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Effects of a resonant cavity on macroscopic quantum tunneling of fluxons
in long Josephson junctions
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We investigate the effects of a high-quality resonant cavity on macroscopic quantum tunneling (MQT) of
fluxons from both a metastable state to continuum and from one degenerate ground state of a double-well
potential to the other. By using a set of two coupled perturbed sine-Gordon equations, we describe the tunneling
processes in linear long Josephson junctions and find that MQT in the resonant cavity increases due to potential
renormalization, induced by the interaction between the fluxon and the cavity. Enhancement of the MQT rate in
the weak-coupling regime is estimated by using the experimentally accessible range of the model parameters. The
tunneling rate from the metastable state is found to increase weakly with increasing junction-cavity interaction
strength. However, the energy splitting between the two degenerate ground states of the double-well potential
increases significantly with increasing both the interaction strength and the frequency of the resonant cavity mode.
Finally, we discuss how the resonant cavity may be used to tune the property of Josephson vortex quantum bits.
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I. INTRODUCTION

Experimentally observed1 quantum behavior of Josephson
vortices (i.e., fluxons) at ultralow temperatures has opened up
a possibility of realizing quantum computers based on long
Josephson junctions (LJJ’s). This observation led to much
interest in the Josephson vortex quantum bit2–4 (qubit) as an
alternative to the previously proposed superconducting qubits.
Similar to other approaches based on Josephson junctions,
such as charge,5 phase,6 and flux7 qubits, the Josephson
vortex qubit (JVQ) is also a promising candidate for quantum
computation application. Due to its weak interaction with
decoherence sources in the environment at low temperatures,
the JVQ may have significant advantages over the other
superconducting qubits. For instance, a significantly longer
decoherence time was suggested as one such advantage.3

The JVQ takes advantage of the coherent superposition of
two spatially separated states arising from the low-temperature
property of a trapped fluxon in a double-well potential. This
property includes (i) energy quantization and (ii) macroscopic
quantum tunneling1(MQT). We note that, for linear LJJ’s, the
fluxon potential for either the metastable state or the JVQ
may be obtained8 by using Nb-AlOx-Nb junctions and by
implanting either one or two microresistors in the insulator
layer, respectively. For application of JVQ’s, tuning both the
decoherence time and the level of entanglement by controlling
the qubit property is essential. However, due to its weak
interaction with external perturbations, an effective tuning
mechanism for the JVQ is less clear. Recent studies9,10 on
using a microwave cavity for both tuning a single-phase qubit
and inducing an interaction between either two charge or two
phase qubits suggest that a resonant cavity may be used for the
JVQ to serve the same purpose.

Earlier studies on the effects of a resonant cavity
indicate11,12 that both electric and magnetic fields of the
cavity couple to the Josephson junction since the cavity
electromagnetic (EM) mode behaves similarly to a phonon
mode,13 which interacts with the fluxon. The effects of a
resonant cavity on the fluxon dynamics in LJJ stacks14–16 have
been studied both experimentally17,18 and theoretically.19–21

These studies show that when the coupling between the LJJ
and a resonant cavity is spatially uniform, no force is exerted
on the fluxon by the cavity, but its dynamics may become
modified. These studies suggest that the interaction between
the LJJ and a resonant EM wave mode of the cavity promotes22

collective dynamics of fluxons. The in-phase locking mode of
the fluxon dynamics is shown to be enhanced22 by the cavity
EM mode.

These studies also suggest that the junction-cavity in-
teraction may be used to change the qubit property. The
property of the JVQ depends on MQT between two spatially
separated states of the fluxon. We note that MQT represents
quantum-particle-like collective excitations.23,24 As semiclas-
sical theories indicate that the MQT rate25 depends on the
potential barrier height, the JVQ can be tuned by adjusting the
potential well for the fluxon. This adjustment can be achieved
by potential renormalization induced by the junction-cavity
interaction since this interaction can strongly affect the fluxon
tunneling processes, similar to phonon-assisted tunneling
in Josephson junctions.26 We note that a two-level atom
interacting with a quantized radiation field, described by the
Jaynes-Cummings model,27 is also similar to the JVQ-cavity
system that we consider in the present work. The potential
renormalization for fluxons suggests that the resonant cavity
may be used as a tool for controlling the JVQ property. As
the fluxon tunneling processes may be controlled externally
by tuning either the junction-cavity coupling strength or the
resonant frequency, the effects of the resonant cavity depend
on the nature of the interaction. However, the influence of
the junction-cavity interaction on the MQT rate has not been
understood clearly.

In this paper, we investigate the effects of the junction
cavity both on MQT from a metastable state and on the
ground-state energy splitting in a double-well potential. We
note that, to focus on the interaction between the LJJ and a
single resonant cavity mode, we consider only a high-Quality
(Qc) cavity. First, we estimate the MQT rate for the fluxon
in a single LJJ and for the phase-locked fluxons in a coupled
LJJ stack by computing the local and nonlocal contributions.
Then, we estimate the effects of the resonant cavity on the
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JVQ property by computing the ground-state energy splitting.
Before proceeding further, we outline the main results. (i) The
potential barrier for a fluxon in the metastable state is not
affected by increasing either the junction-cavity interaction
or the resonant frequency of the cavity EM mode. (ii)
The nonlocal contribution to the tunneling rate due to the
junction-cavity interaction is negligible in the weak-coupling
regime. (iii) Due to potential renormalization induced by the
junction-cavity interaction, the potential barrier height for the
fluxon trapped in a double-well potential is reduced. This
reduction leads to an increase in the ground-state energy
splitting for the JVQ with increasing junction-cavity coupling
and resonant frequency.

The outline of the remainder of the paper is as follows. In
Sec. II, we describe the LJJ-cavity system by using a set of
two perturbed sine-Gordon equations. In Sec. III, the effects
of the resonant cavity on the fluxon tunneling rate from the
metastable state in a LJJ are discussed. In Sec. IV, we discuss
MQT of phase-locked fluxons from the metastable state in a
vertical stack of two coupled LJJ’s. In Sec. V, the effects of
interaction between the LJJ and a single mode in a high-Qc

cavity on the JVQ are estimated by computing the ground-
state energy splitting. Finally, we summarize the results and
conclude in Sec. VI.

II. COUPLED LONG JOSEPHSON JUNCTIONS IN A
RESONANT CAVITY

To examine (i) one-fluxon tunneling in a single LJJ, (ii)
phase-locked two-fluxon tunneling in a stack of two coupled
LJJ’s, and (iii) the ground-state energy splitting in the JVQ,
we start with coupled perturbed sine-Gordon equations14 to
describe two LJJ’s that interact with the resonant cavity,12

∂2

∂x2
(ϕ1 − Sϕ2) − ∂2ϕ1

∂t2
− sin ϕ1 = F1, (1)

∂2

∂x2
(ϕ2 − Sϕ1) − ∂2ϕ2

∂t2
− sin ϕ2 = F2, (2)

where x and t are the dimensionless coordinates in units of
λJ γ −1(S) and ω−1

p , respectively. Here γ −1(S) = √
1 − S2

and ωp denotes the plasma frequency. The dynamic variable
ϕi represents the difference between the phase φ of the
superconductor order parameter for the two superconductor
(S) layers i and i − 1 (i.e., ϕi = φi − φi−1). The strength of
magnetic induction coupling between two LJJ’s is denoted
by S. Here we set h̄ = kB = c = 1 for convenience. The
perturbation term F for each LJJ, which is given by

Fi = β
∂ϕi

∂t
+ fi − gE

d2qr

dt2
− εiδ

(
x − xo

i

)
sin ϕi, (3)

accounts for the contribution from dissipation (β), bias current
(f = JB/Jc), resonant cavity (gE), and microresistors [ε =
(Jc − J ′

c)lb/JcλJ ]. Here xo
i , JB , Jc, J ′

c, lb (� λJ ), and λJ

denote the position of microresistors in the insulator layer of
the ith junction, the bias current density, the critical current
density, the modified current density, the length of the LJJ in
which Jc is modified, and the Josephson length, respectively.
We note that dissipation, bias currents, resonant cavity, and
microresistors on the phase dynamics lead to different effects.

We account for the perturbation contribution due to resonant
cavity by following Tornes and Stroud12 and by assuming that
the cavity supports a single harmonic-oscillator mode, which
may be represented by the displacement variable qr as

d2qr

dt2
+ ωr

Qc

dqr

dt
+ ω2

r qr = gEγ (S)

Mosc

∫
dx

∂2

∂t2
(ϕ1 + ϕ2). (4)

Here ωr , Qc, and Mosc are the dimensionless oscillator
frequency in units of ωp, the cavity quality factor, and the
“mass” of the oscillator mode, respectively. For simplicity,
we neglect the second term on the left-hand side of Eq. (4)
by assuming that the cavity is nondissipative (i.e., high-Qc

cavity). Also, we assume that the cavity electric field E
is uniform within the junction by considering the spatially
uniform junction-cavity coupling gE of

gE = − εd

2e

√
Mosc

4π
E · ẑ, (5)

where εd is the dielectric constant. As we will discuss later, the
position-independent coupling gE does not change the fluxon
motion directly but yields potential renormalization when a
microresistor is present.

