance and the rapid violation
of Friedel’s sum rule far from the symmetric case. Finally,
when compared with the NRG results, the OCA conductance
as a function of temperature is more reliable than the NCA
one. For large values of the Coulomb repulsion, away from
the symmetric case, the OCA and NRG conductances agree
very well. However, close to the symmetric case, in order to
recover the NRG prediction, it is still necessary to go beyond
OCA corrections.
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2T. A. Costi, J. Kroha, and P. Wölfle, Phys. Rev. B 53, 1850 (1996).
3F. B. Anders, J. Phys. Condens. Matter 7, 2801 (1995).
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