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Surface density of states and topological edge states in noncentrosymmetric superconductors
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We study an Andreev bound state (ABS) and the surface density of state (SDOS) of a noncentrosymmetric
superconductor where spin-singlet d-wave pairing mixes with spin-triplet p (or f )-wave pairing by spin-orbit
coupling. For dxy + p-wave pairing, the ABS appears as a zero-energy state. The present ABS is a Majorana edge
mode preserving the time-reversal symmetry. We calculate the topological invariant and discuss the relevance to
a single Majorana edge mode. In the presence of the Majorana edge mode, the SDOS depends strongly on the
direction of the Zeeman field.
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I. INTRODUCTION

Recently, physics of noncentrosymmetric (NCS) supercon-
ductors has been one of the important issues in condensed
matter physics. Actually, several NCS superconductors have
been discovered, such as CePt3Si,1 Li2Pt3B,2 and LaNiC2.3

Also, the two-dimensional NCS superconductivity is expected
at the interfaces of surfaces due to the strong potential
gradient. An interesting example is the superconductivity at
the LaAlO3/SrTiO3 heterointerface.4 In NCS superconductors,
the spin-orbit coupling comes into play. One of the remarkable
features is that due to the broken inversion symmetry, the
superconducting pair potential becomes a mixture of spin-
singlet even parity and spin-triplet odd parity.5 Frigeri et al.6

have shown that a p (px ± ipy)-wave pairing state has the
highest Tc within the triplet channel in CePt3Si. Due to the
mixture of singlet s-wave and triplet p-wave pairings, several
novel properties such as the large upper critical field are
expected.6,7

Several studies have addressed superconducting profiles
for NCS superconductors.6–15 In these works, pairing the
symmetry of NCS superconductors has been mainly assumed
to be a s + p-wave, where a spin-triplet p (px ± ipy)-wave and
spin-singlet s-wave pair potential mix with each other as a bulk
state. However, in a strongly correlated system, different types
of pairing symmetries are possible. Microscopic calculations
have shown that a spin-singlet dx2−y2 -wave pairing mixes with
a spin-triplet f -wave pairing based on the Hubbard model near
half filling.16 The magnitude of spin-triplet f -wave pairing in
this dx2−y2 + f -wave pairing is enhanced by a Rashba-type
spin-orbit coupling originating from the broken inversion
symmetry. Also, a possible pairing symmetry of superconduc-
tivity generated at the LaAlO3/SrTiO3 heterointerface4 has
been studied based on a similar model.17 In Ref. 17, it has
been found that the gap function consists of a spin-singlet
dxy-wave component and spin-triplet p-wave one. The ratio
of the dxy-wave and the px (py)-wave component in this
dxy + p-wave model continuously changes with the carrier
concentration.

Stimulated by these backgrounds, a study of Andreev bound
states (ABSs) of dxy + p or dx2−y2 + f -wave pairing has
begun.18 It has been known that the generation of ABSs

at the surface or interface is a remarkable feature specific
to unconventional pairing19 since an ABS directly manifests
itself in the tunneling spectroscopy. Actually, for dxy-wave
pairing, a zero-energy ABS appears.20 The presence of the
ABS has been verified by tunneling experiments of high-Tc

cuprate20,21 as a zero bias conductance peak.22 For a chiral
p-wave superconducting state realized in Sr2RuO4,23 the ABS
is generated as a chiral edge mode that has a dispersion
proportional to the momentum parallel to the interface.24 For
s + p-wave NCS superconductors, when the magnitude of the
p-wave pair potential is larger than that of the s-wave one, it
has been shown that ABS is generated at its edge as helical edge
modes similar to those in a quantum-spin Hall system.11–13,25

Several new features of spin transport stemming from these
helical edge modes also have been predicted.12–15

In Ref. 18, we have clarified the ABS and tunneling conduc-
tance σC in normal metal/NCS superconductor junctions for
dxy + p-wave and dx2−y2 + f -wave pairings. In both cases,
new types of ABSs appear, in stark contrast to the s + p-wave
case. In particular, for the dxy + p-wave case, due to the
existence of the Fermi surface splitting by spin-orbit coupling,
a Majorana edge state appears with flat dispersion preserving
the time-reversal symmetry. Reflecting the Majorana edge
state, σC has a zero bias conductance peak in the presence
of the spin orbit coupling.