To estimate the effects of interaction between the LJJ
and the resonant cavity analytically, we consider the weak
perturbation F limit. As each perturbation term in Eq. (3) is
small and does not change the form of the kink solution within
the lowest-order approximation,28 we describe the fluxon
motion in terms of the center coordinate q(t). In the absence
of both the perturbation terms (F = 0) and the magnetic
induction effect (S = 0), the fluxon solution to Eq. (1) is given
by

ϕi(x,t) ≈ 4 tan−1[eγ (vi )[x−qi (t)]], (6)

in the nonrelativistic limit (i.e., v � 1). Here qi(t) = vit

denotes the center coordinate for the fluxon, and v is the fluxon
speed in units of Swihart velocity. Equation (6) represents the
propagation of a nonlinear wave as a ballistic particle. The
perturbation contributions of F only affect the dynamics of a
fluxon expressed in the q coordinate.

We now describe the fluxon phase dynamics in the cou-
pled LJJ using the center coordinate qi representation. The
energy of the fluxon may be seen easily from the Euclidean
Lagrangian (i.e., τ = it),

L = Lo + Lmag + Lpert + Losc + Lcoup. (7)

The first three terms for L in Eq. (7) describe the LJJ
contributions, while the remaining two terms arise from the
resonant cavity. First, we discuss the LJJ contributions to
Lagrangian L. The unperturbed part of the LJJ is described
by the Lagrangian Lo given by

Lo =
∑

i

∫
dx

2

[(
∂ϕi

∂τ

)2

+
(

∂ϕi

∂x

)2

+ 2(1 − cos ϕi)

]
. (8)

The Lagrangian contribution from the magnetic induction
effect, Lmag, is given by

Lmag = S
∫

dx

(
∂ϕ1

∂x

)(
∂ϕ2

∂x

)
. (9)
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We note that Lmag accounts for the interaction energy Eint

between two LJJ’s due to the magnetic induction effect. The
perturbation contribution to the Lagrangian,Lpert = Lnd + Ld,
is expressed as the sum of two terms: (i) the nondissipative
(Lnd) and (ii) the dissipative (Ld) part. The nondissipative con-
tribution comes from the bias currents and microresistors. The
nondissipative Lagrangian Lnd is expressed as the sum of the
contributions from the bias current (Lbias) and microresistors
(Lpin) (i.e., Lnd = Lbias + Lpin). The bias current contribution
Lbias is given by

Lbias =
∑

i

∫
dxfiϕi, (10)

and the inhomogeneity contribution due to microresistors Lpin

is given by

Lpin =
∑

i

∫
dxεiδ

(
x − xo

i

)
(1 − cos ϕi). (11)

We note that Lpin accounts for the fluxon pinning energy
Epin. These nondissipative contributions provide the bare
fluxon potential V (q). On the other hand, the dissipative
Lagrangian Ld accounts for the interaction between the fluxon
and the environment. The effects of this contribution may
be described29 by following Caldeira and Leggett and by
representing the environment as a heat bath. The heat bath is
represented as harmonic oscillators with generalized momenta
Pi and coordinates Qi . The dissipation Lagrangian Ld which
accounts for the coupling between the phase (ϕ) and oscillator
(Qi) variables is given by

Ld =
∫

dx
∑

i

[
P 2

i

2mi

+ miω
2
i

2

(
Qi − ciϕ

miω
2
i

)2
]

. (12)

Here, the spectral function Jβ(ω),

Jβ(ω) = π

2

∑
i

c2
i

miω
2
i

δ(ω − ωi) = βω, (13)

is used to reproduce the dissipation effects (β) in Eq. (3). The
effects of dissipation on a two-state system have been studied
extensively by using the spin-boson model.30 In the adiabatic
approximation, the energy splitting for the two-state system
is known to be reduced30 in the dissipative environment.
However, this result does not29 imply that the effects of
the interaction between the two-state system and a single
oscillator, which represents either a phonon or quantized
radiation field, on the energy splitting are similar. In our
discussion later in the paper, we neglect the dissipation
effects by setting β = 0 since these effects are small at low
temperatures, and we focus on the effects due to a resonant
cavity.

We now discuss the high-Qc resonant cavity contribution to
the Lagrangian L of Eq. (7). The resonant cavity is modeled by
using the Lagrangian for a single harmonic oscillator, which
represents a single EM-mode supported by the cavity. The
Lagrangian for this single mode oscillator Losc is written as

Losc = Mosc

2

(
dqr

dτ

)2

+ K

2
q2

r , (14)

where K is the “spring constant” and qr denotes the oscillator
coordinate. We note that the oscillator frequency ωr in Eq. (4) is
given by ωr = (K/Mosc)1/2. The capacitive coupling between
the LJJ and the resonant cavity is described by the Lagrangian
Lcoup as

Lcoup = −gE

(
dqr

dτ

)∫
dx

∑
i

(
∂ϕi

∂τ

)
. (15)

Here we assume that the coordinate qr is spatially homoge-
neous and we focus on the effects of the uniform E field in the
cavity. We note that the interaction between the LJJ and the
resonant cavity yields nonlocal effects similar to those from
the dissipation term (i.e., β �= 0).

We estimate MQT of the fluxon by using the usual
semiclassical approach31 of starting with the partition function
Z for the junction-cavity system,

Z =
∫

D[ϕ]D[qr ] exp{−S[ϕ,qr ]}, (16)

where S[ϕ,qr ] = ∫
dτL is the action and L is the Lagrangian

of Eq. (7). By noting that the shape distortion of the fluxon
due to weak perturbation (i.e., small F) is negligible, we may
rewrite the partition function Z in terms of q(τ ) and qr (τ ) as

Z =
∫

D[q]
∫

D[qr ]e−S[q,qr ]. (17)

Also by noting that the Lagrangian Lcoup of Eq. (15),
which accounts for the interaction between the LJJ and
resonant cavity, is linear in both coordinates qr and ϕ, we
separate the partition function Z into the resonant cavity
and fluxon contribution by expressing Z = ZresZfluxon. The
resonant cavity (Zres) and fluxon (Zfluxon) contribution toZ are
given, respectively, as Zres = ∫

D[qr (ωn)] exp{−Sres[qr (ωn)]}
and Zfluxon = ∫

D[q(τ )] exp{−Seff[q(τ )]}. The action for the
resonant cavity contribution Sres[qr ] is given by

Sres[qr ] = T
∑
ωn

Mosc

2

(
ω2

n + ω2
r

) [
qr,n + 2πgEqnω

2
n

Mosc
(
ω2

n + ω2
r

)
]

×
[
qr,−n + 2πgEq−nω

2
n

Mosc
(
ω2

n + ω2
r

)
]

, (18)

where qr,n = qr (ωn), qn = q(ωn), ωn = 2πnT is the Matsub-
ara frequency, and T is the temperature. The action for the
fluxon contribution Seff[q] is given by

Seff[q] =
∫

dτ

⎡
⎣Me

2

2∑
i=1

q̇2
i + V (q) + ḡ2

Eω2
r

1 − S2

(
2∑

i=1

qi

)2
⎤
⎦

− 2ḡ2
E

1 − S2

∫
dτ q̇1q̇2 − ḡ2

E

1 − S2

∫
dτdτ ′K(τ − τ ′)

×
2∑

i=1

qi(τ )
2∑

i=1

qi(τ
′), (19)

where q̇i = dqi/dτ , ḡ2
E = 2π2g2

E/Mosc, Me denotes the renor-
malized fluxon mass

Me = M

(
1 − 1

M

2ḡ2
E

1 − S2

)
(20)
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due to the spatially uniform junction-cavity interaction, and
the M denotes the rest mass of the fluxon. The mass Me

accounts for the renormalization effect of both junction-cavity
and magnetic induction interaction. The bare potential V (q) =
V (q1,q2) is given32 by

V (q) = −
2∑

i=1

(
2πfiqi + 2εi

cosh2 qi

)
− 8S(q1 − q2)

sinh(q1 − q2)
. (21)

Here, the fluxon potential V (q) includes the effects from
the three contributions: (i) the potential tilting effect (f ),
(ii) the pinning effect (ε), and (iii) the magnetic induction
effect (S). The third term in the large square brackets in
Eq. (19) accounts for the potential renormalization due to
the junction-cavity interaction. This renormalization is similar
to that for the electronic tunneling process with phonon
coupling.33 In the later discussion, we denote ḡ2

E as the strength
of the junction-cavity interaction. The cavity kernel K(τ − τ ′)
in the third term of Eq. (19) is given by

K(τ ) = ω3
r

2

cosh(ωr/2T − ωr |τ |)
sinh(ωr/2T )

(22)

at nonzero temperature T . This term accounts for the nonlocal
effect arising from the junction-cavity interaction.

