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It is well established that the hole density in the prototypical superconductor La2−xSrxCuO4 is very
inhomogeneous due to Sr-dopant induced disorder. On the other hand, the hole distribution in HgBa2CuO4+δ

and Bi2Sr2CaCu2O8+δ doped by interstitial oxygen is believed to be much more uniform. Recent nuclear
magnetic resonance measurements indicate, however, that the charge inhomogeneity in HgBa2CuO4+δ is
close to that in La2−xSrxCuO4. Calculations performed in the present paper confirm this observation. We
also show that the charge inhomogeneity is most pronounced at the surface layer that can be probed by
scanning tunneling microscope. Our simulations demonstrate that, despite having similar amplitudes of charge
inhomogeneity, the hole mean free path in HgBa2CuO4+δ is substantially longer than that in La2−xSrxCuO4.
The screening of the Coulomb repulsion in HgBa2CuO4+δ is also stronger. These two reasons might explain the
difference in the superconducting critical temperatures between these two compounds.
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I. INTRODUCTION

The nanoscale electronic disorder is a long standing prob-
lem in the physics of cuprates. This problem has many aspects,
among which the most important one is the influence of disor-
der on critical temperature Tc. Since the energy scale associ-
ated with the pairing mechanism in the CuO2 plane is believed
to be universal, different out-of-plane defects are expected
to influence Tc differently.1,2 Another important aspect is the
nanoscale inhomogeneity of the local density of states (DOS)
measured by the scanning tunneling microscope (STM). This
effect was mostly studied3–5 in Bi2Sr2CaCu2O8+δ . In this
paper, we address theoretically the problem of the nanoscale
charge inhomogeneity in cuprates and a related issue of the
hole mean free path. We focus on two single layer families of
high-Tc superconductors, La2−xSrxCuO4 and HgBa2CuO4+δ ,
in which the density inhomogeneity has been quantified by
nuclear quadrupole resonance (NQR) experiments.6,7 We also
calculate the charge inhomogeneity in the surface layer of
Bi2Sr2CaCu2O8+δ .

The NQR measures the energy splitting of nuclear levels
induced by an electric field gradient at the nucleus. A hole in
the 3d shell of the Cu ion gives a dominant contribution to
the field gradient at the Cu nucleus. The Cu NQR frequency
in cuprates is therefore very sensitive to the doping level and
is directly proportional to the local hole concentration. The
contribution of the 3d hole to the field gradient is significantly
compensated by contributions of holes located at nearby
oxygens8,9 therefore the slope of the NQR frequency versus
doping varies among different cuprate families.

It is widely accepted that the hole density distribution within
the CuO2 layer in La2−xSrxCuO4 is very nonuniform, as it has
been clearly demonstrated by measurements of 63Cu NQR
spectra.6 The observed broad NQR spectrum6 unambiguously
indicates a very inhomogeneous hole density profile in the
bulk of the sample. The inhomogeneity is due to the doping
mechanism, where Sr substitutions of La ions create an
effective Coulomb defect very close to the conducting CuO2

plane. In a recent paper,10 we have performed the Hartree-Fock

simulation of the charge density distribution in La2−xSrxCuO4,
which shows a very inhomogeneous charge density profile
at the nanometer scale, and reproduces the observed NQR
lineshapes.

On the other hand, it is generally believed that hole density
distribution in compounds doped by interstitial oxygens,
such as HgBa2CuO4+δ and Bi2Sr2CaCu2O8+δ , is much more
uniform than in La2−xSrxCuO4. This is because the distance
from the interstitial oxygen to the CuO2 layer is typically
larger than the Sr-layer distance in La2−xSrxCuO4. However,
Cu NQR measurements in the single layer HgBa2CuO4+δ

7,11

as well as in the bilayer HgBa2CaCu2O6+δ
12 show fairly

large linewidths comparable to that in La2−xSrxCuO4. As it
will be demonstrated below, the NQR data imply the same
degree of the hole density inhomogeneity in La2−xSrxCuO4

and HgBa2CuO4+δ . We will also show that despite having
similar amplitudes of the charge inhomogeneity, the spa-
tial profiles of the density distribution are very different
in these two cases: It is much smoother in the oxygen
doped HgBa2CuO4+δ . Consequently, the forward scattering
is predominant and the mean free path in HgBa2CuO4+δ is
substantially longer than that in La2−xSrxCuO4. Our simula-
tion also indicates that the screening of the Coulomb repulsion
between the charge carriers in HgBa2CuO4+δ is stronger. We
argue that these two reasons might explain the difference
in superconducting critical temperatures between these two
compounds.