Topological aspects of edge states have been attracting
intensive interests in condensed matter physics. In particular, it
was highlighted by the discovery of the quantum Hall system
(QHS) showing the accurate quantization of the Hall conduc-
tance σH , which is related to the topological invariant.26,27 It
is known that the chiral edge state is generated at the edge
of the sample. The concept of the QHS has been generalized
to the time-reversal symmetric system, i.e., the quantum-spin
Hall system (QSHS).25,28 In QSHS, there exist helical edge
modes, i.e., the time-reversal pair of right- and left-going
one-dimensional modes. The edge modes are generated from
the nontrivial topological nature of a bulk Hamiltonian and
topologically protected. Furthermore, recently, pursuing the
analogous nontrivial edge state including the Majorana edge
mode in a superconducting system has become a hot issue.29–31

Although there have been many studies of edge modes
in topologically nontrivial superconducting systems,32–34 the
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relation between edge modes (ABSs) and the surface density
of states has not been fully clarified.

In the present paper, we study the time-reversal invariant
Majorana edge state in detail. In particular, we examine the
local density of state at surface, i.e., the surface density of state
(SDOS) for NCS superconductors with s + p, dx2−y2 + f ,
and dxy + p-wave pair potential, based on the lattice model
Hamiltonian. It is known that the ABS appears as a zero-energy
peak in SDOS, which is observable for tunneling spectroscopy
in a high-Tc cuprate.21,22 It is quite important to clarify the
SDOS and ABS for a new type of pair potentials that we
will discuss in the present paper. For dxy + p-wave pairing,
we confirm that an unusual ABS appears as a zero-energy
state due to the Fermi surface splitting by the spin-orbit
coupling. The present ABS is a single Majorana edge mode
preserving the time-reversal symmetry. In the presence of the
single Majorana edge mode, the SDOS has an anomalous
orientational dependence on the Zeeman magnetic field. We
reveal that the SDOS with a zero-energy peak is robust against
the magnetic field in a certain applied direction.

We also study the topological nature of the Majorana edge
mode. The ABSs found here are topologically stable against
a small deformation of the Hamiltonian if the deformation
preserves the time-reversal invariance and the translation in-
variance along the direction parallel to the edge. We introduce a
topological invariant ensuring the existence of the zero-energy
ABS and clarify the relevance to the number of Majorana edge
modes. It is revealed that the absolute value of the topological
number equals the number of the Majorana edge modes.

The organization of the present paper is as follows. In
Sec. II, we introduce the Hamiltonian and the lattice Green’s
function formalism. In Sec. III, the results of the numerical
calculations of SDOS, topological invariant, and SDOS in the
presence of a Zeeman magnetic field are discussed. In Sec. IV,
the conclusions and outlook are presented.

II. FORMULATION

In this paper, we consider a two-dimensional square
lattice with a Rashba-type spin-orbit coupling. The model
Hamiltonian is given by

H0 =
∑
kσ

εkc
†
kσ ckσ + λ

∑
k

g(k) · σ̂ σσ ′c
†
kσ ckσ ′

+ 1

2

∑
k

[�σσ ′(k)c†kσ c
†
−kσ ′ + H.c.]

−μB

∑
kσσ ′

H · σ̂ σσ ′c
†
kσ ckσ ′, (1)

where ckσ (c†kσ ) is an annihilation (creation) operator for an
electron, σ̂ and σ̂i the Pauli matrices, and εk the energy disper-
sion of the electron on the square lattice, εk = −2t(cos kx +
cos ky) − μ, with the nearest neighbor hopping t and the
chemical potential μ. The second term is the Rashba spin-orbit
coupling, g(k) = (sin ky, − sin kx,0), and the third one is the
pair potential, �̂k = iψ(k)σ̂y + id(k) · σ̂ σ̂y . It is noted that
superconductivity of CePt3Si has been discussed based on
a tight-binding model like Eq. (1) by properly choosing the
dispersion of the energy band.8 In the presence of the Rashba

spin-orbit coupling, the Fermi surfaces are split into two, and
we suppose intraband pairings in each spin-split bands. Then
the d-vector of the pairing function for triplet pairings d(k) is
aligned with the polarization vector of the Rashba spin-orbit
coupling, d(k) ‖ g(k).6 As a result, the triplet component of
the energy gap function is given by d(k) = �tf (k)g(k), while
that of the singlet component reads ψ(k) = �sf (k). Here f (k)
is given by f (k) = 1, sin kx sin ky , and (cos kx − cos ky) for the
s + p, dxy + p, and dx2−y2 + f -wave, respectively.35 We also
introduce the Zeeman splitting term in an applied magnetic
field μB H for later use. From our Hamiltonian, we have the
following retarded Green’s function in the infinite system:

[Ǧ0R(k,ω)]−1 = (ω + iη)Ǐ4×4 − Ȟ(k), (2)

with

Ȟ(k) =
(

ξ̂k �̂k

�̂
†
k −ξ̂ ∗

−k

)
, (3)

where ξ̂k = εk Î2×2 + λg(k) · σ̂ − μB H · σ̂ with the 4 × 4
(2 × 2) unit matrix Ǐ4×4(Î2×2).