After the calculation, the oscillator coordinate qr in the
partition function Z of Eq. (16) is decoupled from the center
coordinate q. This separation allows us to integrate out the qr

coordinate. Hence, in later discussions, we will consider the
fluxon contribution Zfluxon to the partition function, which is
described by the action Seff . Using Seff , we discuss how the
junction-cavity interaction affects both one-fluxon and two-
fluxon tunneling in LJJ’s.

III. MACROSCOPIC QUANTUM TUNNELING
IN A SINGLE JUNCTION

We now examine the effects of a resonant cavity on MQT
from the metastable state in a single LJJ obtained by implanting
a microresistor in the insulator layer and by applying the
bias current (JB), as shown in Fig. 1. The dimensions of the
junction, compared to the Josephson length λJ , are chosen
so that Lx � λJ and Ly � λJ . These choices are made to
enhance the quantum effect at low temperatures. We describe
MQT of the fluxon by starting with the action Ss

eff[q] for the
LJJ given by

Ss
eff[q] =

∫
dτ

[
Me

2
q̇2 + Vs(q) + ḡ2

Eω2
r q

2

]

− ḡ2
E

∫
dτdτ ′K(τ − τ ′)q(τ )q(τ ′). (23)

Here, the action Ss
eff[q] is obtained from Seff[q] of Eq. (19),

by setting S = 0 (i.e., no magnetic induction effect), q1 = q,
and q2 = 0. Following Caldeira and Leggett, we may simplify
Ss

eff[q] by making a usual substitution of q(τ )q(τ ′) = [q2(τ ) +
q2(τ ′)]/2 − [q(τ ) − q(τ ′)]2/2. We note that the first two
terms of this substitution cancel the potential renormalization
contribution (i.e., ḡ2

Eω2
r q

2 term) arising from the junction-
cavity interaction. With this cancellation, the action Ss

eff[q]
becomes similar to that for the dissipative system,29 but the

FIG. 1. A LJJ is shown schematically as an insulator (I ) layer is
sandwiched between two superconductor (S) layers. Lx and Ly denote
the dimensions in the x and y direction, respectively. J B denotes the
bias current density. The filled circle represents the microresistor (i.e.,
pinning center) and the dashed box represents the resonant cavity.

fluxon mass is now renormalized to

Me = M

(
1 − 2ḡ2

E

M

)
(24)

and β is replaced by the junction-cavity interaction strength
(i.e., β → ḡ2

E). The renormalized mass Me accounts for the
effects of the uniform E field in the cavity. The bare fluxon
potential Vs(q) is given by

Vs(q) = −2πf q − 2ε

cosh2 q
. (25)

Here the bias current density f = fc − δf is measured in terms
of the deviation δf from the critical value fc = 4ε/(3

√
3π ).

The potential Vs(q) may be approximated by a quadratic-cubic
potential as shown schematically in Fig. 2. The cavity kernel
K(τ − τ ′) of Eq. (22) describing the nonlocal effect due to the
junction-cavity interaction simplifies to

K(τ − τ ′) = ω3
r

2
e−ωr |τ−τ ′| (26)

in the T = 0 limit.

FIG. 2. The fluxon potential Vs due to both the bias current density
and the microresistor in a single LJJ is schematically illustrated.
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The action Ss
eff[q] of Eq. (23) indicates that the resonant

cavity yields (i) fluxon mass renormalization and (ii) nonlocal
effects. The mass renormalization modifies the oscillation
frequency about the metastable point, as shown in Fig. 2.
This change may be easily seen by computing the oscillation
frequency ωe at the metastable state (i.e., local minimum) as

ωe =
[

1

Me

d2V̄s(0)

dx2

]1/2

≈ ωo

(
1 + ḡ2

E

M

)
, (27)

where ωo is the oscillation frequency at the metastable point in
the absence of the resonant cavity. The nonlocal contribution
due to junction-cavity interaction is similar to that for the
dissipative system, but to determine the size of this contribution
more calculation is needed.

To estimate the size of these two contributions from the
junction-cavity interaction, we compute the MQT rate29,34

given by

cav(0) = Acav(0)e−Bcav(0) (28)

at T = 0. Here, the prefactor Acav(0) is given by

Acav(0) =
√

60ωe

(Bo,cav

2π

)1/2

(29)

and the bounce exponent Bcav(0) = Bo,cav + δBcav includes
both the local contribution Bo,cav of

Bo,cav =
∫ ∞

−∞
dτ

[
Me

2
q̇2 + Vs(q)

]
(30)

and the nonlocal contribution δBcav of

δBcav = ḡ2
E

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′K(τ − τ ′)[q(τ ) − q(τ ′)]2. (31)

These two contributions, Bo,cav and δBcav, to Bcav(0) are
evaluated explicitly to estimate their size.

The local contribution Bo,cav may be computed easily by
approximating Vs(q) of Eq. (25) as a usual quadratic-plus-
cubic potential of

V̄s(x) = Vs(q) − Vs(qo) ≈ 27Vo

4
(x̄2 − x̄3), (32)

where x̄ = x/xo, x = q − qo, and Vo = [8π3δ3
f /(

√
3ε)]1/2 is

the barrier potential for the fluxon. Here qo is the position of
the metastable point and xo = 9

√
3Meω

2
e/32ε is the escape

point as shown in Fig. 2. The evaluation of Bo,cav yields

Bo,cav = 2
∫ xo

o

dx[2MeV̄s(x)]1/2 = 36Vo

5ωe

. (33)

Using this result, we estimate the local contribution to
enhancement of the tunneling rate due to the resonant cavity.
The ratio of the MQT rates, cav(0)/(0), is given by

cav(0)

(0)
≈ 1 + ḡ2

E

2M

(
1 + 72

5

Vo

ωo

)
, (34)

where (0) is the tunneling rate in the absence of the
resonant cavity (i.e., ḡ2

E = 0). Equation (34) indicates that
the tunneling rate increases with increasing junction-cavity
interaction strength ḡ2

E . In Fig. 3, we plot the numerically
computed ratio cav(0)/(0) as a function of ḡ2

E to illustrate
its enhancement in the weak-coupling regime (i.e., ḡ2

E � 1).

FIG. 3. The ratio of the tunneling rates cav(0)/(0) is plotted as
a function of the junction-cavity coupling strength ḡ2

E to illustrate the
size of enhancement.

The curve indicates that enhancement of cav(0)/(0) is less
than 1%.

The nonlocal contribution δBcav to Bcav(0) of Eq. (28)
reduces the tunneling rate cav(0). The size of this reduction
is estimated by evaluating δBcav of Eq. (31) by writing

δBcav = ḡ2
Eω3

r x
2
o

ω2
e

∫ ∞

−∞
dτ̄dτ̄ ′e− 2ωr

ωe
|τ̄ − τ̄ ′|[x̄(τ̄ ) − x̄(τ̄ ′)]2, (35)

where x̄(τ ) = sech2(ωeτ/2). We note that x̄(τ ) is the solution
to the equation of motion for the quadratic-plus-cubic potential
in the absence of the nonlocal effect. We evaluate Eq. (35) and
obtain

δBcav = 2ḡ2
E

(
9
√

3Me

16ε

)2
ω5

r

sinh2(πωr/ωe)
. (36)

The result for δBcav indicates that the nonlocal contribution
increases almost linearly with ḡ2

E in the weak-coupling regime
and has a strong dependence on the frequency ωr of the cavity
mode. At low cavity frequencies (ωr � 1), the nonlocal contri-
bution varies as δBcav ∝ ω3

r . At high cavity frequencies (ωr �
1), on the other hand, it varies as δBcav ∝ ω5

r exp(−2πωr/ωe).
To illustrate the cavity frequency dependence, we plot δBcav as
a function of ωr for ḡ2

E = 0.02 (solid line), 0.04 (dashed line),
and 0.06 (dot-dashed line) in Fig. 4. The curves indicate that

FIG. 4. The nonlocal contribution δBcav to the bounce exponent
Bcav(0) is plotted as a function of ωr for ḡ2

E = 0.02 (solid line), 0.04
(dashed line), and 0.06 (dot-dashed line).
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δBcav vanishes both in the low and high cavity frequency ωr

limits. Hence, the nonlocal effect on the tunneling rate cav(0)
is negligible near these limits.

