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Antiferromagnetic, metal-insulator, and superconducting phase transitions in underdoped cuprates:
Slave-fermion t- J model in the hopping expansion
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We study a system of doped antiferromagnet in three dimensions at finite temperatures using the t-J model,
a canonical model of strongly correlated electrons. We employ the slave-fermion representation of electrons,
in which an electron is described as a composite of a charged spinless holon and a chargeless spinon. We
introduce two kinds of U(1) gauge fields on links as auxiliary fields, one describing resonating valence bonds of
antiferromagnetic nearest-neighbor spin pairs and the other for nearest-neighbor hopping amplitudes of holons
and spinons in the ferromagnetic channel. To perform a numerical study of the system, we integrate out the
fermionic holon field by using the hopping expansion in powers of the hopping amplitude, which is legitimate
for the region in and near the insulating phase. The resultant effective model is described in terms of bosonic
spinons, two U(1) gauge fields, and a collective field for hole pairs. We study this model by means of Monte Carlo
simulations, calculating the specific heat, spin correlation functions, and instanton densities. We obtain a phase
diagram in the hole concentration-temperature plane, which is in good agreement with that observed recently for
clean and homogeneous underdoped samples.
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I. INTRODUCTION

Since the discovery of high-temperature superconductors
of cuprates, more than two decades has passed.1 Besides the
high critical temperatures (T ) of their superconducting (SC)
phase transition, these cuprates have several interesting and
anomalous properties.2 To understand these properties, various
theoretical approaches have been proposed.3 Although ample
knowledge have been accumulated, we still do not have a
theory that has been accepted as the “right” one.

The t-J model4 is one of the canonical models for
high-Tc cuprates. In this model, doubly occupied electron
states are excluded as a result of the strong on-site Coulomb
repulsion between electrons. This constraint makes it hard
to get a convincing understanding of the model such as
its phase structure and properties of low-energy excitations.
The slave-particle approach5 using the slave-fermion or the
slave-boson representation has been proposed to treat this local
constraint on the physical states faithfully. In the slave-fermion
representation, each electron is described as a composite of a
charged spinless fermionic particle called a holon and a neutral
bosonic particle with spin called a spinon. The mean-field
theory based on the slave-particle representation is basically
capable of describing various expected phases including the
SC phase.6 However, the result meets criticism that is common
to every mean-field theory; that is, faithful evaluations of
effects of fluctuations around mean fields are missing.

We have studied the t-J model in path-integral formalism
by means of analytical methods aiming at going beyond
the mean-field theory.7 In the present paper, we revisit the
t-J model on a three-dimensional (3D) cubic lattice in the
slave-fermion path-integral representation, with the purpose
of studying its properties nonperturbatively by means of
numerical methods. To avoid the difficulty associated with
fermionic determinants in numerical studies, we derive an

effective model by employing the hopping expansion to
evaluate integrals over fermionic holons. It is an expansion
in powers of the hopping amplitude of holons. An effective
expansion parameter is the hole concentration δ, and then the
expansion is useful and legitimate at sufficiently low doping.

By studying the effective model by means of the Monte
Carlo (MC) simulations, we obtain a phase diagram in the
δ-T plane, which contains the antiferromagnetic (AF) phase,
SC phase, and metal-insulator (MI) transition. The phase dia-
gram obtained is in good agreement with that observed in
experiments for lightly doped materials.8

The present paper is organized as follows. In Sec. II, we
explain and set up the model in detail. The holon variables are
analytically integrated out by means of the hopping expansion.
The resultant model includes several bosonic variables: (i) the
spinon field zxσ , (ii) the auxiliary field for the spin-singlet
amplitude of a nearest-neighbor spinon pair (we call it Uxμ

in Sec. II), (iii) the auxiliary field for the amplitude of holon
and spinon hoppings in the ferromagnetic (FM) channel (Vxμ),
which works as an order parameter of the MI transition, and
(iv) the hole-pair field (Mxμ) for superconductivity.