The nanoscale charge density inhomogeneity in under-
doped cuprates is an indirect way to distinguish the large Fermi
surface of a normal Fermi liquid and the small Fermi surface
of a doped Mott insulator. The calculations in Ref. 10 for
La2−xSrxCuO4 were based on the small hole pocket Fermi
surface, which implies a small number of mobile charge
carries. The small number of charge carries results in poor
screening10,13 and hence in the strong charge density inho-
mogeneity consistent with NQR data. On the other hand, the
large Fermi surface implies the large number of mobile charge
carriers and a very effective Coulomb screening. In this case
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calculations give a very moderate charge inhomogeneity,14,15

which is too weak to explain the observed NQR linewidths.
Another important point is that the charge inhomogeneity in

the surface layer is always stronger than that in the bulk layer.
This is because the surface ionic dielectric constant is about
two times smaller than that in the bulk.16 Hence the screening
at the surface is weaker and this results in the stronger charge
inhomogeneity.

In this paper, we present Hartree-Fock calculations in
underdoped cuprates with realistic parameters to simu-
late the bulk charge distributions in HgBa2CuO4+δ and
La2−xSrxCuO4, and the surface charge distribution in
Bi2Sr2CaCu2O8+δ . Our calculation covers from underdoped
to optimally doped regimes. We fine-tune theoretical parame-
ters to reproduce experimentally known NQR linewidths.6,7

This enables us to perform a very accurate comparison
of HgBa2CuO4+δ and La2−xSrxCuO4. We find the charge
inhomogeneity of a similar scale in both cases. However, the
landscapes of spatial modulations and the hole mean free paths
are substantially different. This is due to different positions of
the dopant oxygen and the Sr ion relative to the CuO2 plane.
In addition, the dielectric constants in these two compounds
are different.

Motivated by STM data3–5 in Bi2Sr2CaCu2O8+δ , we cal-
culate also the hole density distribution in the surface CuO2

layer of this compound. The results obtained show a large
charge density inhomogeneity comparable to that in the bulk
of HgBa2CuO4+δ . Naturally, the local charge density is highly
correlated with the interstitial oxygen positions as has been
noticed previously.13

The structure of the paper is the following: In Sec. II we for-
mulate the effective model for an isolated CuO2 layer. Because
of the long-range nature of the Coulomb interaction, however,
the isolated layer approximation is not sufficient and one has
to take into account other layers. The impact of the other layers
depends on the way of doping and on structural details, whether
this is a single layer or a double layer compound. The single
layers La2−xSrxCuO4 and HgBa2CuO4+δ are considered in
Sec. III. In Sec. IV we simulate the charge distribution on
the surface of the double layer Bi2Sr2CaCu2O8+δ . We also
calculate the correlation function between the local charge
density and oxygen dopant positions, and compare the result
with the local DOS correlation function measured by STM.
Our conclusions are presented in Sec. V.

II. THE EFFECTIVE MODEL FOR A CuO2 PLANE

We adopt the effective model formulated in Ref. 10 based
on the picture of a lightly doped Mott insulator. Throughout
the paper we denote the average hole concentration by p and
assume p � 1. The central point is that the number of charge
carriers is p instead of 1 − p as one would expect for a normal
Fermi liquid. We consider first an “isolated” CuO2 layer. The
“isolated” means that we disregard the screening effects of the
other layers.

To construct a model relevant to cuprates, we first notice
that there are the following distinct length scales: (i) The
scale of the order of 1–2 lattice spacing where the doped
holes are dressed by multiple virtual magnons. (ii) The scale

about average separation between Coulomb defects or average
separation between holes ∼ 1/

√
p. This is the scale of the

Coulomb screening. (iii) The scale r � 1/
√

p. The Coulomb
gap may develop at this scale due to Anderson localization
effects.

Regarding the first point, we do not treat the strong correla-
tions explicitly, but instead adopt the effective hole dispersion
after quantum fluctuations at short distances are included. To
stress this point, we frequently use the term “holon” instead
of “hole.” It is known that the holon dispersion has minima at
momenta k0 = (±π/2,±π/2), and is approximately isotropic
around these points.17 The bandwidth of the holon is about
2J , where J ≈ 130 meV is the superexchange in the t-J
model, although we do not directly employ the t-J formalism.
Hereafter we set the following energy and distance units:

J = 130 meV → 1,
(1)

a0 = 0.38 nm → 1,

where a0 is the lattice spacing of the CuO2 plane. To imitate
the holon dispersion we consider spinless fermions on a two-
dimensional (2D) square lattice. The Hamiltonian reads as
follows:

Ht =
∑
〈ij〉

t ′′c†i cj , (2)

where c
†
i is the holon creation operator at site i and t ′′ denotes

the next-next-nearest-neighbor hopping on the square lattice.
The Hamiltonian (2) yields the following dispersion

εk = 2t ′′(cos 2kx + cos 2ky). (3)

The dispersion is isotropic around minima at k0 = (±π/2,

±π/2) as shown in Fig. 1. We choose t ′′ = 0.25J to reproduce
the realistic holon band width, about 2J , as obtained from
numerical simulations of the t-J model.17 An additional
argument supporting this value is as follows. Near its minimum
the dispersion (2) can be expanded as εk =≈ const + 4t ′′|k −
k0|2, so the holon effective mass is equal to m∗ = h̄2/(8a2

0 t
′′).