IV. MACROSCOPIC QUANTUM TUNNELING IN
COUPLED JUNCTIONS

In this section, we estimate the effects of a resonant
cavity on the tunneling rate of the phase-locked fluxons from
the metastable state in two coupled LJJ’s. Here the fluxons
are trapped by the microresistor on each insulator (I) layer,
shown schematically in Fig. 5. Earlier studies25 indicate that
uncorrelated one-fluxon tunneling is the dominant process
in the absence of a resonant cavity. However, phase-locking
between the fluxons in two LJJ’s becomes enhanced in the
resonant cavity. This enhancement may be seen more easily
from the effective action Seff[q] for the two coupled LJJ’s
of Eqs. (19) and (21) written in the rotated coordinates
(q+,q−) as

Seff[q] =
∫

dτ

[
Me

2
q̇2

+ + M

2
q̇2

− + V (q) + ḡ2
Eω2

r

1 − S2
q2

+

]

− 2ḡ2
E

1 − S2

∫
dτdτ ′K(τ − τ ′)q+(τ )q+(τ ′), (37)

where q± = (q1 ± q2)/
√

2. The action Seff[q] indicates that
the potential for the in-phase mode, (q+,0), is renormalized by
the junction-cavity interaction while the out-of-phase mode,
(0,q−), is not. Also, the nonlocal contribution appears only
for the motion in the q+ direction. The bare fluxon potential
V (q) = V (q+,q−) of

V (q+,q−) = −2
√

2πf q+ − 8
√

2Sq−
sinh

√
2q−

−2ε

⎡
⎣ 1

cosh2
(

q++q−√
2

) + 1

cosh2
(

q+−q−√
2

)
⎤
⎦ (38)

for f1 = f2 = f and ε1 = ε2 = ε indicates that the one-
dimensional potential along the (q+,0) direction [i.e., V (q+,0)]

FIG. 5. Two LJJ’s with a vertical column of two microresistors is
shown schematically. Lx and Ly denote the dimensions in the x and
y directions, respectively. J B denotes the bias current density. The
filled circles represent the microresistors.

− 2

0

2

q+

− 2

0

2

q−

− 2

− 1

0

1

V(q)

FIG. 6. (Color online) The potential VQ(q+,q−) surface is plotted
for ε = 0.269 andS = −0.05. The filled circle represents the position
of the metastable state. The dashed and solid lines denote the
most probable escape paths (MPEP’s) for one-fluxon and two-fluxon
tunneling, respectively.

corresponding to the in-phase mode becomes identical to
Vs(q) of Eq. (25) under the transformation of 2f → f ,
2ε → ε, and q+/

√
2 → q. This similarity reflects that the

phase-locked fluxons moving in the (q+,0) direction (i.e., q1 =
q2) behave as a single fluxon. However, the one-dimensional
potential for the out-of-phase mode [i.e., V (0,q−) or along
the (0,q−) direction] behaves as a potential well near the
metastable point qo = (qo

+,qo
−), determined from the condition

[∂V (q)/∂q+]q− = [∂V (q)/∂q−]q+ = 0.
To illustrate these phase-locking modes, we plot the

potential V (q+,q−) in Fig. 6 for f = 0.06, ε = 0.269, and
S = −0.05. Here, the values for ε and S are chosen so that
when a vertical stack35 of two interacting JVQ’s is fabricated
using coupled LJJ’s and microresistors, only one quantum
state is bound on each side of the double-well potential.
The metastable point qo is denoted by the solid circle. The
solid lines indicate that the potential is metastable for the
in-phase mode [i.e., along the (q+,0) direction], but it behaves
as a well for the out-of-phase mode [i.e., along the (0,q−)
direction]. These curves show that tunneling of the in-phase
mode from the metastable state is more favorable than that for
the out-of-phase mode.

The tunneling rate cav(0) from qo can be estimated by
summing over the contribution from all paths of escape, but
the dominant contribution comes from the MPEP in which Seff

is the minimum.36 For the physical parameters chosen in Fig. 6,
the MPEP’s correspond to one-fluxon tunneling, indicated by
the dashed lines. The MPEP’s are determined by the two com-
peting energies: (i) the pinning energy (Epin = |Epin|) and (ii)
the magnetic induction interaction energy (Eint = |Eint|). When
Eint � Epin, the fluxons are not pinned at the microresistor sites
but maintain a large separation distance.32 However, when
Eint � Epin, the one-fluxon tunneling processes are favored
over the two-fluxon tunneling processes.

We now estimate the two-fluxon tunneling rate for the
in-phase mode. We simplify the calculation by using the
similarity between the tunneling of the in-phase mode and
the one-fluxon tunneling process discussed in Sec. III. When
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the bias current f is less than the critical value fc [i.e.,
f = fc − δf with 0 < δf � fc = 4ε/(3

√
3π )], the potential

along the path (q+,0) has the metastable state, as illustrated
in Fig. 2. The potential V (q+,0) may be approximated as the
quadratic-plus-cubic form of

V (q̄+,0) ≈ 27V t
o

4
(q̄2

+ − q̄3
+), (39)

where q̄+ = (q+ − qo
+)/qe

+, qe
+ is the escape point, and V t

o =
2[d2V (qo

+,0)/dq2
+]3/3[d3V (qo

+,0)/dq3
+]2 denotes the poten-

tial barrier height for two-fluxon tunneling. We note that
qe

+ is similar to xo in Fig. 2. Also, similar to the single
LJJ, the semiclassically estimated two-fluxon tunneling rate
of t

cav(0) = At
cav exp[Bt

cav(0)] at T = 0 depends on both the
barrier height and oscillation frequency. The factor At

cav(0)
and bounce exponent Bt

cav(0) are calculated in the same way
as in Sec. III. The factor At

cav(0) is given by

At
cav(0) ≈

√
60ωe

(Bt
o,cav

2π

)1/2

. (40)

The local and nonlocal contributions to the bounce exponents
Bt

cav(0) = Bt
o,cav + δBt

cav are given by

Bt
o,cav = 2

∫ qe
+−qo

+

0
dq+

√
2MeV (q+,0) ≈ 36V t

o

5ωe

(41)

and

δBt
cav ≈ 2ḡ2

E

1 − S2

(
9
√

3Me

16ε

)2
ω5

r

sinh2(πωr/ωe)
, (42)

respectively. The result indicates that the two-fluxon tunneling
rate t

cav(0) in the cavity is enhanced from that t (0) in its
absence. Neglecting the nonlocal contribution, we may write
the ratio t

cav(0)/t (0) as

t
cav(0)

t (0)
≈ 1 + ḡ2

E

2M(1 − S2)

(
1 + 72

5

V t
o

ωo

)
. (43)

This enhancement is similar to the tunneling process discussed
in Sec. III. The estimated value of t (0) for the Nb-Al2Ox-Nb-
Al2Ox-Nb junction is 8.5 × 109 s−1. This value is obtained
by using the experimental value14,16 of Jc ∼ 2 × 106A/m2,
λL ∼ 90 nm, λJ ∼ 25 μm, and ωp ∼ 90 GHz. Also, we chose
Ly ∼ 0.2 μm to enhance the quantum effect and used the
experimentally accessible values23 of ε = 0.269, S = −0.05,
and δf ∼ 5×10−4. On the other hand, the potential V (q+,q−)
along the (q+,0) direction indicates that the two-fluxon
tunneling rate t

cav(0) is suppressed from the one-fluxon
tunneling rate o

cav(0) along either the q+ = q− or q+ = −q−
direction. This reduction in the tunneling rate is given by

t
cav(0)

o
cav(0)

≈ αo

√
V t

o

V o
o

e− 36(V t
o−α2

oV o
o )

5ωo

×
[

1 + 36ḡ2
E

(
V t

o − α2
oV

o
o

)
5ωoM(1 − S2)

]
, (44)

where αo = {[d2V (qo
+,0)/dq2]/[d2V (qo,0)/dq2]}1/4 is

a constant of order unity, V o
o = 2[d2V (qo,0)/dq2]3/

3[d3V (qo,0)/dq3]2 is the one-fluxon tunneling potential
barrier height, V (q,0) is the fluxon potential of Eq. (21)

along the q+ = q− direction, and qo denotes the position
of the metastable point for one-fluxon tunneling, given
by the condition that dV (qo,0)/dq = 0. The ratio
t

cav(0)/o
cav(0) � 1 for the potential surface in Fig. 6

reflects that V t
o � V o

o .

V. JOSEPHSON VORTEX QUBIT IN A RESONANT CAVITY

We now examine the effects of a high-Qc resonant cavity
on JVQ. The JVQ may be fabricated by using two closely
implanted microresistors in the insulator layer of the linear
LJJ, as shown in Fig. 7. As earlier studies2–4 indicate, MQT of
a fluxon between the spatially separated minima of a double-
well potential leads to splitting of the degenerate ground-state
energy.37,38 In this section, we estimate the effects of junction-
cavity interaction on this energy splitting.