To calculate SDOS, we construct the Green’s function in a
semi-infinite system. In the actual numerical calculation, we
use the periodic boundary condition along the x direction with
a sufficiently large size of mesh. To prepare the (100) surface
at x = a0, we introduce vacuum layers on the right side of the
x = a0 site as shown in Fig. 1. Here it is sufficient to introduce
the two vacuum layers since there is no long-range hopping or
long-range pairing over three lattice constants in the present
model. On the vacuum layers, we add the following term to
the Hamiltonian:

H′ = V
∑

xi=a1,a2

∑
σ

niσ , (4)

where niσ = c
†
iσ ciσ is a number operator at site i with spin σ ,

and V is the on-site potential. In the limit V → ∞, no electron
exists on the vacuum layers.

The Green’s function in the presence of infinite potential
barriers is obtained by using the T-matrix method.36 First,
we switch on the potential V only at the site x = a1. The

a0 a1 a2
x

y

Superconductor Vacuum

FIG. 1. (100) surface of square lattice. White and black circles
show the sites without and with potential V , respectively.
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Green’s function Ǧ1R(x1,x2; ky,ω) in this situation satisfies
the following equation:

Ǧ1R(x1,x2; ky,ω) = Ǧ0R(x1,x2; ky,ω)

+ Ǧ0R(x1,a1; ky,ω)V τ̌3Ǧ
1R(a1,x2; ky,ω),

(5)

where Ǧ0R(x1,x2; ky,ω) is the Fourier component Ǧ0R(k,ω)
with respect to kx :

Ǧ0R(x1,x2; ky,ω) = 1

Nx

∑
kx

Ǧ0R(k,ω)eikx (x1−x2). (6)

Here Nx is the number of x-meshes, and τ̌3 is the Pauli matrix
in the particle-hole space:

τ̌3 =
(

Î2×2 0

0 −Î2×2

)
. (7)

In the V → ∞ limit, we have the following solution of
Eq. (5):

Ǧ1R(x1,x2; ky,ω) = Ǧ0R(x1,x2; ky,ω)

− Ǧ0R(x1,a1; ky,ω)[Ǧ0R(a1,a1; ky,ω)]−1

× Ǧ0R(a1,x2; ky,ω). (8)

Then we switch on the potential V at the site x = a2 as
well. For the Green’s function Ǧ2R(x1,x2; ky,ω) in this case,
we have the following equation:

Ǧ2R(x1,x2; ky,ω) = Ǧ1R(x1,x2; ky,ω)

+ Ǧ1R(x1,a2; ky,ω)V τ̌3Ǧ
1R(a2,x2; ky,ω).

(9)

Therefore, taking the V → ∞ limit, we obtain the Green’s
function in the semi-infinite system:

Ǧ2R(x1,x2; ky,ω) = Ǧ1R(x1,x2; ky,ω)

− Ǧ1R(x1,a2; ky,ω)[Ǧ1R(a2,a2; ky,ω)]−1

×Ǧ1R(a2,x2; ky,ω). (10)

From (8) and (10), we can calculate the SDOS ρs(ω), which is
given by the local density of states at x = a0:

ρs(ω) = − 1

Ny

∑
ky

∑
α=1,2

Im
[
G2R

αα(a0,a0; ky,ω)
]
, (11)

while the DOS in the bulk is given by

ρb(ω) = − 1

NxNy

∑
kx ,ky

∑
α=1,2

Im
[
G0R

αα(k,ω)
]
, (12)

where Nx and Ny are the number of meshes along the x and
y directions, respectively. In the calculation presented in the
following, we choose Nx = Ny = 213. We set t = �0 = 1 for
the unit of energy. The number of electrons per unit cell is
0.3 (μ ∼ −2.40t). To guarantee the convergence, we use η =
0.03t for the infinitesimal imaginary parts in Eq. (2).

III. RESULTS

In this section, we first focus on the local density of state
at the surface, i.e., SDOS ρs(ω) for various pairing symmetry.

Since spin-singlet and spin-triplet components of pair potential
mix in general, we introduce a parameter rs , which denotes the
ratio of the singlet component. The parameter rs (0 � rs � 1)
is defined as �s = rs�0 and �t = (1 − rs)�0.