In Sec. III, we focus on the case without the superconduct-
ing channel (by neglecting the Ginzburg-Landau energy of
the hole-pair field). We present the results of MC simulations
for the corresponding model and locate the AF and MI phase
transition lines.

In Sec. IV, we study the full model including the SC channel
and discuss SC phase transitions together with AF and MI ones.
We find that the SC state always occurs within the metallic
phase, whereas AF long-range order (LRO) can coexist with
the SC.

In Sec. V we present discussion and conclusions. We report
that the present model offers us an interesting possibility for
a new description of an SC state in the framework of gauge
theory with local interactions.
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In Appendix A, we present a discussion of the effect
of bosonic thermal modes with nonvanishing Matsubara
frequencies that are neglected for the bosonic spinon field
in the text. In Appendix B we give some formulas for hopping
expansion of the path integral over the fermionic holon field.

II. THE t- J MODEL IN THE SLAVE-FERMION
REPRESENTATION AND HOLON HOPPING

EXPANSION

A. Path integral expression

We start with the standard t-J model on a 3D cubic lattice,9

whose Hamiltonian is given in terms of electron operator Cxσ

at site x (=x1,x2,x3) and spin σ [=1(↑),2(↓)] as follows:

H = −t
∑
x,μ,σ

(C̃†
x+μ,σ C̃xσ + H.c.)

+ J
∑
x,μ

[
�Sx+μ · �Sx − 1

4
nxnx+μ

]
, (2.1)

where

C̃xσ ≡ (1 − C
†
xσ̄Cxσ̄ ) Cxσ

�Sx ≡ 1

2

∑
σ,σ ′

C†
xσ �σσσ ′Cxσ ′ (�σ : Pauli matrices), (2.2)

nx ≡
∑

σ

C†
xσ Cxσ

where μ(=1,2,3) is the 3D direction index and also denotes
the unit vector. σ̄ (1̄ ≡ 2,2̄ ≡ 1) denotes the opposite spin.
The doubly occupied states (C†

x↑C
†
x↓|0〉) are excluded from the

physical states due to the strong on-site Coulomb repulsion.
The operator C̃xσ respects this point.

We adopt the slave-fermion representation of the electron
operator Cxσ as a composite form,

Cxσ = ψ†
xaxσ , (2.3)

where ψx represents annihilation operator of the fermionic
holon carrying the charge e and no spin, and axσ represents
annihilation operator of the bosonic spinon carrying s = 1/2
spin and no charge. Physical states |Phys〉 satisfy the following
constraint:(∑

σ

a†
xσ axσ + ψ†

xψx

)
|phys〉 = |phys〉. (2.4)

In the salve-fermion representation, Hamiltonian (2.1) is
given as

H = −t
∑
x,μ

(ψ†
xa

†
x + μaxψx+μ + ψ

†
x+μa†

xax+μψx)

+ J

4

∑
x,μ

[(a† �σa)x + μ · (a† �σa)x − (a†a)x + μ(a†a)x],

(a†a)x ≡
∑

σ

a†
xσ axσ , (a† �σa)x ≡

∑
σ,σ ′

a†
xσ �σσσ ′axσ ′ .

(2.5)

We employ the path-integral expression for the partition
function of the t-J model,

Z = Tr exp(−βH ), β ≡ 1

kBT
, (2.6)

at finite T in the slave-fermion representation. This is done
by introducing a complex number axσ (τ ) and a Grassmann
number ψx(τ ) at each site x and the imaginary time τ ∈ [0,β].
Constraint (2.4) is solved7 by introducing the CP1 spinon
variable zxσ (τ ), that is, two complex numbers zx1,zx2 for each
site x satisfying ∑

σ

z̄xσ zxσ = 1, (2.7)

and writing

axσ = (1 − ψ̄xψx)1/2zxσ . (2.8)

It is easily verified that constraint (2.4) is satisfied by Eqs. (2.7)
and (2.8). Then the partition function in the path-integral
representation is given by an integral over the CP1 variables
zxσ (τ ) and Grassmann numbers ψx(τ ).