The interaction between the LJJ and the resonant cavity
yields (i) a fluxon potential renormalization and (ii) a nonlocal
contribution to the action. The effects of these contributions
on the energy splitting may be estimated by starting with the
action S

Q
eff for the JVQ given by

S
Q
eff[q] =

∫
dτ

[
Me

2
q̇2 + VQ(q)

]

− 2ḡ2
E

∫
dτdτ ′K(τ − τ ′)q(τ )q(τ ′). (45)

Without loss of generality, we obtain the potential function
VQ(q) from the double-well potential V (q) of

V (q) = ḡ2
Eω2

r q
2 − 2ε

cosh2
(
q − �

2

) − 2ε

cosh2
(
q + �

2

) , (46)

where � denotes the separation distance between the two
microresistors. Here, we have added a constant energy EQ term
to V (q) [i.e., VQ(q) = V (q) + EQ] so that VQ(q) vanishes
at the potential minima. Here, the potential VQ(q) may be
characterized by the position of the two minima and the
potential barrier height. In the discussion later, we do not make

FIG. 7. A LJJ with two microresistors, representing a Josephson
vortex qubit, in a resonant cavity is shown schematically. The
separation distance between the microresistors is denoted by �.
The filled circles and dashed box represent the microresistors and
the resonant cavity, respectively.
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FIG. 8. A schematic diagram of a double-well potential VQ(q)
due to the two microresistors in the insulator layer of the LJJ is shown
to illustrate the renormalization of VQ(q). The solid and dashed lines
represent the potential VQ(q) in the absence and in the presence of
the resonant cavity, respectively.

the usual substitution of q(τ )q(τ ′) = [q2(τ ) + q2(τ ′)]/2 −
[q(τ ) − q(τ ′)]2/2 used in Sec. III. This approach allows us
to elucidate the origin of the changes in the energy splitting
due to the junction-cavity interaction.

In the absence of the resonant cavity (i.e., ḡ2
E = 0), the

double-well structure for VQ(q) with the separation distance
� > �o ≈ 1.317 is shown schematically in Fig. 8 as the solid
line. The two potential minima are located at q = ±qo/2,
where qo is determined from

cosh qo = sinh2 � − 1

cosh �
. (47)

The energy shift EQ, representing a constant of motion, is
given by

EQ = −2ε
cosh2 �

cosh2 � − 1
. (48)

Also, the potential barrier height Vo between the two minima
(i.e., q = ±qo/2) is given by

Vo = 2ε

(
cosh � − 2

sinh �

)2

. (49)

We note that these quantities change in the resonant cavity, as
shown schematically by the dashed line in Fig. 8.

In the resonant cavity (i.e., ḡ2
E �= 0), on the other hand,

the JVQ potential VQ(q) acquires an additional ḡ2
Eω2

r q
2 term

in Eq. (46). This term arises from the coupling between
the oscillator coordinate qr and the center coordinate q in
the coupling Lagrangian Lcoup of Eq. (15) and accounts for
potential renormalization. The main renormalization effects
are the following: (i) the barrier potential height is reduced, (ii)
the positions of the potential minima become closer together,
and (iii) the oscillation frequency at the potential minima is
modified. These effects become amplified with increasing
junction-cavity interaction strength (ḡ2

E) and resonant fre-
quency (ωr ).

The effects of the junction-cavity interaction on the poten-
tial barrier height Vo,cav may be estimated straightforwardly.
In Fig. 9, we plot the numerically computed ratio Vo,cav/Vo as
a function of ḡ2

E to illustrate the dependence on the junction-
cavity interaction. The curves for ωr = 0.50 (dot-dashed line),
0.70 (dashed line), and 0.90 (solid line) indicate that the barrier

FIG. 9. The ratio of the potential barrier height Vo,cav/Vo is plotted
as a function of the junction-cavity coupling strength ḡ2

E for ωr = 0.50
(dot-dashed line), 0.70 (dashed line), and 0.90 (solid line) to illustrate
the suppression in the cavity.

potential height decreases with increasing ḡ2
E and ωr . Also,

the curves indicate that the ratio decreases linearly in the
weak-coupling regime. To leading order in ḡ2

E , the potential
barrier height Vo,cav estimated from the renormalized potential
V (q) of Eq. (46) is given by

Vo,cav
∼= Vo − ḡ2

Eω2
r q

2
o . (50)

This decrease in the potential barrier height leads to the
increase in the ground-state energy splitting.

Another important effect of the resonant cavity is the shift
δo in the positions of the potential minima. As the potential
barrier height is reduced, the positions of the potential minima
are closer together. The shift δo from the initial position of
q = ±qo/2 is given by

δo = ḡ2
Eqoω

2
r

ε

cosh2 � tanh2 �

cosh 2� − 7
. (51)

Here, we obtained δo by imposing the condition
[dV (q)/dq|q=(qo/2)± = 0, where (qo/2)± = ±[(qo/2) − δo]
denotes the new potential minima. This shift δo modifies
the constant of motion EQ. The new value for EQ may be
obtained from the condition [dq(τ )/dτ ](qo/2)± = 0, noting that
the fluxon is initially located at the bottom of either side of
the double-well potential so that VQ[(qo/2)±] = 0. We plot the
numerically computed shift δo as a function of ḡ2

E in Fig. 10 for
ωr = 0.50 (dot-dashed line), 0.70 (dashed line), and 0.90 (solid
line) to illustrate the amount of this shift in the weak-coupling
regime. The curves indicate that δo increases with ḡ2

E and with
ωr , reflecting potential renormalization.

The resonant cavity also modifies the oscillation frequency
ωe at the potential minima. The modified frequency ωe is given
by

ωe ≈ ωo

{
1 + ḡ2

E

M

[
1 + ω2

r

ω2
o

(1 − ϒ)

]}
, (52)

where ωo is the frequency in the absence of the resonant cavity
and ϒ = 6qo sinh 2qo tanh �/ε(cosh2 � − 4) sinh2 �.

We now combine these effects and estimate the ground-
state energy splitting37 �cav by using the action S

Q
eff[q] of

Eq. (45) and by using the standard method of summing
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FIG. 10. The shift δo in the positions of the potential minima is
plotted as a function of the junction-cavity coupling strength ḡ2

E for
ωr = 0.50 (dot-dashed line), 0.70 (dashed line), and 0.90 (solid line).

over the “instanton” trajectories.39 By following Weiss and
co-workers,40 we compute the one-bounce contribution to the
partition function Zfluxon, assuming that the fluxon is initially
pinned at one of the potential minima. We write the partition
function as

Zfluxon =
∞∑
i=0

Zi , (53)

where Zi denotes the i-bounce contribution. Here the bounce
is an instanton–anti-instanton pair. To estimate �cav, we
compute both the saddle-point (Z0) and the one-bounce (Z1)
contribution to Zfluxon by noting that Z1 may be expressed as

Z1 = Z0

2π

(
�cavθ

2

)2

, (54)

where θ = 1/T . For the contribution Z0, we assume that the
fluxon is initially confined at q = (qo/2)− and obtain

Z0 = N

( ∞∏
n=0

λo
n

)−1/2

, (55)

where the eigenvalues λo
n are determined from[

−Me∂
2
τ + V

′′
Q

(
−qo

2
+ δ

)]
qo

n(τ )

+ 4πḡ2
E

∫ θ/2

−θ/2
K(τ − τ ′)qo

n(τ ′) = λo
nq

o
n(τ ). (56)

Here ∂2
τ = ∂2/∂τ 2, V

′′
Q(q) = ∂2VQ(q)/∂q2, and the cavity

kernel K(τ − τ ′) = (ω3
r /2) exp[−ωr |τ − τ ′|] accounts for the

nonlocal effect.
For the one-bounce contribution Z1 to Zfluxon, we separate

the center coordinate q(τ ) into two parts as

q(τ ) = q̄(τ ) +
∞∑

n=0

cnqn(τ ), (57)

where q̄(τ ) describes a bouncelike trajectory and the remaining
terms describe the arbitrary paths about this bouncelike

trajectory. This separation of q(τ ) may be used to write the
action S

Q
eff[q] as

S
Q
eff[q(τ )] = Scav

B,1[q̄(τ )] +
∞∑

n=0

1

2
λnc

2
n. (58)

Here Scav
B,1 accounts for the one-bounce-like trajectory in the

resonant cavity. We choose qn(τ ) of Eq. (57) so that the
eigenfunctions of the second variational derivative of S

Q
eff[q]

at q̄ and the eigenvalues λn are determined from[
−Me∂

2
τ + V

′′
Q(q̄)

]
qn(τ )

+ 4πḡ2
E

∫ θ/2

−θ/2
K(τ − τ ′)qn(τ ′) = λnqn(τ ). (59)

We note that the first two eigenvalues, λ0 and λ1, need to be
separated from the rest because λ0 � 0 and λ1 = 0 while the
other eigenvalues are positive. The one-bounce contribution
(Z1) may be expressed as

Z1 = N

∫ ∞∏
n=0

dcn√
2π

e−(Scav
B,1+ 1

2

∑∞
n=0 λnc

2
n), (60)

where N is a normalization constant. With the separation of
the first two eigenvalues (i.e., λ0 � 0 and λ1 = 0) from the
others, we write the one-bounce contribution to the partition
function as

Z1 ≈ Z0θ

2π

[∫ θ

0
dτ1e

−Scav
B,1(τ1)

] [∏∞
n=0 λo

n∏∞
n=2 λn

]1/2

×
[∫ θ/2

−θ/2
dτ

(
dq̄

dτ1

)2
]1/2 [∫ θ/2

−θ/2
dτ ′

(
dq̄

dτ ′

)2
]1/2

.