The SDOS for the s + p-wave case is plotted in Fig. 2.
In this case, the bulk DOS ρb(ω) always has a U -shaped gap
structure, as shown by the solid lines. The magnitude of the
gap is given by |�s − �t |. For �s > �t , the SDOS ρs(ω) also
has a U -shaped gap structure, as shown in the dashed lines
in Figs. 2(a) and 2(b). On the other hand, for �t > �s with
rs = 0.2 and rs = 0, the resulting ρs(ω) has a residual value
at ω = 0 as shown in Figs. 2(c) and 2(d). To elucidate the
origin of the residual SDOS in the bulk energy gap, we also
show the angle-resolved surface density of states (ARSDOS)
−(1/π )

∑
α=1,2 Im[G2R

αα(a0,a0; ky,ω)]. As shown in Fig. 3(a),
ARSDOS shows a full gap structure without any inner gap state
for a singlet dominant case (�s > �t ). On the other hand, as
shown in Fig. 3(b), the ARSDOS for a triplet dominant case
(�t > �s)has two branches of ABS, which are dubbed helical
edge modes.13,14 The presence of helical edge modes inside
the bulk energy gap induces the residual SDOS inside the bulk
energy gap.

Next we look at SDOS for the dx2−y2 + f -wave case plotted
in Fig. 4. In this case, ρb(ω) always has a V -shaped gap
structure as shown by the solid lines reflecting the nodal
structures of the bulk energy gap. The corresponding ρs(ω)
(dashed line) also has a similar V -shaped gap structure for the
singlet dominant case (�s > �t ) with rs = 1 and rs = 0.8. As
shown in Fig. 5(a), there is no inner gap state in ARSDOS,
while the bulk energy gap has a strong ky dependence. On
the other hand, for the triplet dominant case (�t > �s) with
rs = 0.2 and rs = 0, ρs(ω) has two additional peaks as shown
by the dashed lines in Figs. 4(c) and 4(d) as compared to the
bulk density of states18 (solid lines). The additional two peaks
in the SDOS originate from the helical edge modes generated
inside the energy gap as shown in Fig. 5(b).18
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FIG. 2. (Color online) Local density of states for a s + p-wave
in the bulk (solid lines) and at the surface (dashed lines) for λ = 0.5
and rs = 1.0, 0.8, 0.2, and 0.0.
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FIG. 3. (Color online) Angle-resolved local density of state of
s + p-wave pairing is plotted as a function of ky with λ = 0.5.
(a) �s = �0 and �t = 0, (b) �t = �0 and �s = 0.

The SDOS for dxy + p-wave NCS superconductors is
plotted in Figs. 6 and 8. In this case, ρs(ω) has very different
line shapes as compared to the former two cases. In particular,
for the spin-triplet dominant pairing, we find that the SDOS
is very sensitive to the spin-orbit coupling. To show this, we
first start with the case without spin-orbit coupling, i.e., λ = 0
(see Fig. 6). ρb(ω) has a V -shaped gap structure as shown by
the solid lines, reflecting the nodal structure of pair potential.
The corresponding ρs(ω) (dashed line) has a zero-energy peak
(ZEP) for the singlet dominant case with rs = 1 and rs = 0.8.
This ZEP comes from the midgap ABS with a flat dispersion
as shown in Fig. 7(a), and it is essentially the same as that
appears in the surface state of the high-Tc cuprate.20,21 On
the other hand, for the triplet dominant case with rs = 0.2
and rs = 0, the ZEP disappears, but ρs(ω) supports two
additional peaks instead, as shown by the dashed lines in
Figs. 6(c) and 6(d), respectively. The additional two peaks are
generated by the anomalous ABS. In the absence of Rashba
spin-orbit coupling, the dispersion of the anomalous ABS for
a dxy + p-wave pairing is very similar to the helical edge
modes for a dx2−y2 + f -wave pairing, as shown in Fig. 7(b).
However, the intensity of ARSDOS near ky ∼ 0 is very low
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FIG. 4. (Color online) Local density of states for dx2−y2 +
f -wave in the bulk (solid lines) and at the surface (dashed lines)
for λ = 0.5 and rs = 1.0, 0.8, 0.2, and 0.0.
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FIG. 5. (Color online) Angle-resolved local density of state of
dx2−y2 + f -wave pairing is plotted as a function of ky with λ = 0.5.
(a) �s = �0 and �t = 0, (b) �t = �0 and �s = 0.

since the magnitude of the excitation energy of the ABS is close
to the bulk energy gap. In the two-dimensional free-electron
model for the NCS superconductor, it has been shown that the
dispersion of the ABS corresponds to the bulk energy gap, and
the intensity of ARSDOS is completely absent for |ky | < kc,
where kc is a certain critical wave number.18 Thus, in contrast
to the helical edge mode in the dx2−y2 + f -wave pairing case,
the values of the SDOS for dxy + p-wave pairing at ω/� = 0
are very close to zero.