We consider the system at finite and relatively high T ’s,
such that the τ dependence of the variables zxσ are negligible
(i.e., only their zero modes survive). Then the kinetic terms of
zxσ , z̄x∂zx/∂τ disappear, and the T dependence may appear
only as an overall factor β, which may be absorbed into the
coefficients of the action. The τ dependence of the Grassmann
variables ψx(τ ) are taken into account in the τ -dependent
holon propagator given in Appendix B. After integration over
ψx(τ ), the T dependence is absorbed into the holon densityδ.
So one may still deal with the 3D model instead of the 4D
model.

In general, study of finite-T properties of a system gives
us an important insight into the low-T phase structure, for
we can expect that ordered phases at finite T , which are
found by the present method, should generally survive at
T = 0. This expectation has been confirmed by previous
studies of related models.10,11 In Appendix A, we present
some discussion of the physical meaning and reliability of
the preceding approximation.

Then the partition function Z of the present 3D model at
finite T ’s is given by the path integral7

Z =
∫

[dz][dψ][dU ] exp A, [dz] =
∏
x

dzx,

(2.9)
[dψ] =

∏
x

dψxdψ̄x, [dU ] =
∏
x,μ

dUxμ,

with the following action A on the 3D lattice:13,14

A = AAF + Ahop + ASC,

AAF = c1

2

∑
x,μ

(z�
x+μUxμzx + c.c.),

(2.10)
Ahop = c3

2

∑
x,μ

(z̄x+μzxψ̄xψx+μ + c.c.) − m
∑

x

ρx,

ASC = Jβ

2

∑
x,μ

ρx+μρx |z�
x+μzx |2,
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where

Uxμ ≡ exp(iθxμ) ∈ U (1), ρx ≡ ψ̄xψx,

z̄x+μzx ≡ z̄x+μ,1zx1 + z̄x+μ,2zx2,
(2.11)

z�
x1 ≡ zx2, z�

x2 ≡ −zx1,

z�
x+μzx = zx+μ,2zx1 − zx+μ,1zx2.

The first term AAF in action A describes the AF coupling
between nearest-neighbor (NN) spinons. We have introduced
the U(1) gauge field Uxμ on the link (x,x + μ) as an auxiliary
field to make the action in a simpler form and the U(1) gauge
invariance (explained later) manifest. The second term Ahop

describes simultaneous NN hopping of a holon and a spinon,
keeping its spin orientation (i.e., in the FM channel). The third
term, ASC, describes the attractive force between hole pairs,
which we discuss in detail in Sec. II D. There are remaining
terms,15 which are irrelevant for discussion of the global phase
structure.

The integration measures of zxσ and Uxμ are∫
dzx =

∏
σ

∫ ∞

−∞
d Rezxσ

∫ ∞

−∞
d Imzxσ · δ

(∑
σ

z̄xσ zxσ − 1

)
,

(2.12)∫
dUxμ =

∫ π

−π

dθxμ

2π
.

Grassmann variables ψx anticommute each other:

[ψx,ψx ′ ]+ = [ψx,ψ̄x ′ ]+ = [ψ̄x,ψ̄x ′ ]+ = 0. (2.13)

The formulas of Grassmann integration16 are∫
dψxdψ̄x[1,ψx,ψ̄x,ψ̄xψx] = [0,0,0,1]. (2.14)

The term m
∑

x ψ̄xψx adjusts the hole density to δ as

〈ψ̄xψx〉 = δ. (2.15)

Therefore the parameter m works as (the negative of) the
chemical potential.

The action A is invariant under a local (x-dependent) U(1)
gauge transformation with a gauge function λx

17

zxσ → eiλx zxσ , Uxμ → e−iλx+μUxμe−iλx , ψx → eiλx ψx.

