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Activation gap in the specific heat measurements for 3He bilayers
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Recently, attention has been given to a system of 3He bilayers where a quantum criticality similar to the one
in heavy-fermion compounds has been observed [Neumann et al., Science 317, 1356 (2007)]. In our previous
analysis [Benlagra and Pépin, Phys. Rev. Lett. 79, 045112 (2007)], based on the Kondo breakdown scenario, we
addressed successfully most of the features observed in that experiment. Here, we consider the activation energy
� observed experimentally in the specific heat measurements at low temperatures in the heavy-Fermi-liquid
phase. Within our previous study of this system, this is identified with the gap opening when the upper hybridized
band is emptied due to a strong hybridization between the nearly localized first layer and the fluid second one.
We discuss the successes and limitations of our approach. An additional prediction is proposed.
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In recent years, the peculiar and nonstandard properties
observed in heavy-fermion compounds1,2 (HFCs) have been
the subject of an intense debate. In particular, the nature of the
quantum critical point (QCP), thought to be the origin of their
remarkable properties in a large region of the phase diagram,
remains a puzzling and open problem. Many scenarios have
been put forward to account for these properties.3–8 However,
the difficulty with HFCs is their complex chemical structure
and the variety of physical phases, often competing, present
in their phase diagram. These, despite a growing body of
experimental facts, often prevent a ruling in favor of one
theoretical model or another.

Lately, a quantum criticality similar to the one in HFCs
has been observed in a much simpler system: 3He bilayers
adsorbed on a composite substrate of graphite preplated with
two solidified layers of 4He.9 With increase in the total
coverage N of 3He atoms, the system seems to undergo a
quantum transition, at a critical coverage Ncrit = 9.95 nm−2,
separating a regime where the two layers are hybridized and
form a bifluid with heavy-Fermi-liquid (FL) properties from
a regime where they are completely decoupled, the first one
(L1) forming a frustrated two-dimensional (2D) magnet and
the second one (L2) remaining fluid. At the putative QCP, there
is a breakdown of the FL showing as an apparent divergence
of the effective mass m∗ and a vanishing of an energy scale
T0 indicative of an effective coupling between the two layers.
This is reminiscent of what happens with HFCs except that, in
this particular case, there is no long-range magnetic order due
to frustration and the energy scales are different.

This similarity has led two of the authors10 to use one of
the models proposed to describe quantum criticality in HFCs,
namely, the so-called Kondo breakdown (KB) scenario,7,8 to
account for the remarkable features of the experiment. In
that study, the 3He bilayer system has been mapped onto
an extended version of the periodic Anderson lattice model,
where the nearly localized fermions of L1 are identified with
the f electrons and those of L2 with the itinerant conduction
electrons. Remarkably, our study identifies the real QCP as
occurring at a coverage of NI ≈ 9.2 nm−2 lower than the

experimental one, whereas the experimental QCP is identified
as the extrapolation to lower temperatures of a high-energy
regime of fluctuations. The coverage NI ≈ 9.2 nm−2 corre-
sponds to the abrupt increase of the magnetic susceptibility.
The QCP in our theory corresponds to an orbital-selective Mott
transition at which an effective hybridization between spinons
in L1 and conduction electrons in L2 vanishes, resulting in
a solidification of L1. It has also been called the Kondo
breakdown QCP. This approach was successful enough, using
a small set of three fitting parameters, to account for most of the
properties observed experimentally. In particular, the apparent
presence of two QCPs and the apparent absence of a critical
regime in temperature have been explained. The coverage
dependence of both the effective mass and the energy scale
T0 have been fitted in an intermediate regime of temperature.
We emphasize that the mechanism invoked in our study is
different from the one describing the increase of m∗ in the
second 3He monolayer on bare graphite or pure 2D 3He.11

The latter indeed does not rely on the interlayer coupling as
a crucial aspect of the physics leading to the enhancement of
the effective mass.

In this paper, we consider two important additions to
our previous theory. First we evaluate the specific heat
contribution of the gapped band and compare it to the
experimental data. This allows us, in particular, to give a
very simple interpretation for the activation gap observed
experimentally.9 The presence of an excitation gap is needed
to fit the specific heat measurements in the hybridized phase

according to Cexpt = γ T + γ2e
−�expt

T , where the first term is
usual for a FL with γ proportional to the effective mass of
the quasiparticles. The second term defines the experimental
activation gap �expt. Within our theory, the gap originates
from an excitonic mechanism between the heavy and the
light bands of the system. The gap � is shown to open (see
Fig. 1) when the upper hybridized band is emptied due to a
strong hybridization between the nearly localized L1 and the
fluid L2. Our analysis reproduces successfully the coverage
dependence of the activation gap, with a good quality fit to
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FIG. 1. (Color online) Sketch of the different dispersions for the
hybridized bands (solid lines), the conduction electrons (upper dashed
line), and the spinons (lower dashed line). The gap � is defined as
the difference between the Fermi level and the bottom of the upper
band.