Let us now consider the dxy + p-wave case with nonzero
spin-orbit coupling λ. As shown in Fig. 8, the bulk DOS ρb(ω)
shows a V -shaped gap structure similar to Fig. 6. Then, for
the singlet dominant case with rs = 1 and rs = 0.8, the SDOS
ρs(ω) [dashed line in Figs. 8(a) and 8(b)] has a ZEP similar to
Figs. 6(a) and 6(b). On the other hand, for the triplet dominant
case with rs = 0.2 and rs = 0, in addition to the two peaks
similar to those in Figs. 6(c) and 6(d), ZEP appears as shown
in Figs. 8(c) and 8(d). It is remarkable that ZEP is generated
by spin-orbit coupling λ.18

To show this new type of ZEP much more clearly, we
plot ARSDOS of the dxy + p-wave case in Fig. 9 with
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FIG. 6. (Color online) Local density of states for dxy + p-wave
in the bulk (solid lines) and at the surface (dashed lines) for λ = 0.0
and rs = 1.0, 0.8, 0.2, and 0.0.
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FIG. 7. (Color online) Angle-resolved local density of state of
dxy + p-wave pairing is plotted as a function of ky with λ = 0.0.
(a) �s = �0 and �t = 0, (b) �t = �0 and �s = 0.

λ = 0.5. Comparing with the ARSDOS in Fig. 7, for the triplet
dominant case, we find that an additional zero-energy state
(ZES) appears. In the presence of the spin-orbit coupling,
the Fermi surface is split into the large one with the Fermi
momentum k2 and the small one with k1. The ZES exists
only for ky between the split Fermi surfaces, namely, for ky

with k2 > |ky | > k1. It can be shown that the Bogoliubov
quasiparticle creation operator γ

†
ky

for the ZES at x = a0

satisfies γ
†
ky

= γ−ky
.18 Then the local quasiparticle creation

operator ψ(y) = 1
Ny

∑
ky

γky
eikyy satisfies the Majorana con-

dition ψ(y) = ψ†(y). Therefore, the ZES is identified as a
Majorana fermion.

For singlet-dominant dxy + p-wave NCS superconductors,
we obtain the SDOS and ARSDOS depicted in Figs. 8(a) and
8(b) and Fig. 9(a), respectively. At first sight, they look very
similar to those in Figs. 6(a) and 6(b) and Fig. 7(a). However,
for ky with k2 > |ky | > k1, we again have a single branch of a
ZES on the edge. As is shown later, because of the existence
of the time-reversal invariant Majorana fermion (TRIMF), the
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FIG. 8. (Color online) Local density of states for dxy + p-wave
in the bulk (solid lines) and at the surface (dashed lines) for λ = 0.5
and rs = 1.0, 0.8, 0.2, and 0.0.
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FIG. 9. (Color online) Angle-resolved local density of state of
dxy + p-wave pairing is plotted as a function of ky with λ = 0.5.
(a) �s = �0 and �t = 0, (b) �t = �0 and �s = 0.

SDOS for the dxy + p-wave NCS superconductor shows a
peculiar dependence on the Zeeman magnetic field.

Unlike the Majorana fermions studied before, the present
Majorana fermion is realized with the time-reversal invariance.
The TRIMF has the following three characteristics: (1) It
has a unique flat dispersion. To be consistent with the
time-reversal invariance, the single branch of ZES should
be symmetric under ky → −ky . Therefore, by taking into
account the particle-hole symmetry as well, the flat dispersion
is required. On the other hand, the conventional time-reversal
breaking Majorana edge state has a linear dispersion. (2) The
spin-orbit coupling is indispensable for the existence of the
TRIMF. Without the spin-orbit coupling, the TRIMF vanishes.
(3) The TRIMF is topologically stable under a small
deformation of the Hamiltonian. The topological stability is
ensured by a topological number, which we will show shortly.
Furthermore, we notice that the flat dispersion is terminated at
nodes of the bulk gap. This is because the topological number
can change at |ky | = ki (i = 1,2) where the bulk gap closes.