(2.16)

B. AF and ferromagnetic spinon amplitudes

The gauge field Uxμ is related to the spinon field zx as

〈Uxμ〉 ∼
〈

z�
x+μzx

|z�
x+μzx |

〉
, (2.17)

which is obtained by maximizing the action AAF. Therefore
Uxμ describes the (c.c. of) phase factor of the AF NN spin-pair
amplitude z�

x+μzx in Eq. (2.11). In fact, one can integrate out
Uxμ in Eq. (2.9) and obtain∫

[dU ] exp(AAF) = exp(ÃCP1 ),
(2.18)

ÃCP1 =
∑
xμ

log I0(c1|z�
x+μzx |),

where I0 is the modified Bessel function. The effective term
ÃCP1 should be compared with the original expression ACP1 of
the CP1 model:

ZCP1 =
∫

[dz] exp(ACP1 ), ACP1 = βJ

2

∑
x,μ

|z�
x+μzx |2.

(2.19)

This CP1 model describes the t-J model without holes (c3 = 0,
ASC = 0), that is, the AF Heisenberg spin model at finite T .
Note that the amplitude z�

x+μzx between NN spinon pair reads
explicitly as

z�
x+μzx = zx+μ,2zx1 − zx+μ,1zx2. (2.20)

This expresses the amplitude of spin-singlet AF combination
of NN spinons, which is called the RVB. Both models with
ACP1 and ÃCP1 have similar behavior and it is verified that they
give rise to second-order transitions at certain c1 and J .18 The
parameters c1 in the action (2.10) are related to the original
ones as18

c1 ∼
{
Jβ for c1  1,

(2Jβ)1/2 for c1 � 1.
(2.21)

For the coupling c3, the relation is straightforward:

c3 ∼ tβ. (2.22)

Let us explore the meaning of the CP1 term AAF (the AF
spin coupling) and the hopping term Ahop (the t term) further.
For this purpose, it is convenient to introduce an O(3) spin
vector field �x made of spinon zx :

�x ≡ z̄x �σzx =
∑
σ,σ ′

z̄xσ �σσσ ′zxσ ′ , �x · �x = 1. (2.23)

The NN spin correlation �x+μ · �x is expressed by the CP1

amplitudes (such as z̄x+μzx) as

�x+μ · �x = 2|z̄x+μzx |2 − 1

= −2|z�
x+μzx |2 + 1, (2.24)

where we have used the identity,

|z̄x+μzx |2 + |z�
x+μzx |2 = 1. (2.25)

So if the spinon hopping amplitude z̄x+μzx that appears in Ahop

has an absolute value near its maximum, |z̄x+μzx | ∼ 1, then
the NN spins are mostly FM �x+μ · �x ∼ 1. In contrast, if the
spinon RVB amplitude z�

x+μzx takes values with |z�
x+μzx | ∼ 1,

then the NN spins are mostly AF, �x+μ · �x ∼ −1. These two
amplitudes satisfy the sum rule, Eq. (2.25). The AF phase and
FM phase are characterized by LRO in the spin correlation
function 〈�x · �y〉, and they can coexist with each other as we
see in the following sections.

C. Holon hopping expansion and auxiliary field Vxμ

In Eq. (2.9), one can integrate out the fermionic holon field
ψx by assuming a low holon density δ of Eq. (2.15). In this
region, the hopping expansion of ψx is applicable as it is an
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expansion in powers of δ. Some details of the integration of ψx

are given in Appendix B. After integration over ψx we obtain∫
[dψ] exp(Ahop) = exp(Ãhop),

Ãhop = δ

(
c3

2

)2 ∑
x,μ

|z̄x+μzx |2 (2.26)

+ δ

(
c3

2

)4 ∑
x,μ<ν

∏
plaq.

(z̄x+μzx) + · · · .

The second term of Ãhop denotes the product of z̄x+μzx on
the link (x,x + μ) [z̄xzx+μ on the link (x + μ,x)] around the
plaquette (x,x + μ,x + μ + ν,x + ν), and the ellipsis denotes
nonlocal higher-order terms. Both the first and the second
terms favor FM couplings of NN spin pairs.