(61)

We now need to evaluateZ1 of Eq. (61) to estimate �cav. Using
Eq. (54), we write the ground-state energy splitting �cav as

�cav = 2ωe√
π

(
RcavLcave

−Scav
B,1

)1/2
, (62)

where the dimensionless factors Rcav and Lcav are

Rcav = 1

Meω2
e

(∏∞
n=0 λo

n∏∞
n=2 λn

)1/2

(63)

and

Lcav = Me

2

[∫
dτ

(
dq̄

dτ1

)2
]1/2 [∫

dτ ′
(

dq̄

dτ ′

)2
]1/2

, (64)

respectively. The exponent Scav
B,1 is given by

Scav
B,1 =

∫ θ/2

−θ/2
dτ

[
Me

2

(
dq(τ )

dτ

)2

+ VQ(q)

]
. (65)

This exponent accounts for the contribution from the two
transversal of the potential barrier. We note that the exponent
Scav

B,1 of Eq. (65) does not contain the nonlocal contribution,
as in Eq. (28), because this contribution is already included in
the calculation of Z1 [see Eq. (60)]. We now compute Rcav,
Lcav, and Scav

B,1, separately, to determine the ground-state energy
splitting �cav. To focus on the effects due to the junction-cavity
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FIG. 11. The numerically computed ratio of the dimensionless
factor Rcav/R is plotted as a function of the junction-cavity coupling
strength ḡ2

E for ωr = 0.60 (dot-dashed line), 0.75 (dashed line), and
0.90 (solid line).

interaction, we present the details of the calculation for Rcav

and Lcav in Appendixes A and B, respectively, and discuss the
dependence of these factors on the junction-cavity coupling
strength ḡ2

E .
The dimensionless factor Rcav in the weak-coupling regime

is given by

Rcav
∼= 2 + πḡ2

Eω2
r

2Mω2
o

XR

(ωr + ωo)3
, (66)

where XR = ω3
r + 15ω2

r ωo + 12ωrω
2
o − 2ω3

o. Equation (66)
yields the value Rcav = 2 in the absence of a resonant cavity
(i.e., ḡ2

E = 0).38 In Fig. 11, we plot the numerically computed
ratio Rcav/R as a function of ḡ2

E for ωr = 0.60 (dot-dashed
line), 0.75 (dashed line), and 0.90 (solid line) to illustrate
enhancement of R due to the resonant cavity. The curves
indicate that Rcav/R increases from 1 almost linearly with
increasing ḡ2

E and ωr .
For the dimensionless factor Lcav, we evaluate the integral

of Eq. (64) by expanding the function Q(τ ), which accounts
for the nonlocal contribution to the bouncelike trajectory as a
power series. (See Appendix B.) In the weak-coupling regime
(i.e., ḡ2

E � 1), we obtain

Lcav ≈ VM

[
Ao + ḡ2

E

(
B0 + B2q

2
o + B4q

4
o

)]
, (67)

by retaining the leading-order contribution (in ḡ2
E). HereVM =

qo

√
2MVo, Ao = 1 − q2

o (2εb1/3Vo) − q4
o (4εb2/15Vo), B0 =

−(ε + 8b3ω
2
r )/8ε, B2 = [b1ε + 2(6b1b3 − 1)ω2

r + 2πd1ω
3
r ]/

6Vo, and B4 = (b2ε + 20b2b3ω
2
r + 3πd3ω

3
r )/15Vo. The

frequency-independent constants bi are b1 = (cosh � −
2)sech4(�/2), b2 = (cosh 2� − 26 cosh � + 33)/(cosh � + 1)3,
and b3 = (sinh � tanh �)2/(cosh 2� − 7). Equation (67) indi-
cates that Lcav in the resonant cavity is larger than L = VMAo

in its absence. However, due to the functional form of Lcav,
the enhancement of Lcav from L deviates from the linear
dependence on ḡ2

E at a smaller value than that for Rcav. To
illustrate this deviation, we numerically compute Lcav and plot
the ratio Lcav/L in Fig. 12 as a function of ḡ2

E for ωr = 0.60
(dot-dashed line), 0.75 (dashed line), and 0.90 (solid line).
The curves show nonlinear enhancement of the dimensionless

FIG. 12. The numerically computed ratio of Lcav/L is plotted as
a function of the junction-cavity coupling strength ḡ2

E for ωr = 0.60
(dot-dashed line), 0.75 (dashed line), and 0.90 (solid line) to illustrate
the enhancement.

factor Lcav for much smaller values of ḡ2
E than that for Rcav

shown in Fig. 11.
Finally, we estimate the effects of the junction-cavity

interaction on Scav
B,1. The action Scav

B,1 of Eq. (65) for the
bouncelike trajectory is given by

Scav
B,1 = 2

∫ (qo/2)+

(qo/2)−
dq

√
2MeVQ(q). (68)

The integral of Eq. (68) is evaluated in the same way as that
for Lcav (see Appendix B). Again, we simplify the calculation
by writing VQ as a power series in q and then expand

√
VQ(q)

in powers of ḡ2
E as

√
VQ ≈ VM√

2Meqo

{
1 − 2εq2

Vo

(
b1 + 4b2

3
q2 + · · ·

)

− ḡ2
E

[
1

8
+ ω2

r q
2
o

2Vo

− εq2

2Vo

(
b̄1 + 2

3
b2q

2

)]}
, (69)

where b̄1 = b1 + (ω2
r /ε). Using this series expansion for

√
VQ,

we evaluate Eq. (68) and obtain Scav
B,1 to the leading order in

ḡ2
E as

Scav
B,1 ≈ 4VM

[
Ao + ḡ2

E

(
B0 + B̄2q

2
o + B̄4q

4
o

)]
, (70)

where B̄2 = B2 − (πd1ω
3
r /3Vo) and B̄4 = B4 −

(3πd3ω
3
r /15Vo). The action Scav

B,1 in the presence of the
cavity is reduced from that in its absence (i.e., Scav

B,1 < SB,1).
To illustrate this suppression of the ratio, we plot the
numerically computed ratio Scav

B,1/SB,1 as a function of ḡ2
E

for ωr = 0.60 (dot-dashed line), 0.75 (dashed line), and
0.90 (solid line) in Fig. 13. The curves indicate that in the
one-bounce contribution, the action decreases almost linearly
with ḡ2

E in the weak-coupling region as indicated by Eq. (70).
This reduction reflects that the potential barrier height is
reduced (see Fig. 9) and the potential minima become
closer together (see Fig. 10) with increasing junction-cavity
interaction strength.

We now combine the effects of the resonant cavity on Rcav,
Lcav, and SB,1 together and estimate the enhancement of the
ground-state energy splitting �cav from �. Here, � denotes
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FIG. 13. The numerically computed ratio of the action Scav
B,1/SB,1

is plotted as a function of ḡ2
E for ωr = 0.60 (dot-dashed line), 0.75

(dashed line), and 0.90 (solid line) to illustrate that the one-bounce-
like action is reduced.

the energy splitting in the absence of a resonant cavity given
by

� = 2A
(

So

2π

)1/2

e−So , (71)

where A = [�∞
n=0λ

o
n/�∞

n=1λn]1/2 and So denotes the action
integral. In the weak-coupling regime, the ratio �cav/� to the
leading order in ḡ2

E is given by

�cav

�
≈ 1 + ḡ2

E

M

{
1 + ω2

r

ω2
o

[
1 − ϒ + πXR

8(ωr + ωo)3

]

+ M

2Ao

(
B0 + B2q

2
o + B4q

4
o

)
− 2MVM

(
B0 + B̄2q

2
o + B̄4q

4
o

) }
. (72)

The result indicates that �cav is enhanced with increasing
ḡ2

E and ωr . To illustrate this enhancement, we numerically
compute and plot �cav/� as a function of ḡ2

E for ωr = 0.60
(dot-dashed line), 0.75 (dashed line), and 0.90 (solid line)
in Fig. 14. The curves show that �cav/� increases roughly

FIG. 14. The numerically computed ratio of �cav/� is plotted as
a function of the junction-cavity coupling strength ḡ2

E for ωr = 0.60
(dot-dashed line), 0.75 (dashed line), and 0.90 (solid line) to illustrate
the enhancement in a resonant cavity.

linearly with ḡ2
E from ḡ2

E = 0 to 0.02. However, the deviation
from this linear behavior becomes noticeable for ḡ2

E � 0.02.
Also, �cav/� increases significantly from 1 at ḡ2

E = 0 in
the weak-coupling regime. We note that the corresponding
changes in the ratio Rcav/R, Lcav/L, and Scav

B,1/SB,1 over the
same range of ḡ2

E are less significant. For instance, �cav/� for
ωr = 0.90 increases from 1.0 to 1.45 for the increase of ḡ2

E

from 0.0 to 0.015. Over the same range of ḡ2
E , Rcav/R, Lcav/L,

and Scav
B,1/SB,1 change from 1.0 to 1.05, from 1.0 to 1.29, and

from 1.0 to 0.96, respectively. The notable increase in �cav/�

compared to Rcav/R, Lcav/L, and Scav
B,1/SB,1 reflects that � is

small.3 Hence, �cav depends sensitively on the variation of the
exponent Scav

B,1.