The value t ′′ = 0.25J results in the effective mass m∗ � 2me

which is close to the effective mass measured in magnetic
quantum oscillation experiments.18,19 The realistic holon band
width and the realistic effective mass justify our choice of t ′′ =
0.25J . We note also that in the original t-J model formalism,
there are four holon half-pockets inside the magnetic Brillouin
zone, and each pocket has two pseudospins;17 in the present

kyπ

kx

π−π

−π

FIG. 1. Dispersion minima of the spinless fermion generated by
Hamiltonian (2).
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model, we consider four full pockets inside the full Brillouin
zone with spinless fermions, hence the number of charge
degrees of freedom is exactly the same.20

Even though the holes are heavily dressed by magnetic
fluctuations, their charge is conserved and hence they interact
with Coulomb defects via the ordinary Coulomb potential:

Hh−O =
∑
l,i

Ulic
†
i ci , Uli = −Q√

|Rl − ri |2 + a2
d

,

(4)
a2

d = a2
ZR + λ2.

Here ri is the position of the holon and Rl is the in-plane
projection of the Coulomb defect (Sr-ion or dopant oxygen)
position. The distance from the plane to the defect is λ, and
aZR ≈ 0.8 is the size of the Zhang-Rice singlet. (We recall
that the energy and distances are given in units of J and
a0, correspondingly.) The dimensionless “charge” Q ∼ 0.5
depends on the compound, and we discuss its precise values
later.

Holon-holon Coulomb interaction is of a similar form

Hint =
∑
ij

Uij c
†
i cic

†
j cj , Uij = Q√

|ri − rj |2 + a2
hh

, (5)

where a2
hh ≈ 2a2

ZR ≈ 1 stands for the combined size of two
Zhang-Rice singlets.

The total Hamiltonian

H = Ht + Hh−O + Hint, (6)

describes the in-plane Coulomb problem. Since the Coulomb
interaction is not very strong, we solve the many-body problem
with the Hamiltonian (6) using the standard Hartree-Fock
method. In other words we use the Hartree-Fock decompo-
sition of the Coulomb interaction between holons

Hint →
∑
ij

Uij 〈c†i ci〉c†j cj −
∑
ij

Uij 〈c†i cj 〉c†j ci . (7)

This can be done for zero as well as for finite temperatures, as
it is described in Ref. 10.

The above formulation would solve the Coulomb problem
for the “isolated” CuO2 layer. However, the layer is always
embedded in a multilayer structure, and because of the
long-range nature of the Coulomb interaction, we have to
take into account other layers. Their influence depends on the
lattice structure. In the next section, we consider two different
families of single layer cuprates.

III. SINGLE LAYER HgBa2CuO4+δ AND La2−xSrxCuO4

COMPOUNDS. CHARGE DENSITY DISTRIBUTION,
NQR LINE SHAPE, DENSITY OF STATES

We treat a particular CuO2 plane using the Hartree-Fock
(HF) method. The role of other CuO2 planes is to provide
screening of the Coulomb interaction in the HF analysis. Since
CuO2 planes have a very high longitudinal polarizability we
consider the “other planes” as purely metallic. It has been
shown in Ref. 10 that this “metallic approximation” is valid at
p > 1–2% when the polarizability is sufficiently high. Within
this approximation, the HF plane in a single layer compound

FIG. 2. (Color online) The HF model of La2−xSrxCuO4 with four
(m = 1,2,3,4) layers of Coulomb defects (i.e., doped Sr ions) and
with two “metallic” sheets.

is sandwiched between two “metallic” sheets, as demonstrated
in Fig. 2 for La2−xSrxCuO4.

A. La2−xSrxCuO4

Coulomb defects in La2−xSrxCuO4 are created by
Sr substitution for La ions. Therefore each defect donates one
hole

p = x. (8)

Given the periodic structure of CuO2 planes along the c axis,
there are two layers of Sr defects between two neighboring
CuO2 planes, as shown in Fig. 2. We mark the defect layers
by the index m = {1,2,3,4}, so the HF CuO2 plane is under
the influence of four layers of Sr defects. The concentration
of defects in each defect layer is x/2. The planar positions of
defects are assumed to be random, and defects are assumed
to sit above the center of the Cu plaquette. In addition, in
each defect layer we impose a condition that defects never
sit next to each other (i.e., the distance between defects is
always larger than