Then we introduce a vector field Wxμ as an auxiliary field
corresponding to z̄xzx+μ,

〈Wxμ〉 ∼ 〈z̄xzx+μ〉, (2.27)

by using Gaussian integration (Hubbard-Stratonovich trans-
formation) as follows:

exp(Ãhop) =
∫

[dW ] exp(AW ),

AW = δ

(
c3

2

)2
(

−
∑
x,μ

|Wxμ|2 +
∑
x,μ

(z̄x+μzxWxμ + c.c.)

)

+ δ

(
c3

2

)4 ∑
x,μ<ν

∏
plaq.

Wxμ + · · · . (2.28)

Estimation of the magnitude of Wxμ is straightforward for
T/J � 1 as∫

[dz]e− J
2 β|z̄x+μzx |2 |z̄x+μzx |2 ∼ 1

Jβ
. (2.29)

Then we set

Wxμ = WVxμ, W � 1√
Jβ

, Vxμ = exp(iϕxμ) ∈ U(1),

(2.30)

by ignoring the fluctuation of the radial component of Wxμ

and focusing on its phase, dWxμ → dVxμ ≡ dϕxμ/(2π ). So
the correspondence, Eq. (2.27), becomes

〈Vxμ〉 ∼
〈

z̄xzx+μ

|z̄xzx+μ|
〉
. (2.31)

This simplification is based on the observation that the most
relevant degrees of freedom in gauge theories are the phases
of gauge fields on the links rather than the amplitude W

because the latter has only massive excitations. The phase
factor Vxμ is a new U(1) gauge field that transforms under
gauge transformation (2.16) as

Vxμ → eiλx+μVxμe−iλx . (2.32)

The physical meaning of Vxμ is obvious from the discussion
given in Sec. II B. It measures the phase part of the SR FM
spinon channel, the deviation from the AF order. Its coherent
“condensation” induces coherent hopping of holons ψx in the

FM spinon channel, as the term Ahop shows, and therefore an
MI transition into a metallic phase. More detailed discussion
is given in the following sections.

The Ahop term is then rewritten effectively as follows:

exp(Ãhop) =
∫

[dV ] exp(AV ),

AV = c4

2

∑
x,μ

(Vxμz̄x+μzx + c.c.)

(2.33)
+ c5

2

∑
x,μ<ν

(V̄xνV̄x+ν,μVx+μ,νVxμ + c.c.),

∫
[dV ] =

∏
x,μ

∫ π

−π

dϕxμ

2π
.

We have neglected the higher-order terms in Eq. (2.26), as
they have smaller coefficients for T/J < 1 with numerical
damping factors. However, effects of these nonlocal terms can
be expected qualitatively. As they have all positive coefficients,
all of them favor the order of the field Vxμ and, so, the metallic
phase. From this point of view, the critical hole concentration
δc of the MI transition obtained by the numerical study in
Sec. IV might give an overestimation of the true value.

The parameters c4 and c5 in AV are related to the original
ones as

c4 ∼ δc2
3

Jβ
∼ δt2β

J
, c5 ∼ δc4

3

(Jβ)2
∼ δt4β2

J 2
. (2.34)

In the following investigation of the phase diagram of the
system, however, we treat c4 and c5 in a more flexible manner,
as free parameters that are proportional to δ and are increasing
functions of β = 1/T . As most phase transitions in the present
model appear in the region c1  1, we identify T and δ from
Eqs. (2.21) and (2.34) as

T � J

c1
, δ � J 2

t2

c4

c1
. (2.35)

At this stage, the original partition function Z without ASC

is expressed as

Z → ZUV ≡
∫

[dz][dU ][dV ] exp(AUV ),
(2.36)

AUV = AAF(zx,Uxμ) + AV (zx,Vxμ).

This “UV” model describes the competition between the
AF-RVB spin-pair amplitude Uxμ and the FM spin-hopping
amplitude Vxμ; the latter is generated by integration over holon
hopping.