To see the topological nature of the TRIMF, we start from
the Bogoliubov-de Gennes (BdG) Hamiltonian in the bulk
system defined in Eq. (3) without a Zeeman magnetic field. In
the Nambu representation, the BdG Hamiltonian (3) has the
particle-hole symmetry:

ČȞ(k)Č† = −Ȟ∗(−k), Č =
(

0 Î2×2

Î2×2 0

)
. (13)

In addition, from the time-reversal invariance, the BdG
Hamiltonian satisfies

�̌Ȟ(k)�̌† = Ȟ∗(−k), �̌ =
(

iσy 0
0 iσy

)
. (14)

Therefore, we can define the operator �, which anticommutes
with the BdG Hamiltonian:29

{Ȟ(k),�̌}+ = 0. (15)

Here � is defined as the product of particle-hole transformation
operator C and time-reversal operator �:

�̌ = −iČ�̌ =
(

0 σ̂y

σ̂y 0

)
. (16)

Now we take the basis that diagonalizes �̌

Ǔ
†
��̌Ǔ� =

(
Î2×2 0

0 −Î2×2

)
(17)
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with the unitary matrix Ǔ�

Ǔ� = Ǔ
†
� = 1√

2

(
Î2×2 σ̂y

σ̂y −Î2×2

)
. (18)

Then we find that the BdG Hamiltonian Ȟ(k) becomes off-
diagonal in this basis:

Ǔ
†
�Ȟ(k)Ǔ� =

(
0 q̂(k)

q̂(k)† 0

)
, (19)

where q̂(k) = ξ̂kσ̂y − �̂k.
To classify the existence or nonexistence of the ZES with

ky = k0
y , we change kx from −π to π for a fixed value of

ky = k0
y . The winding number W is defined as a number of

revolutions of det{q̂(k)} ≡ m1(k) + im2(k) around the origin
of complex plane when kx changes from −π to π :

W
(
k0
y

) = 1

2π

∫ π

−π

∂θ (k)

∂kx

∣∣∣∣
ky→k0

y

dkx, (20)

with θ (k) ≡ arg det{q̂(k)} = tan−1(m2(k)/m1(k)). The result-
ing W (k0

y) must be an integer since the starting point and the
end point of integration route are equivalent in the Brillouin
zone. Therefore, the value of W (k0

y) changes discretely with
the change of ky value. When the gap of the system closes
at certain points on the integration route, W (k0

y) is ill defined
since det{q̂(k)} becomes zero on such points. Thus, the value
of W (ky) does not change by the small change of ky value
unless the energy gap closes.

Here we study the winding number for the dxy + p-wave
NCS superconductors for the two trajectories at ky = 0.20π

and 0.45π as shown in Fig. 10. For ky = 0.2π , the trajectory
crosses the Fermi surfaces four times. On the other hand, for
ky = 0.45π , it crosses two times. As we have explained, the
winding number W (ky) does not change unless the energy gap
closes. For dxy + p-wave parings, the energy gap closes at
(±k1,0), (±k2,0), (0, ± k1), and (0, ± k2). Therefore, W (ky)
can change only at ky = ±k1, ky = ±k2, or ky = 0. Thus, it is
sufficient to study the representative point in each ky range.

0 π−π

0

π

−π

kx

ky

ky=0.45π

ky=0.20π

FIG. 10. Fermi surfaces of spin-split bands due to the Rashba
spin-orbit coupling (solid lines) and cutting lines ky = 0.20π and
0.45π (dashed lines).
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(d)(c)

FIG. 11. Polar plot of θ (k) for �s = �0 and �t = 0 as a function
of kx with fixed ky for a dxy + p-wave NCS superconductor. (a) ky =
0.2π and (c) ky = 0.45π . The white circle corresponds to kx = ±π ,
and arrows show the direction in which the values of kx increase. The
corresponding θ = tan−1(m2/m1) is plotted as a function of kx for
(b) ky = 0.2π and (d) ky = 0.45π .

We first focus on the singlet dominant dxy + p-wave NCS
superconductor with �s = �0 and �t = 0. For ky = 0.2π ,
as shown in Fig. 11(a), m1 and m2 draw a curve that turns
anticlockwise twice around the (m1,m2) = (0,0) if we change
kx from −π to π . At the same time, θ (k) changes twice from
−π to π as shown in Fig. 11(b). Therefore, the resulting
winding number W is W = 2. On the other hand, for ky =
0.45π , m1 and m2 draw a curve that turns anticlockwise once
around the (m1,m2) = (0,0) as shown in Fig. 11(c). Moreover,
θ (k) changes once from −π to π as shown in Fig. 11(d).
Thus, the resulting winding number W equals 1. This means
that these two cases belong to different topological classes. In
a similar manner, it is possible to generalize our argument for
other kys (−π < ky < π ). We summarize the obtained results
in Table I(a).