√
2). The distance between CuO2 layers

is d = 1.75, and the geometric distances to Coulomb defects
are λ1 = λ4 = 1.15, λ2 = λ3 = 0.6. After accounting for the
screening by “metallic” planes, the holon interaction with a
defect (4) is replaced by

Um
li → −Q

(
1√

|Rl − ri |2 + adm|2

+
∞∑

n=1

(−1)n√
|Rl − ri |2 + (2nd + λm)2

+
∞∑

n=1

(−1)n√
|Rl − ri |2 + (2nd − λm)2

)
. (9)

The summation over n reflects the image method for metallic
screening.10 With values of the distances λ given above,
the parameter ad , defined in Eq. (4), takes the following
values: ad1 = ad4 = 1.4 and ad2 = ad3 = 1. The effective
charge Q is determined by the dielectric constant of the
lattice εl . In our previous work10 we used the value εl = 40
that approximately corresponds to the undoped compound.21
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This gave a reasonable fit of the NQR lines, but still the widths
were about 20–30% larger compared to the experiment. In the
present paper, we fine-tune the NQR widths by using εl as a
fitting parameter. Our best fit yields

LSCO: εl = 30(1 + 6.25p). (10)

Thus the value of εl depends on doping, εl = 30 for the
undoped compound,21 and εl = 60 for the optimally doped
compound (p = 0.16). The coefficient 6.25 has been obtained
by fitting the NQR widths, see below. It is natural to have
some doping dependence of the lattice dielectric constant
since the lattice dynamics may change locally (get softer) with
La → Sr substitution. In our dimensionless units, the effective
charge Q is

Q = e2

εla0J
≈ 30/εl. (11)

FIG. 3. (Color online) The charge density of mobile holes in
La2−xSrxCuO4 calculated at zero temperature and different doping
levels.

According to the same logic, the Coulomb interaction
between holons (5) is replaced by

Uij →Q

⎛
⎝ 1√

|ri − rj |2 + a2
HF

+
∞∑

n=1

2( − 1)n√|ri − rj |2 + (2nd)2

⎞
⎠ .

(12)

The HF Hamiltonian is diagonalized in a 36 × 36 cluster.
The resulting charge densities for particular realizations of
Coulomb defects at different doping levels are shown in Fig. 3.
To calculate the NQR spectrum of in-plane 63Cu, we first
calculate the hole density distribution averaged over 20 random
impurity configurations and then convert the hole density at a
site i to the NQR frequency using the following scaling22

νi = 33 + 19ni (MHz), (13)

which implies that the NQR spectrum is directly related to the
charge density distribution. The resulting NQR spectra for zero
temperature and for T = 600 K are presented in Fig. 4. The
theoretical NQR spectra at T = 600 K agree very well with the
experimental data.6 Although we are not aware of NQR data at
low temperatures, the theoretical spectra at T = 0 are shown to
demonstrate how the charge density distribution evolves with
temperature. It is instructive to present the widths of the charge
density distribution.
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FIG. 4. (Color online) Theoretical NQR spectra for in-plane 63Cu
in La2−xSrxCuO4 at T = 0 and T = 600 K and for different doping
levels p.
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Our simulation yields

LSCO at p = 0.16:

{
�p(T = 0) = 0.12
�p(T = 600 K) = 0.09,

(14)

LSCO at p = 0.08:

{
�p(T = 0) = 0.07
�p(T = 600 K) = 0.05.

In our previous work,10 we performed similar calculations
for La2−xSrxCuO4 and demonstrated that the HF calculation
reproduces reasonably well the evolution of NQR lineshapes
with doping. However, the calculated NQR linewidths were
about 20–30% larger compared to the experimental values.
The goal of the present calculation is to fit the NQR linewidths
quantitatively, using the dielectric constant (10) as a fitting
parameter. Based on this fit we accurately quantify the charge
inhomogeneity and the hole mean free path as discussed below.
We also note that the previous calculation10 found an additional
high frequency hump/shoulder in the NQR line. The hump was
due to the strong Coulomb binding of holes to the accidentally
clustered Coulomb defects. The binding is very sensitive to
the strength of the Coulomb attraction. This binding does not
show up in the present calculation because of the larger value
of the dielectric constant used, and also due to the fact that we
impose here the “nonadjacent” condition for Coulomb defects
[see the paragraph before Eq. (9)]. As suggested in Ref. 6,
the experimentally observed high frequency hump (the NQR
“B line”) is most probably due to the direct action of Sr-ion
Coulomb potential on the Cu nucleus, which is beyond the
scope of the present model.