D. Hole-pair field Mxμ and the full model Afull

As shown in the previous section, in the effective action,
Eq. (2.10), there exists the term ASC, which describes an
attractive force between NN holes doped in AF magnets or,
more precisely, in an SR AF background. This attractive force
comes from the J terms in Hamiltonian (2.5). Actually, two
holes with a mutual distance of more than one lattice spacing
break 12 AF bonds of spins, while a pair of holes at NN sites
breaks just 11 AF bonds. Thus the NN hole pair is favored
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energetically. To see it explicitly, we rewrite ASC in Eq. (2.10)
as follows:

ASC = Jβ

2

∑
x,μ

|ψ̄x+μ(z�
x+μzx)ψ̄x |2. (2.37)

Note that the holon-pair variable ψ̄x+μψ̄x is accompanied
by the RVB spinon-pair amplitude z�

x+μzx . This combination
is nothing but Cx+μ,2Cx1 − Cx+μ,1Cx2 in terms of electron
operators. We expect that this attractive force induces hole-pair
condensation under certain conditions, and as a result, a SC
state is generated. The main problem addressed here is whether
this attractive force is strong enough to generate a SC state in
the region without AF LRO.

To investigate a possible SC phase transition, we introduce
a hole-pair field Mxμ as a complex auxiliary field describing
the configuration of a holon pair accompanied by an RVB
spinon pair at sites x and x + μ. So Mxμ should satisfy

〈Mxμ〉 ∼ 〈ψ̄x+μ(z�
x+μzx)ψ̄x〉. (2.38)

This hole-pair field Mxμ is nothing but the annihilation opera-
tor of spin-singlet electron-pair sitting NN sites as mentioned.
Explicitly, we use the Hubbard-Stratonovich transformation
for ASC as in Eq. (2.28):

exp

(
J

4
|ψ̄x+μ(z�

x+μzx)ψ̄x |2
)

=
∫

dMxμ exp

[
−Jβ

4
M̄xμMxμ

+ Jβ

4
(Mxμψx(z̄�

x+μz̄x)ψx+μ + c.c.)

]
. (2.39)

This assures us of Eq. (2.38).
To study the effect of ASC, we start with Z of Eq. (2.10) and

rewrite ASC in the action by using Eq. (2.39). Then we integ-
rate out the holon variables ψx as in the previous case (without
ASC there) to obtain the effective action Afull, where the
subscript “full” implies that ASC is taken into account. The
partition function of the full model is now given as

Zfull ≡
∫

[dz][dU ][dV ][dM] exp(Afull),
(2.40)

Afull = AUV + AM = AAF + AV + AM.

In addition to the action of the UV model of Eq. (2.36), Afull

includes an extra term AM(zx,Mxμ) which depends on zx and
Mxμ.

We have calculated AM in the order up to O[(c3)4].7 Equa-
tion (2.39) shows that as ψx and ψx+μ hop, they leave the factor
Mxμz̄�

x+μz̄x , that is, Mxμ is always accompanied by the AF
component of the spinon (c.c. of ) z�

x+μzx . The hopping term
Ahop itself supplies the FM component z̄xzx+ν(∼|z̄xzx+ν |Vxν)
along the link (x,x + ν) ψx hops. In expressing AM we prefer
to use Uxμ instead of z̄�

x+μz̄x using Eq. (2.17), because it makes
the gauge invariance of the system manifest. Then Mxμ appears
in AM in the combination Mxμ(z̄�

x+μz̄x) ∼ Mxμ|z�
x+μzx |Uxμ.

So we define a new variable,

M�
xμ ≡ MxμUxμ ∼ ψ̄x+μψ̄x, (2.41)

and write AM in terms of M�
xμ and Vxμ; the latter is supplied by

Ahop. We note that M�
xμ is not gauge invariant and represents

the “holon pair” at (x,x + μ), in contrast with the gauge-
invariant Mxμ for the “hole pair.”