the experimental data (see Figs. 3 and 4). The amplitude of
the gap, however, departs from the observed experimental one
by a factor of 10. Some discrepancy in the amplitude is to
be expected, considering that the theory used an approximate
Eliashberg scheme. Another analysis of this experiment has
been carried out in Ref. 12. It is based on a cluster dynamical
mean-field approach and leads to the identification of the
transition observed experimentally with a band-selective Mott
transition at which the upper band is gapped beyond the
chemical potential. It accounts for the qualitative behavior
of the effective mass and the energy scale T0. However, the
excitation gap as well as the absence of a critical regime in
temperature are not discussed in this study.

As a second addition to our previous study, we make a
simple quantitative prediction concerning the Weiss term θ in
the magnetization behavior observed using NMR above T0.9

The latter is written

M(T > T0) = C

T − θ
. (1)

Because NMR provides a local measure of the nuclear
magnetic susceptibility, we attribute the Weiss term to the
Kondo coupling between the two layers. Within our model,
and by definition of the Kondo breakdown QCP, these two
layers decouple at the real QCP, at a coverage slightly smaller
than for the QCP induced by the extrapolation of the quantum
fluctuation regime. Accordingly, the Weiss term θ should
vanish precisely at the coverage

NI ≈ 9.2 nm−2 (2)

where the real QCP is theoretically situated. This quantitative
prediction is simple enough to be checked in future experi-
ments on this system.

We start with the evaluation of the specific heat contribution.
The mean-field theory considered in our study10 consists of
a two-band model with an effective hybridization Veff ≡ V b,
where V is the bare hybridization and b is the expectation value
for the holon operator, between the spinons and the conduction
electrons. Diagonalization of the corresponding Hamiltonian
results in two upper (+) and lower (−) hybridized bands with
dispersions Ek±.

As discussed in our previous study of this system,10 the bare
hybridization at the QCP is already very strong compared to
other energies of the model. Further, at the QCP, the f band is
half filled and the upper band is constrained to stay below the
Fermi level. However, as soon as the effective hybridization
sets in strongly, we enter very soon a regime where that band
is empty and a gap opens. This happens in the hybridized
phase before the QCP is reached, which is consistent with the
experimental observation.9 The gap is defined simply as

� ≡ E+(−D)

= 1
2

{ − (1 + α′)D + εf − μ

+
√

[−(1 − α′)D − εf − μ]2 + 4V 2
eff

}
. (3)

Here D is the half bandwidth of the conduction electrons,
εf and μ are the chemical potentials of the f spinons and c

electrons, respectively, and α′ is the effective ratio between the
bandwidths of the two fermionic species.

The gapped band contribution to the mean-field free energy
reads

F+ = −2T
∑
k,iωn

ln(−iωn + Ek+), (4)

where β = 1/T .
The evaluation of (4) is straightforward. It is easily shown

that at very low temperatures, such that � � T , the specific
heat contribution of the gapped band simplifies to

C+ = λ

T
e

−�
T , (5)

where

λ ≡ ρ0

α′ �
2

⎛
⎝1 + α′ + 1 − α′

√
4α′V 2

eff

[εf − α′μ − (1 − α′)�]

⎞
⎠ ,

ρ0 being the density of states at the Fermi level of the
conduction electrons. The expression (5) is our final result.
Notice that the functional form there is different from the
one used in Cexpt by the experimentalists. In particular, the
coefficient of the exponential depends on temperature as 1/T .
In the following, we discuss our results. The theoretical gap
is given by the expression (3). It turns out that it has the same
coverage dependence, up to a constant factor of 10, as the one
extracted experimentally from Cexpt

9 (see Fig. 2).
As emphasized in the introduction, the values of the

experimental gap depend strongly on the fitting function
used by the experimentalists to capture the low-temperature
behavior of the specific heat. Thus, what has to be done is
to try fitting the gapped part of the specific heat using the
expression (5) obtained within our model. We consider now
the gapped part of the experimental data for specific heat,
Cg(T ) = Cexpt(T ) − γ T ; we find its temperature dependence
rather well reproduced by our analytical form (5), provided
the values of the gap � are corrected by a constant factor of
10. Figures 3 and 4 show this perfect agreement for coverages
N = 8.25 and 9.00 nm−2.