B. HgBa2CuO4+δ

Interstitial oxygen ions in HgBa2CuO4+δ are located right
between two neighboring CuO2 layers, on top of four adjacent
Cu sites.11 The minimal model for HgBa2CuO4+δ is shown in
Fig. 5. There is one layer of oxygen defects above the CuO2

plane and another defect layer below it. The concentration of
defects in each defect layer is δ. We assume that each interstitial
oxygen donates two holes into the CuO2 plane, that is,

p = 2δ. (15)

FIG. 5. (Color online) The HF model of HgBa2CuO4+δ with
two layers of Coulomb defects (interstitial oxygen ions) and two
“metallic” sheets.

According to this picture, the holon interaction with a defect,
Eq. (4) is replaced by

Uli → −2Q

(
1√

|Rl − ri |2 + a2
d

+
∞∑

n=1

(−1)n√
|Rl − ri |2 + (2nd + d/2)2

+
∞∑

n=1

(−1)n√
|Rl − ri |2 + (2nd − d/2)2

)
. (16)

The interlayer distance in HgBa2CuO4+δ is d = 2.5, and
each interstitial oxygen carries “charge” −2Q. Taking into
account the size of the Zhang-Rice singlet, we have ad =√

a2
ZR + (d/2)2 ≈ 1.5. The hole-hole interaction has exactly

the same form as that in La2−xSrxCuO4, Eq. (12), with the
interlayer distance d = 2.5 and with the value of Q described
below. In each defect layer we simulate positions of the defects
randomly, and impose again the nonadjacent condition for the
defects.

Similar to the procedure in La2−xSrxCuO4, we fine-tune the
NQR widths using the lattice dielectric constant εl as a fitting
parameter. We find that to fit experimental NQR spectra7,11 the
dielectric constant has to be taken as

εl = 30(1 + 25p). (17)

Note that the doping dependence of εl in this case is four times
stronger than that in Eq. (10). The stronger dependence is quite
natural since it is due to the shift of the interstitial oxygen
position in an applied electric field. The shift is significant
because the binding of interstitial oxygens in the lattice is
weak. In other words, a dopant oxygen brings in new local
phonon modes which enhance the dielectric constant. The
effective charge Q is determined by the same Eq. (11), with εl

from Eq. (17).
The HF Hamiltonian is diagonalized in a 36 × 36 cluster.

The resulting charge densities for particular realizations of
Coulomb defects at different doping levels are shown in Fig. 6.
A strong charge inhomogeneity induced by oxygen dopants
is apparent. However, density distribution profiles here are
much smoother than in La2−xSrxCuO4 as one can easily see
by comparing Figs. 6 and 3 at the same doping levels.

Now, we address the NQR spectrum of the in-plane 63Cu in
HgBa2CuO4+δ . We first calculate the hole density distribution
averaged over 20 random impurity configurations, and then
convert the hole density at a site i to the NQR frequency by

νi = C + 30ni (MHz), (18)

where C is a doping independent constant. Note that the
coefficient 30 MHz in this formula is different from that
in Eq. (13). We found the coefficient in Eq. (18) by fitting
the NQR-line centers using the experimental data of Ref. 11
(this way is more reliable than using the results of theoretical
calculations of electric field gradients23). Since NQR data
for HgBa2CuO4+δ are taken at sufficiently low temperatures,
we perform calculations only at T = 0. Figure 7 shows the
theoretical NQR lines by assuming C = 0 since it is an
irrelevant constant shift. The calculations agree well with
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FIG. 6. (Color online) The charge density of mobile holes in
HgBa2CuO4+δ at zero temperature and at different doping levels.

the experimental data of Refs. 7 and 11. At optimal doping
p = 0.16, the NQR linewidth in HgBa2CuO4+δ is �NQR ≈
2.6 MHz. The widths of the charge density distribution are

HBCO at p = 0.16: �p(T = 0) = 0.09,
(19)

HBCO at p = 0.08: �p(T = 0) = 0.08.

Comparing with the corresponding values for La2−xSrxCuO4

in Eq. (14), we see that at zero temperature the ampli-
tudes of charge inhomogeneities in HgBa2CuO4+δ and in
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FIG. 7. (Color online) Theoretical NQR spectra for in-plane
63Cu in HgBa2CuO4+δ at zero temperature and for different doping
levels p.

La2−xSrxCuO4 are quite similar. At optimal doping p = 0.16,
the amplitude of charge inhomogeneity in HgBa2CuO4+δ is
only by 30% smaller than that in La2−xSrxCuO4.