In the practical calculations in Sec. IV, we focus on the
phase degrees of freedom of M�

xμ, ignoring fluctuations of the
radial part of M�

xμ as in the case of Wxμ → Vxμ (the London
limit). So we set

M�
xμ = M exp(iϕxμ), M �

√
holon-pair density ∼ δ,

(2.42)

and dMxμ = dϕxμ/(2π ). We include M into the coefficients
of AM and treat Mxμ = exp(iϕxμ) as a U(1) variable. Fur-
thermore, we regard |z̄xzx+μ| and |z�

x+μzx | involved in AM

as constants. They are also absorbed in the coefficients. The
reason for this treatment is given here in the determination of
the coefficients.

In terms of this M�
xμ, AM is expressed as

AM = f1

2

∑
x,μ �=ν

M�
xμM̄�

x+ν,μVx+μ,νVxν + f2

2

∑
x,μ<ν

αμν

× [VxνVx+ν,μM̄�
x+μ,νM

�
xμ + VxνM̄

�
x+ν,μM�

x+μ,νV̄xμ

+M�
xνM̄

�
x+ν,μVx+μ,νVxμ + M̄�

xμV̄x+ν,μVx+μ,νM
�
xμ]

+ f3

2

∑
x,μ<ν

M̄�
xνM

�
x+ν,μM̄�

x+μ,νM
�
xμ + c.c. (2.43)

Each term in AM is shown schematically in Fig. 1. The terms
with the coefficients f1 and f2 in Eq. (2.43) describe the local
hopping of the holon-pair field M�

xμ, whereas the f3 term
controls fluxes of M�

xμ penetrating each plaquette. These fluxes
correspond to vortex excitations in the SC state. In other words,
the f1 and f2 terms induce a primordial SC state, and a genuine
SC state is generated by the f3 term. Numerical investigations
in the following sections verify this qualitative expectation.

As stated in Sec. I, we think that an SC state is to be realized
in a metallic phase, that is, beyond the region of applicability
of the leading order of the hopping expansion. So keeping
the results of the hopping expansion for the three coefficients
fi of AM is not suitable for discussion of an SC state. For
example, the coefficient f3 is negative in the leading order of
the hopping expansion, which favors the s + id–wave SC. We
examined higher-order terms of the hopping expansion and
found that some of them generate a positive value of f3 to
support the d-wave SC as observed experimentally. So in the
following numerical studies, we assume that fi’s are positive
and proportional to δ2,

f1,f2,f3 ∝ δ2, (2.44)

and treat their coefficients as positive free (phenomenological)
parameters.19 In short, all effects of |Mxμ|, |z̄xzx+μ| and
|z�

x+μzx | in and near the SC state are included in the effective
coefficients fi of AM .

Also, we have incorporated in Eq. (2.43) the layered
structure of the 3D lattice of cuprates9 by introducing in
Eq. (2.43) the anisotropy parameter αμν , which is defined as

αμν = ανμ =
{

1 (μ,ν �= 3).

0 (μ or ν = 3).
(2.45)
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FIG. 1. Each term of AM in Eq. (2.43). Lines with reversed
arrows indicate complex-conjugate variables, M̄�

xμ and V̄xμ. The
gauge invariance under Eq. (2.16) forces the arrows near each corner
to make a divergenceless flow.

The layered structure of the system is systematically in-
corporated in the original Hamiltonian (2.1) by making the
parameters t and J anisotropic. This induces anisotropies in
the effective model that we have derived. Most of the terms
are insensitive to the anisotropy, except the f2 term, which
is the reason that we treat Ahop and AV in a symmetric
manner. For the f2 term, the layered structure plays an
important role to avoid frustrations and make the symmetry of
SC be dx2−y2 .

III. PHASE STRUCTURE OF THE U V MODEL:
AF AND MI TRANSITIONS

In this section, we study the UV model with the action
AUV = AAF + AV in Eq. (2.36) by means of MC simulations.
The full model Afull = AAF + AV + AM is studied in Sec. IV.
For MC simulations, we consider a 3D cubic lattice of the size
V ≡ L3 (L up to 30) with the periodic boundary condition.
We used the standard Metropolis algorithm with the local

update. The average number of sweeps was 2 × 105, and the
acceptance ratio was about ∼40%.