VI. SUMMARY AND CONCLUSION

In summary, we investigated the effects of a high-Qc

resonant cavity on MQT of fluxons from a metastable state
in a single LJJ and in a stack of two coupled LJJ’s. Also,
we estimated the ground-state energy splitting for fluxons
in a double-well potential. We find that both the tunneling
rate and the ground-state energy splitting are increased in the
resonant cavity. However, the amount of these increases is
significantly different. For MQT of the fluxon, the tunneling
rate increases due to the renormalization of fluxon mass,
but is negligible in the weak-coupling regime. On the other
hand, the increase in the ground-state energy splitting is due
to potential renormalization, but this increase can become
significant with increasing ḡ2

E , as shown in Fig. 14. This
energy splitting enhancement is consistent with the result of
an increase in the energy separation due to the interaction
between a two-level system and a quantized radiation field,
described by the Jaynes-Cummings (JC) model.27 Moreover,
the consistency41 between the result of the present work and
that of the JC model indicates that the effective Hamiltonian
for the JVQ-cavity system may be similar to the JC model.

The effects due to (i) interaction between the JVQ and a
dissipative environment and (ii) the losses resulting from a low-
Q cavity are neglected in the present work. These dissipative
effects are expected to be present in real systems and may
be accounted for by using an effective spectral density that
characterizes the form of dissipation.42 Inclusion of both the
dissipative environment and cavity losses may reduce the size
of the increase in the ground-state energy splitting and may
lead to a decrease in the energy splitting when the dissipative
effects become strong, as indicated by an analysis of dissipative
two-state systems.30 However, these dissipation contributions
do not reverse the effects due to the potential renormalization
completely in weakly dissipative systems.

Enhancement of the ground-state energy splitting due
to the junction-cavity interaction may have an important
consequence for the decoherence time of JVQ in the resonant
cavity. Earlier study3 of the JVQ decoherence time by
Kim, Dhungana, and Park indicates that the increase in the
decoherence time in a noisy environment (i.e., T noise

φ ) is
correlated with the increasing ground-state energy splitting
�. This suggests that, as � may be tuned by adjusting the
strength of the junction-cavity interaction, the resonant cavity
may be used to control the property of the JVQ. For instance,
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the decoherence time T noise
φ may be increased by increasing

the strength of the interaction between the fluxon and the
cavity EM mode. Also, due to the similarities between a
cavity EM mode and an optical phonon mode, the interaction
between fluxons and optical phonons in the LJJ may affect the
decoherence time.

Another important property of JVQ’s is entanglement
between the qubits. As our result suggests that the decoherence
time for the JVQ can be increased by increasing the strength
of the junction-cavity interaction, the resonant cavity may
also be useful for tuning the level of entanglement between
the JVQ’s. Our study suggests that the present approach for
JVQ’s is similar to the microwave cavity approach used for
the other superconductor qubits.43 The effective Hamiltonian
for the multiple JVQ’s in a resonant cavity may resemble the
Tavis-Cummings model,44 which is the extension of the JC
model to the case of multiple qubits. This similarity may be
exploited by using the resonant cavity to control the level of
concurrence45 for JVQ’s since the junction-cavity interaction
may also promote entanglement. Hence, the effects of a
resonant cavity on entanglement between the interacting JVQ’s
would be an interesting area for further study.
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APPENDIX A: CALCULATION OF Rcav

For convenience, the dimensionless factor Rcav of Eq. (63)
is estimated in the continuum limit. In this limit, we may write
Rcav as

Rcav = exp

{
1

π

∫ ∞

Meω2
e

dλ

λ
[δ+(λ) + δ−(λ)]

}
, (A1)

where δ±(λ) denotes the phase shift due to the scattering
potential U . This phase shift may be expressed as

δ±(λ) = cot−1

[
U−1 − g′

λ(0) ∓ g′
λ(τs)

g′′
λ(0) ± g′′

λ(τs)

]
, (A2)

where τs = −θ/2, and g′
λ(τ ) and g′′

λ(τ ) denote the real and
imaginary part of the Green’s function [i.e., gλ(τ ) = g′

λ(τ ) +
ig′′

λ(τ )]. The phase shift δ±(λ) due to the scattering from the
net potential difference of

V ′′
Q(q̄) − V ′′

Q[(qo/2)−] = −U
[
δ
(
τ + τs

2

)
+ δ

(
τ − τs

2

)]
(A3)

consists of two Dirac δ functions at τ = ±τs/2. The strength
of the scattering potential U is given by

U−1 = g0(0) − g0(τs), (A4)

where g0(τ ) is the Green’s function for the eigenvalue λ = 0.
The Green’s function gλ(τ ) is written as

gλ(τ ) =
∫ ∞

−∞

dω

2π

eiωτ

Me[ω2 + ζ (ω) + ω2
e ] − λ − iδ

. (A5)

Here the effects of the resonant cavity are accounted for via
Me, ωe, and ζ (ω). The function ζ (ω), obtained from the cavity
kernel K(τ ) of Eq. (26),

ζ (ω) = 4πḡ2
E

Me

ω4
r

ω2 + ω2
r

, (A6)

reflects that the resonant cavity supports a single mode with
frequency ωr . Using the function ζ (ω), we write the real part
of the Green’s function as g′

λ(τ ) = g′
λ,+(τ ) + g′

λ,−(τ ), where

g′
λ,±(τ ) = −1

4Meωλ,±

(
1 ± ω2

r + ω2
1,λ

2ω2
2,λ

)
sin ωλ,±τ, (A7)

ωλ,± = (ω2
1,λ ± ω2

2,λ)1/2, ω2
1,λ = [(λ/Me) − ω2

e − ω2
r ]/2, and

ω2
2,λ = {[(λ/Me) − ω2

e + ω2
r ]2 − (16πg2

E/Me)ω4
r }1/2. On the

other hand, we write the imaginary part of the Green’s function
as g′′

λ(τ ) = g′′
λ,+(τ ) + g′′

λ,−(τ ), where

g′′
λ,±(τ ) = 1

4Meωλ,±

(
1 ± �2 + ω2

1,λ

2ω2
2,λ

)
cos ωλ,±τ. (A8)

We note that the phase shift δ±(λ) has both slowly varying and
rapidly oscillating contributions. For an extended bounce (i.e.,
ωeτs � 1), the rapidly oscillating terms become negligible
compared to the nonoscillating terms.

The factor Rcav of Eq. (A1) may be simplified by using the
substitution λ = Meω

2
e (1 + p2), where p is a dimensionless

momentum variable. With this change of variable, we write
Rcav as

Rcav = exp

{
1

π

∫ ∞

0

pdp

1 + p2
[δ+(p) + δ−(p)]

}
. (A9)

The factor Rcav of Eq. (A9) may be further simplified
by neglecting the rapidly oscillating contributions in the
phase shift δ±(λ) of Eq. (A2). Neglecting these oscillatory
contributions, we approximate δ±(p) to a simpler form δ(p)
and write the factor Rcav as

Rcav = exp

{
2

π

∫ ∞

0

pdp

1 + p2
δ(p)

}
. (A10)

The simplified phase shift δ(p) is given by

δ(p) = cot−1

[
U−1 − g′

p(0)

g′′
p(0)

]
, (A11)

where the scattering potential strength U is given by

U−1 = 1

4Me

⎛
⎝ 1 − W0√

ω2
2,0 − ω2

1,0

+ 1 + W0√∣∣ω2
2,0 + ω2

1,0

∣∣
⎞
⎠ , (A12)

and W0 = (ω2
r + ω2

1,0)/ω2
2,0. We note that ω1,0 and ω2,0 are

obtained from ω1,λ and ω2,λ of Eq. (A7) for the eigenvalue
λ = 0, respectively. The real and imaginary part of the Green’s
function are given, respectively, by

g′
p(0) = 1

4Me

1 − Wp√
ω2

2,p − ω2
1,p

(A13)
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and

g′′
p(0) = 1

4Me

1 + Wp√
ω2

2,p + ω2
1,p

, (A14)

where Wp = (ω2
r + ω2

1,p)/ω2
2,p. We note that ω1,p and ω2,p

are obtained from ω1,λ and ω2,λ of Eq. (A7), respectively, by
setting λ = Meω

2
e (1 + p2).