The analytic form (5), deduced from our model, seems in-
deed to be adequate to describe the observed low-temperature
behavior of the gapped specific heat. One can refine the
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FIG. 2. (Color online) Comparison between � and the experi-
mental gap �expt (Ref. 9) for different doping levels.

effective magnitude of the gap � by assuming that it has
nodes in the momentum space, i.e., it does not open uniformly
along the Fermi surface. Indeed, the layer L1 solidifies into a
commensurate lattice with respect to the underlying substrate,
which has a triangular lattice.9 Thus, the bare hybridization
V could be momentum dependent, following one irreducible
representation of the lattice symmetry group, whereas it is
assumed to be local in our model.10 Investigation in this
direction and its possible implication have not been performed
yet. In this paper as well as in a series of previous studies10 we
have used the KB theory of quantum criticality in order to study
the phase transition in 3He bilayers. One important feature of
our model, generally poorly understood, is the key role of
frustration around the phase transition. In the Kondo lattice
model, there are two main mechanisms to quench entropy
(see Fig. 5). One is through the formation of Kondo singlets,
which after merging together form the heavy Fermi liquid, and
the other one is through entanglement of the spins between
themselves, resulting in the formation of the spin liquid.13

The quenching of the entropy through spin-liquid formation
is highly sensitive to the presence of frustration in the system,
which is indeed present in 3He bilayers due to ring exchange
interactions.14,15 We want to emphasize that in our KB model
for 3He bilayers, the QCP is driven by the spin liquid and
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FIG. 3. Comparison between C+ and the gapped part of the
experimental data (Ref. 9) for n = 8.25 nm−2.
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FIG. 4. Comparison between C+ and the gapped part of the
experimental data (Ref. 9) for n = 8.25 nm−2.

not by the formation of the Kondo singlets. The entropy is
quenched through the formation of a spin liquid while the
phase transition toward the heavy Fermi liquid is associated
with the breakdown of the Kondo effect.

This observation enables us to make a quantitative theo-
retical prediction. One might be able to extract the Kondo
scale experimentally, for example through a nuclear magnetic
resonance experiment where the relaxation of the first layer
to the bath of free fermions made of the second layer
is predominant. A Curie-Weiss law for the susceptibility
is expected there, where the Curie-Weiss term θ can be
interpreted as the Kondo scale of the system.

One of the results of our previous investigation of this
model10 is that two apparent QCPs are present. We identified
the experimental one with the extrapolation of a finite-
temperature regime of fluctuations. We claim, however, that
the real QCP is occurring “before” the experimental one, when
coverage is increased.

If our model is correct, the scale θ should go to zero at the
“real” QCP, and not at the experimental one. Concretely this

FIG. 5. (Color online) Phase diagram of the Kondo breakdown
QCP. There are two successive quenchings of the entropy, one at T0

due to the formation of the spin liquid and the other at the phase
transition temperature. The Kondo scale is associated with the phase
transition to the heavy Fermi liquid and should vanish at the QCP.

073102-3



BRIEF REPORTS PHYSICAL REVIEW B 83, 073102 (2011)

means that within our theory, θ vanishes for this experimental
setup at the coverage

nI ≈ 9.2 nm−2.

This is a strong prediction of our model and we hope that
it can be tested experimentally in the very near future. The
system studied, 3He bilayers, in our series of papers, Ref. 10
and the present one, is one of the simplest physical ones,
with negligible spin-orbit interaction and no crystal-field
interactions. The beauty of the experiment in Ref. 9 is
that it shows that such a system has qualitatively the same
physics as HFCs and may serve thus as a test physical
system for theories of quantum criticality in these complex
systems.

In this Brief Report, we addressed one final feature of
the experiment on this system, namely, the presence of an
activation gap in the low-temperature behavior of the specific
heat in the heavy-FL phase. We derived an analytic expression

for the specific heat within our model, different from the one
used by experimentalists. The behavior of the specific heat
at low temperature is successfully reproduced, as well as the
coverage dependence of the gap, albeit the latter has to be
corrected by a constant factor of 10. This is expected within
the Eliashberg treatment used here and may be a hint for a
refinement of our model or a reevaluation of the parameters
used in our previous study.

The KB model is successful and strong enough to account
for many of the features of the experiment and make some
quantitative predictions to be tested in future experiments on
this system. It is now up to new experimental data to validate
it or not and to different theoretical models to propose an
alternative interpretation of the experiment.
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2H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wlfle, Rev. Mod. Phys.
79, 1015 (2007).

3P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys. Condens.
Matter 13, R723 (2001).

4T. Moriya and J. Kawabata, J. Phys. Soc. Jpn. 34, 639 (1973); 35,
669 (1973) ; J. A. Hertz, Phys. Rev. B 14, 1165 (1976); A. J. Millis,
ibid. 48, 7183 (1993).

5Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature (London)
413, 804 (2001); Phys. Rev. B 68, 115103 (2003).

6T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111
(2004).
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