The same plot of mi(k) and θ (k) for the triplet dominant
dxy + p-wave NCS superconductors with �t = �0 and �s =
0 is shown in Fig. 12. For ky = 0.2π , m1 and m2 draw a curve
as shown in Fig. 12(a). However, it does not turn around the
point (m1,m2) = (0,0) with the change of kx from −π to π . At
the same time, θ (k) does not change from −π to π as shown
in Fig. 12(b), in contrast to that in Fig. 11(b). This corresponds
to the fact that the resulting winding number W equals 0. On
the other hand, for ky = 0.45π , m1 and m2 draw a curve that
turns clockwise once around the (m1,m2) = (0,0) as shown in
Fig. 12(c). Also, θ (k) changes once from π to −π as shown
in Fig. 12(d). Therefore, the corresponding winding number
W equals −1. In a manner similar to the singlet dominant
case, it is possible to generalize this argument for other
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TABLE I. The winding number W (ky) for dxy + p-wave with (a) �s > �t , (b) �t > �s .

ky ky > k2 k2 > ky > k1 k1 > ky > 0 0 > ky > −k1 −k1 > ky > −k2 −k2 > ky

(a) W (ky) 0 1 2 −2 −1 0
(b) W (ky) 0 −1 0 0 1 0

ky (−π < ky < π ). The obtained results are summarized in
Table I(b).

Comparing the obtained winding number W (ky) in Table I
with the ARSDOS in Fig. 9, we notice that zero-energy ABS
appears only for ky with nonzero W (ky). This correspondence
implies that the existence and the stability of the zero-energy
ABS is ensured by the winding number. Indeed, we can say
that the absolute value of W , i.e., |W | equals the number of
branches of zero-energy ABS.37 In other words, the number
of TRIMFs equals the absolute value of W . Furthermore,
the TRIMFs found here are topologically stable against a
small deformation of the BdG Hamiltonian if the deformation
preserves the time-reversal invariance and the translation
invariance along the direction parallel to the edge, both of
which are necessary to define the winding number. It should be
remarked that for both the singlet dominant case and the triplet
dominant one, a single TRIMF is generated for k2 > |ky | > k1.

As we have shown, the time-reversal invariance is essential
to define the winding number W ensuring the topological
stability of the TRIMF. Therefore, in general, if we apply a
perturbation breaking the time-reversal invariance, the winding
number W becomes meaningless. In other words, a time-

−5 0

−0.5

0

0.5

−15 −10 −5 0
−2

0

2

0

0

0

0

m
2(

k)

m1(k)

m
2(

k)

θ(
k)

−π π
−π

π

θ(
k )

−π π
−π

π

kx

(a) (b)

(d)(c)

FIG. 12. Polar plot of θ (k) for �t = �0 and �s = 0 as a function
of kx with fixed ky for dxy + p-wave NCS superconductor. (a) ky =
0.2π and (c) ky = 0.45π , where the white circle corresponds to kx =
±π and arrows show the direction in which the values of kx increase.
The corresponding θ = tan−1(m2/m1) is plotted as a function of kx

for (b) ky = 0.2π and (d) ky = 0.45π .

reversal breaking perturbation may change the SDOS of the
TRIMF substantially.

As a time-reversal breaking perturbation, we consider the
Zeeman magnetic field. Let us look at the SDOS in the presence
of Zeeman magnetic field H . First, we consider the singlet
dominant dxy + p-wave NCS superconductor. Without the
spin-orbit coupling, the ABS becomes conventional and can
be expressed by double TRIMFs. In this case, as we expected,
it is found that the ZEP of SDOS from the double TRIMFs
is split in two by any Zeeman magnetic field H as shown in
Fig. 13.38 It is also noted that the resulting SDOS is indepen-
dent of the direction of H due to the spin-rotational symmetry
in the system. Thus, the SDOSs ρs(ω) for μBHx = 0.1t

(H ‖ x), μBHy = 0.1t (H ‖ y) and μBHz = 0.1t (H ‖ z) are
identical.

On the other hand, in the presence of the spin-orbit coupling,
this property is not satisfied anymore. As shown in Fig. 14,
ρs(ω) has different structures for μBHx = 0.1t [Fig. 14(b)],
μBHy = 0.1t [Fig. 14(c)], and μBHz = 0.1t [Fig. 14(d)],
respectively. The orientational dependence of SDOS is due to
the presence of the spin-orbit coupling since the spin-rotational
symmetry is broken. It is noted that the three-peak structure
including the ZEP appears for μBHy = 0.1t (H ‖ y). The
presence of the ZEP against the Zeeman magnetic field
along the edge, which is Hy in this case, is relevant to the
existence of the single Majorana edge mode with zero energy
at k2 > |ky | > k1 as shown in Fig. 15(b). This Majorana edge
mode has a dispersion with nonzero energy when the Zeeman
magnetic field is applied along the x direction [Fig. 15(a)]. On
the other hand, the double TRIMFs at |ky | < k1 are split in
two for any direction of the Zeeman magnetic field. We have
checked that the height of ZEP ρs(0) drastically decreases even
if ZEP remains for μBHy = 0.1t (H ‖ y).