We now compute Rcav to the leading order in ḡ2
E to account

for the effects of a resonant cavity in the weak-coupling
regime (i.e., ḡ2

E � 1). For this calculation, we write the
renormalized mass of the fluxon as Me = M − 2ḡ2

E and
express the oscillation frequency ωe as

ω2
e

∼= ω2
o

{
1 + 2ḡ2

E

M

[
1 + ω2

r

ω2
o

(1 − ϒ)

]}
. (A15)

Also we rewrite the strength of the potential U as

U−1 ∼= 1

2Mωo

− 2πḡ2
Eω3

r

M2
(
ω2

r − ω2
o

)2

(
1 − Xu

32πω3
r ω

3
o

)
, (A16)

where Xu = Mω2
o(ω2

o − ω2
r )2 − 8[ω2

r ϒ(ω2
o − ω2

r )2 + 2πω4
r

(ω2
r − 3ω2

o)]. By combining these expressions, we rewrite the
real and imaginary part of the Green’s function of Eqs. (A13)
and (A14), respectively, as

g′
p(0) ∼= − ḡ2

Eπω3
r

2M2
(
p2ω2

o + ω2
r

)2 (A17)

and

g′′
p(0) = 1

2Mpωo

[
1 + ḡ2

EXg

8Mp2ω2
o

(
p2ω2

o + ω2
r

)2

]
, (A18)

where Xg = 4ω2
r [πω2

r (3p2ω2
o + ω2

r ) − 2ϒp2(p2ω2
o + ω2

r )2] +
Mp2ω2

o(p2ω2
o + ω2

r )2. Now, we use Eqs. (A16)–(A18) and
rewrite the simplified phase shift δ(p) of Eq. (A11) as

δ(p) ∼= cot−1 p − ḡ2
Eπω3

r Xp

2Mp(1 + p2)Xω

, (A19)

where Xp = −(ω2
oω

3
r + 2ωoω

4
r + ω5

r ) + p2(2ω5
o + ω4

oωr −
4ω3

oω
2
r − 3ω2

oω
3
r − 8ωoω

4
r − 4ω5

r ) − p4(16ω3
oω

2
r + 8ω2

oω
3
r ) −

p6(8ω5
o + 4ω4

oωr ) and Xω = ω2
o(ωo + ωr )2(p2ω2

o + ω2
r )2.

Finally, we substitute δ(p) of Eq. (A19) into Rcav of Eq. (A10)
and evaluate the integral to obtain

Rcav
∼= 2 + πḡ2

Eω2
r

2Mω2
o

XR

(ωr + ωo)3
, (A20)

where XR = 5ω3
r + 15ω2

r ωo + 12ωrω
2
o − 2ω3

o. Equa-
tion (A20) yields Rcav = 2 in the absence of the resonant
cavity (i.e., ḡ2

E = 0) as expected.38

APPENDIX B: CALCULATION OF Lcav

The factor Lcav of Eq. (64) may be estimated by determining
the bouncelike trajectories q(τ ). The trajectories obey the

equation of motion given by

−Me

d2q(τ )

dτ 2
+ dVQ(q)

dq
+ 4πḡ2

E

∫
∞
−∞dτ ′K(τ − τ ′)q(τ ) = 0.

(B1)

We rewrite the equation of motion in a convenient form by
integrating Eq. (B1) by parts and obtain

−Me

2

(
dq

dτ

)2

+ VQ(q)

+ 4πḡ2
E

∫ ∞

−∞
dτ ′K(τ − τ ′)q(τ )q(τ ′) = 0. (B2)

Using this result, we write the factor Lcav as

Lcav ≈ Me

2

∫
dτ

(
dq

dτ

)2

=
∫ (qo/2)+

(qo/2)−
dq

√
VQ(q) + 2πḡ2

Eω2
r qQ(τ ), (B3)

where q = q(τ ) and

Q(τ ) =
∫ ∞

−∞
dτ ′e−ωr |τ−τ ′|q(τ ′). (B4)

Here, the nonlocal contribution due to the resonant cavity
is accounted for by Q(τ ). As discussed in Appendix C, the
function Q(τ ) is similar to q(τ ). By exploiting this similarity,
we expand Q(τ ) in a power series as

Q(τ ) =
∞∑

n=0

d2n+1q
2n+1(τ ), (B5)

where d2n+1 is the expansion coefficients (see Appendix C).
The power-series expansion for Q(τ ) allows us to evaluate
the factor Lcav straightforwardly. By using this power-series
expansion, we evaluate the integral of Eq. (B3) in the weak-
coupling regime (i.e., ḡ2

E � 1) and obtain the factor Lcav to
the leading order in ḡ2

E as

Lcav ≈ VM

[
Ao + ḡ2

E

(
B0 + B2q

2
o + B4q

4
o

)]
, (B6)

whereVM = qo

√
2MVo, Ao = 1 − q2

o (2εb1/3Vo) − q4
o (4εb2/

15Vo), B0 = −(ε + 8b3ω
2
r )/8ε, B2 = [b1ε + 2(6b1b3 − 1)ω2

r +
2πd1ω

3
r ]/6Vo, and B4 = (b2ε + 20b2b3ω

2
r + 3πd3ω

3
r )/

15Vo. The frequency-independent constants bi are given by
b1 = (cosh � − 2)sech4(�/2), b2 = (cosh 2� − 26 cosh � +
33)/(cosh � + 1)3, and b3 = (sinh � tanh �)2/(cosh 2� − 7).

APPENDIX C: POWER-SERIES EXPANSION OF Q(τ )

The numerically computed function Q(τ ) of Eq. (B4)
indicates that Q(τ ) is similar to the functional form of the
bouncelike trajectory q(τ ). This similarity suggests that Q(τ )
is a scaled function of q(τ ) as shown schematically in Fig. 15.
In this case, we may express the function Q(τ ) as a power
series in q(τ ) as

Q(τ ) =
∞∑

n=0

d2n+1q
2n+1(τ ), (C1)
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FIG. 15. The similarity between the function Q(τ ) of Eq. (B4)
and the instanton solution q(τ ) representing the trajectory of the
fluxon from one potential minimum to the other via tunneling is
illustrated schematically.

where d2n+1 denotes the coefficient for this power-series
expansion. We compute the coefficients d2n+1 by starting with
a series expansion of q(τ ) in τ as

q(τ ) =
∞∑

n=0

a2n+1τ
2n+1, (C2)

noting that the instanton solution q(τ ) is an odd function of
τ . Here, the coefficient d2n+1 is obtained by following the five
steps as discussed later in this appendix. First, we write the
bouncelike trajectory q in the absence of a resonant cavity.
This trajectory q may be expressed as

q = −b1τ + b2 tanh−1(b3 tanh q), (C3)

where the constants b1 = 2
√

ε/M coth �, b2 = (cosh 2qo +
cosh �)/ sinh 2qo, and b3 = coth qo depend on the parameters
� and ε. Second, we expand the right-hand side of Eq. (C3) as
a power series in q as

q = −b1τ +b2b3q

(
1− 1 − b2

3

3
q2+ 2 − 5b2

3 + 3b4
3

15
q4+· · ·

)
.

(C4)

Here, we find the coefficients a2n+1 by substituting the series
expansion for q(τ ) of Eq. (C2) into Eq. (C4). The first three
coefficients are given by

a1 = b1

b2b3 − 1
,

a3 = b3
1b2b3

(
1 − b2

3

)
3(b2b3 − 1)4

,

a5 = b5
1b2b3

(
1 − b2

3

)[
b2b3

(
3 − 2b2

3

) + (
2 − 3b2

3

)]
15(b2b3 − 1)7

.

Third, we use Eqs. (26) and (C2) to evaluate Q(τ ) of Eq. (B4)
explicitly as

Q(τ ) =
∞∑

n=0

a2n+1

∫ ∞

0
dτ ′e−ωr |τ−τ ′|τ ′2n+1. (C5)

Fourth, we evaluate the integrals of Eq. (C5) and write Q(τ )
in a power series in τ as

Q(τ ) ≈ 2

ωr

[
τ

(
a1 + 6a3

ω2
r

+ 120a5

ω4
r

)

+τ 3

(
a3 + 20a5

ω2
r

)
+ τ 5a5 + · · ·

]
. (C6)

Finally, we use the power-series expansion for q(τ ) of Eq. (C2)
and rewrite Q(τ ) of Eq. (C1) as

Q(τ ) = τ (d1a1) + τ 3(d1a3 + d3a
3
1

)
+ τ 5

(
d1a5 + 3d3a

2
1a3 + d5a

5
1

) + · · · . (C7)

This series expansion allows us to obtain the expansion
coefficients d2n+1 by comparing the power series Q(τ ) of
Eqs. (C6) and (C7). The first three expansion coefficients,
d2n+1, are the following:

d1 = 2

ωr

(
1 + 6

ω2
r

a3

a1
+ · · ·

)
,

d3 = 4

ω3
r

[(
10a5

a3
1

− 3a2
3

a4
1

)
+ 60

ω4
r

(
7a7

a3
1

− a3a5

a4
1

)
+ · · ·

]
,

d5 = 12

ω3
r

[(
7a7

a5
1

− 11a3a5

a6
1

+ 3a3
3

a7
1

)
+ · · ·

]
.

In Sec. V, we use these expansion coefficients to estimate the
dimensionless factor Lcav and the one-bounce contribution to
the action (i.e., Scav

B,1).
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