C. Density of states and mean free path

A comparison between Eqs. (14) and (19) suggests that the
hole density inhomogeneity in HgBa2CuO4+δ is pretty close to
that in La2−xSrxCuO4. This seems rather surprising, given that
the superconducting critical temperature in HgBa2CuO4+δ is
much higher than that in La2−xSrxCuO4. Indeed, a disorder
reduces the d-wave superconducting critical temperature and,
based on this argument, one can expect that La2−xSrxCuO4

is “more disordered.” However, one should quantify exactly
what is the measure of the disorder. While the overall
amplitude of the charge inhomogeneity is one possible factor,
the hole mean free path is another and, in fact, more important
measure of the disorder. We already noticed that the spatial
charge distribution profiles induced by interstitial oxygens and
Sr dopants are rather different. To quantify this difference in
more detail, we calculate the quasiparticle DOS defined in the
standard way

ρ(ε) = 1

N

∑
n

δ(ε − En), (20)

where N is the total number of sites, and En is the nth
eigenenergy. Plots of the DOS in HgBa2CuO4+δ and in
La2−xSrxCuO4 at doping p = 0.16 are shown in Figs. 8
and 9, together with the charge profiles for particular disorder
realizations.The DOS has been obtained after averaging over
40 different disorder realizations. We have checked that
the DOS calculated with 20 realizations of random dopant
positions is practically the same as the DOS calculated with
40 realizations. This means that 40 realizations is sufficient

FIG. 8. (Color online) (a) DOS and (b) charge density profile
in HgBa2CuO4+δ at optimal doping p = 0.16. Shown in the inset
of panel (a) is the DOS of the homogeneous model with effective
scattering rate η = 0.014.
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FIG. 9. (Color online) (a) DOS and (b) charge density profile
in La2−xSrxCuO4 at p = 0.16. The inset shows the DOS of the
homogeneous model with scattering rate η = 0.021.

to disregard the statistical noise. The calculated DOS exhibits
pronounced oscillations. These oscillations are a byproduct of
the finite size of the cluster. Maxima of the DOS correspond to
degenerate states with dispersion (3) on the 36 × 36 torus. The
oscillations must certainly disappear in the thermodynamic
limit. However, oscillations have a physical meaning: They
indicate that the quantum states are quite extended, with the
hole mean free path l comparable with the size of the cluster
used. To estimate the mean free path more accurately we use
the following procedure. We consider the DOS of an ideal
homogeneous system described by the Hamiltonian (2). It
consists of δ functions whose positions are fixed by periodic
boundary conditions. The weight of each δ function can be
easily calculated for the 36 × 36 torus. Now we artificially
broaden each δ function

δ(ε − εn) → 1

π

η

(ε − εn)2 + η2
, (21)

to simulate a disorder scattering. We find that the DOS of this
model is very sensitive to η. Then we adjust the broadening η

to reproduce (roughly) the amplitudes of the DOS oscillations
obtained in our actual calculations, as shown in Figs. 8(a)
and 9(a). This gives the following values of the effective
broadening: η = 0.014 for HgBa2CuO4.08 and η = 0.021 for
La1.84Sr0.16CuO4. The mean free path of a hole at the Fermi
surface can be then estimated as

l = vF τ = vF

2η
, (22)

where τ = 1/2η is the collision time. At small doping
p � 1, the dispersion (3) results in the Fermi velocity
vF ≈ 8t ′′a0

√
πp. Hence, at p = 0.16, the Fermi velocity is

vF ≈ 1.4Ja0. Together with the above values of η, this results

in the following estimates for the hole mean free paths:

HgBa2CuO4.08 : l ≈ 50a0 ≈ 19 nm,
(23)

La1.84Sr0.16CuO4 : l ≈ 34a0 ≈ 13 nm.

We thus find that La2−xSrxCuO4 is indeed more disordered in
the sense that it has a shorter mean free path. The different
mean free paths are due to different distances from the CuO2

plane to the Coulomb defect (interstitial oxygen versus Sr
dopant) and due to different distances between Coulomb
defects. In HgBa2CuO4+δ , both distances are larger, therefore
the Coulomb potential is smoother and hence less contributes
to the large angle scattering. This difference is clearly reflected
in the charge density profiles shown in Figs. 8(b) and 9(b).
Overall amplitudes of the charge inhomogeneity are pretty
close, but the charge distribution in La2−xSrxCuO4 is much
more spiky. This gives rise to the strong scattering with
large momentum transfer which is detrimental for d-wave
superconductivity.

Considering the superconducting correlation length
ξ ≈ 2 nm, one finds that l/ξ ∼ 6 in La2−xSrxCuO4 and
l/ξ ∼ 10 in HgBa2CuO4+δ . One should therefore ex-
pect that the disorder suppression of superconductivity in
HgBa2CuO4+δ is indeed weaker. In addition, according to
our fits of the NQR data, the effective ionic dielectric
constant εl in HgBa2CuO4+δ , Eq. (17), is larger than that
in La2−xSrxCuO4, Eq. (10). At the optimal doping p =
0.16, for example, εl(LSCO) = 60 and εl(HBCO) = 150.
The larger εl in HgBa2CuO4+δ implies better screening of
the Coulomb repulsion between holes and hence a smaller
Coulomb pseudopotential. This may further enhance Tc of
HgBa2CuO4+δ compared to that of La2−xSrxCuO4.