Next we consider the triplet dominant dxy + p-wave NCS
superconductor. For simplicity, we suppose that only the triplet
component �t exists. As was shown in Fig. 9(b), in the absence
of the Zeeman magnetic field, a zero-energy ABS exists, and

0

0.5

1

−0.4−0.2 0 0.2 0.4

(a)

−0.4−0.2 0 0.2 0.4

(b) 

ω/Δ0 ω/Δ0

ρ s
(ω

)

FIG. 13. Local density of states at the surface for dxy + p-wave
with �s = �0 and �t = 0 for λ = 0 and (a) μB H = 0, (b) μBHx =
0.1 (H ‖ x).
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−0.4−0.2 0 0.2 0.4
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(c) (d)

ω/Δ0 ω/Δ0

ρ s
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)
ρ s

( ω
)

FIG. 14. Local density of states at the surface for dxy + p-wave
with �s = �0 and �t = 0 for λ = 0.5 and (a) μB H = 0, (b) μBHx =
0.1t (H ‖ x), (c) μBHy = 0.1t (H ‖ y), (d) μBHz = 0.1t (H ‖ z).

it can be described by a single TRIMF. The resulting ρs(ω)
has a sharp ZEP without H [Fig. 16(a)]. In a manner similar to
the singlet dominant case we have described, the SDOS ρs(ω)
under the Zeeman magnetic field has a strong orientational
dependence of H as shown in Figs. 16(b), 16(c), and 16(d).
It is noted that ZEP remains when the applied Zeeman field
is along the y direction. This implies that the single TRIMF
in the dxy + p-wave NCS superconductor is robust against the
Zeeman magnetic field applied in the direction along the edge.

We would like to emphasis that, as shown from these
calculations, the tunneling spectroscopy with the Zeeman
magnetic field is available to identify the single TRIMF in the
dxy + p-wave NCS superconductor. Simultaneous existence
of the strong orientational dependence of the magnetic field
and the robust ZEP under a certain direction of the magnetic
field is strong evidence to support the single Majorana fermion
in this material.
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FIG. 15. (Color online) Angle-resolved local density of state for
dxy + p-wave pairing in the presence of the Zeeman magnetic field
is plotted as a function of ky with λ = 0.5, �s = �0 and �t = 0. (a)
μBHx = 0.1t (H ‖ x), (b) μBHy = 0.1t (H ‖ y).

0

0.5

1

−0.4−0.2 0 0.2 0.4
0

0.5

1

−0.4−0.2 0 0.2 0.4

(a) (b) 

(c) (d)

ω/Δ0 ω/Δ0

ρ s
(ω

)
ρ s

(ω
)

FIG. 16. Local density of states at the surface for dxy + p-wave
with �t = �0 and �s = 0 for λ = 0.5 and (a) μB H = 0, (b) μBHx =
0.1t (H ‖ x), (c) μBHy = 0.1t (H ‖ y), (d) μBHz = 0.1t (H ‖ z).

IV. SUMMARY

In the present paper, we have investigated SDOS and
edge modes of NCS superconductors by choosing s + p,
dx2−y2 + f , and dxy + p-wave pair potential based on the
lattice model Hamiltonian. For dxy + p-wave pairing, an
unusual ABS appears as a ZES for k2 > |ky | > k1 with the
wavenumber parallel to the interface ky , where k1 and k2 denote
the magnitude of the Fermi wavenumber in the presence of
spin-orbit coupling. The present ABS is a single Majorana
edge mode preserving the time-reversal symmetry. We have
defined a new type of topological invariant and clarified
the relevance to the number of the time-reversal invariant
Majorana edge modes. We have found that the absolute
value of the topological number equals the number of the
Majorana edge modes. The single Majorana edge mode is
generally induced by the spin-orbit coupling. In the presence
of the single Majorana edge mode, the SDOS has a strong
orientational dependence of the magnetic field. In an applied
magnetic field along the edge, the single Majorana edge
mode is robust, and the resulting ZEP of SDOS remains.
These futures may serve as a guide to detect the Majorana
fermion in noncentrosymmetric superconductors by tunneling
spectroscopy.

Note added. After our paper had been submitted, we
become aware of a relevant paper.39
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