IV. NANOSCALE HOLE DENSITY INHOMOGENEITY
IN THE SURFACE LAYER OF Bi2Sr2CaCu2O8+δ

Recent STM experiments3–5 have revealed large variations
of pairing gaps in Bi2Sr2CaCu2O8+δ which are spatially
correlated with the dopant oxygen density. Motivated by this
observation, we now consider the charge distribution in the
surface CuO2 layer of this compound. Our purpose is to
estimate the magnitude of the charge inhomogeneity induced
by interstitial oxygen dopants, and see how the hole density
profile is correlated with the position of these oxygens. In the
present work, we do not calculate the local DOS and hence
cannot address STM directly. Instead, we calculate the charge
distribution similar to the previous sections, and show that the
effect of interstitial oxygen on charge inhomogeneity is very
significant.

As we have seen above, charge distribution profiles depend
on the lattice dielectric constant whose values can be reliably
obtained by fitting the NQR data. Due to lack of systematic
NQR data, we cannot determine the dielectric constant of
Bi2Sr2CaCu2O8+δ in this way. Instead, we assume that the
doping dependence of the lattice dielectric constant in the bulk
of Bi2Sr2CaCu2O8+δ is described by the same formula Eq. (17)
as in HgBa2CuO4+δ . This is because both compounds are
doped by interstitial oxygens, which have a similar influence
on lattice dynamics and dielectric screening. This adoption
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FIG. 10. (Color online) The HF model for Bi2Sr2CaCu2O8+δ

surface. Blue dots indicate the interstitial oxygen dopants.

certainly ignores lattice structure details and should be further
refined when NQR data are available. Nevertheless, we found
that our results for Bi2Sr2CaCu2O8+δ are fairly robust within a
sensible variations of the dielectric constant, and thus they
should give a qualitative description of the surface charge
inhomogeneity.

Bi2Sr2CaCu2O8+δ is a double layer compound and a
schematic picture of the two surface CuO2 layers is shown
in Fig. 10. Interstitial oxygens are assumed to be located
at λ ≈ 0.37 nm above the CuO2 layer, which is shown to
be the most energetically favorable position.24 We assume
that the surface concentration of Coulomb defects (interstitial
oxygens) is δ. They are randomly distributed and, similarly
to the previous considerations, we impose again the condition
that the defects never sit next to each other [i.e., the distance
between the defects is always larger than

√
2 (in units of a0)].

The separation between the CuO2 layers in the double layer
structure is d = 0.33 nm ≈ 0.86. We treat the top layer by
HF approximation, and the underneath layer as a “metallic”
sheet that provides screening. There are also Coulomb defects
underneath of the screening layer, but they are well screened by
the metallic sheet and hence do not influence the HF procedure.
The hole-defect and the hole-hole interaction in the HF top
layer are of the following form:

Uli → − 2Q

(
1√

|Rl − ri |2 + a2
d

− 1√
|Rl − ri |2 + (2d + λ)2

)
,

(24)

Uij → Q

⎛
⎝ 1√

|ri − rj |2 + a2
HF

− 1√|ri − rj |2 + (2d)2

⎞
⎠ .

Here ad =
√

λ2 + a2
ZR ≈ 1.28, and aHF ≈

√
2a2

ZR ≈ 1. Note
that there is only one image charge per physical charge because
there is only one screening layer. We assume that the lattice
contribution to the dielectric constant in Bi2Sr2CaCu2O8+δ has
the form of Eq. (17). On the surface, the dielectric constant
is expected to be reduced to half of its value in the bulk,16

therefore

εBSCCO = 15(1 + 25p), (25)

and the value of effective “charge” Q follows from Eq. (11).

FIG. 11. (Color online) (a, d) The zero temperature hole density
plots and (b, e) the hole density maps for the surface layer of
Bi2Sr2CaCu2O8+δ for the average hole density p = 0.08 (left panels)
and 0.16 (right panels). The lower panels (c) and (f) show positions
of the oxygen dopants for the corresponding realizations of disorder.
It is evident that the dopant oxygens locally increase the hole density.

Plots of the in-plane hole density for δ = 0.04 (p = 0.08)
and δ = 0.08 (p = 0.16) are presented in Fig. 11, together
with corresponding maps for these particular realizations
of Coulomb defects. The plots demonstrate a large spatial
variation in hole density. For the δ = 0.04 case, the range
of hole density modulation is about 0.03 < ni < 0.15, which
is a very significant fluctuation, keeping in mind that the
average hole density is 〈ni〉 = p = 0.08. The same strong
inhomogeneity is seen in the δ = 0.08 case, where the local
density varies in the range roughly 0.10 < ni < 0.23, while
average density is 〈ni〉 = p = 0.16. The density distribution
curves for different doping levels are shown in Fig. 12.
We stress that the precise density profiles depend on the
dielectric constant which, due to lack of NQR data for
Bi2Sr2CaCu2O8+δ , is taken here in an ad hoc way. On a
qualitative level, however, the density inhomogeneity is rather
stable with respect to the value of the dielectric constant.
For example, the widths of the surface density distributions
plotted in Fig. 12 are only slightly larger than those obtained
in the case of HgBa2CuO4+δ , see Eq. (19). This is in
spite of the fact that the results for HgBa2CuO4+δ have
been obtained at the twice larger value of the dielectric
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FIG. 12. (Color online) The zero temperature hole density
distribution in the surface layer of Bi2Sr2CaCu2O8+δ at various
doping levels p. Each curve is averaged over 20 realizations
of disorder.

constant. Therefore, we believe that our conclusion about
the strong surface charge density inhomogeneity is very
reliable.

Naturally, the charge density of mobile holes is higher
around areas with higher interstitial oxygen concentration.
Figure 11 clearly shows this correlation. To quantify this, we
define a correlation function between local hole density and
dopant oxygen positions, which is analogous to the correlator
introduced in Ref. 3 for the analysis of the spatial variations
of the local DOS. On a discrete lattice, the hole density nj is
defined on sites of the square lattice representing the CuO2

plane. The function fi indicates the location of interstitial
oxygens

fi =
{

1 if i ∈ dopant oxygen,

0 elsewhere,
(26)

where i runs through points at the center of the plaquettes. The
density-oxygen correlation function is then defined as

Cnf (R) = 1

N

∑
i

[fi − f ][ni+R − n]√
Af An

, (27)

with proper normalizations

Af = 1

N

∑
i

(fi − f )2, An = 1

N

∑
j

(nj − n)2, (28)

where f = 1
N

∑
i fi = δ and n = 1

N

∑
j nj = p. Figure 13

shows the correlation function Cnf (R) averaged over 20
disorder realizations for each doping.There is a clear positive
correlation due to the Coulomb attraction to the oxygen
defects. The value of the correlator at R → 0 is C ≈ 0.3–0.4
and the scale at which it goes to zero is about 10–15 Å.
Interestingly, the correlator between the gap in local DOS and
the interstitial oxygen position measured in STM shows the
same positive correlation with very similar scales.3 Further
investigation is necessary to clarify if there is a connection
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16

FIG. 13. (Color online) The correlation function Eq. (27) between
the interstitial oxygen position and the local density of mobile holes
for different values of doping p.

between these two correlators and to understand the physical
reasons behind this apparent correspondence.

V. CONCLUSION

In this paper, we study the spatial distribution of doped holes
in cuprates, focusing particularly on a comparison between two
different physical situations: doping by a cationic substitution
Sr for La as in La2−xSrxCuO4 and doping by interstitial oxygen
ions as in HgBa2CuO4+δ . The main results are summarized as
follows.

The hole density inhomogeneity in HgBa2CuO4+δ is nearly
as strong as in La2−xSrxCuO4. For example, at the optimal
doping p = 0.16 the width of the charge density distribution is
about �p = 0.09, which is close to the corresponding number
�p = 0.12 in La2−xSrxCuO4. This conclusion is well sup-
ported by the comparison of our calculations with the existing
NQR data in HgBa2CuO4+δ and La2−xSrxCuO4. In spite of
the close overall amplitudes, the landscape of charge inhomo-
geneity in these two compounds are very different. In oxygen
doped HgBa2CuO4+δ , the disorder potential profiles are much
smoother than that in Sr-doped La2−xSrxCuO4. Correspond-
ingly, the hole mean free path in HgBa2CuO4+δ is larger. In
other words, disorder induced scattering processes with a large
momentum transfer (which are destructive for d-wave pairing)
are less pronounced in oxygen doped HgBa2CuO4+δ compared
to the case of La2−xSrxCuO4. In addition, the screening of
the Coulomb repulsion between holes in HgBa2CuO4+δ is
about two times stronger than that in La2−xSrxCuO4. In
our opinion, these two reasons might explain the much
higher superconducting critical temperature of oxygen doped
HgBa2CuO4+δ .

We found that the charge density nanoscale inhomogeneity
in the surface CuO2 layer of Bi2Sr2CaCu2O8+δ (the layer
available for STM) is of the same magnitude as that in the
bulk of HgBa2CuO4+δ . As expected on physical grounds,
the hole density positively correlates with the positions
of interstitial dopant oxygen. Remarkably, the correlation
function obtained here resembles the positive correlation
between the local gap and dopant oxygens seen in the STM
data. The reason for this apparent coincidence and implications
of the charge inhomogeneity for the spatial variations of the
pairing gaps in Bi2Sr2CaCu2O8+δ have to be clarified in future
studies.
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