To study the phase structure of the model, we measured the
internal energy E and the specific heat C, which are defined
as

E = − 1

L3
〈A〉, C = 1

L3
〈(A − 〈A〉)2〉, (3.1)

as functions of the parameters c1, c4, and c5. We note that the
c4 term and c5 term are related to each other because both are
generated by the c3 term. Here we respect this correlation by
setting the parameter c5 as c5 ∝ c4.

By obtaining the locations of the phase transition lines by
the peaks of C, etc., we get a phase diagram in the c4-c1 plane.
Then we investigate spin correlation functions and instanton
densities to identify the physical meaning and properties of
each phase. To support this procedure, we also investigated
fluctuations of each term of the action by measuring the
individual “specific heat” CAi defined by

CAi
≡ 1

L3
〈(Ai − 〈Ai〉)2〉, i = 1,4,5,

(3.2)
A1 ≡ AAF, A4,5 ≡ c4,5 term in AV .

At c4 = 0 (i.e., at c3 = 0), the system is reduced to the
AF Heisenberg model with the action AAF alone, which has a
phase transition from the paramagnetic (PM) spin-disordered
phase to the AF spin-ordered phase at c1 ∼ 2.8. We study how
the location of this AF phase transition changes and whether
new phases appear as the c4 term is turned on. It is naturally
expected that the AF phase transition shifts to the low-T region
(large c1 region), as the parameter c4 is increased because the
c4 term favors FM NN spin coupling.

Let us first examine C and CAi
as functions of c4 for

c1 = 3.5. As we shall see, this value of c1 belongs to a
relatively high-T region. In Fig. 2 we show the result for the
case c5 = c4/3.0. We found no anomalous behavior of E such
as hysteresis, whereas C shown in Fig. 2 exhibits two sharp
peaks at c4 � 1.5 and 3.0. We verified that each peak has a
systematic system-size (L) dependence, so we concluded that
both peaks show existence of second-order phase transitions.
CA1 in Fig. 2 exhibits a very sharp peak at c4 � 1.5. In contrast,
both CA4 and CA5 exhibit a peak at c4 � 3.0. Then we conclude
that the AF phase transition takes place at c4 � 1.5 and the MI
transition at c4 � 3.0.

This conclusion may be confirmed by calculating the spin
correlation function. In Fig. 3, we show the correlation function
Gs(r) of the O(3) spin �x of Eq. (2.23):

Gs(r) = 1

3L3

∑
x,μ

〈�x · �x+rμ〉. (3.3)

As we expected, at c4 = 0.7, Gs(r) exhibits an oscillatory
behavior and has a staggered magnetization:

lim
r→∞(−)rGs(r) � (−)rmaxGs(rmax) �= 0,

(3.4)
rmax ≡ L

2
(AF phase).

So there exists an AF LRO at c4 = 0.7. This confirms that the
phase transition at c4 � 1.5 is the AF transition. At c4 = 2.2
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CAi

CA1

CA4

CA5

FIG. 2. (Color online) Total specific heat C and specific heat
of each term CAi

of Eq. (3.2) as functions of c4 for c1 = 3.5 and
c5 = c4/3.0. System size is L = 30. C has two peaks, at c4 � 1.5,3.0.
CA1 has a sharp peak at c4 � 1.5, suggesting an AF transition, and
CA4 ,CA5 have peaks at c4 � 3.0, suggesting an MI transition.

this AF order disappears and the system is in a magnetically
disordered phase that we call the PM phase. At c4 = 3.8, Gs(r)
exhibits LRO,

Gs(rmax) �= 0 (FM phase), (3.5)

which implies that the system is in the FM phase. So we
obtain a picture of the phase structure for c1 = 3.5 wherein, as
c4 increases, the phase changes as AF → PM → FM.

Gs(r)

-0.4

0.8

0.4

0

r
121086420

FIG. 3. (Color online) Spin correlation function Gs(r) of Eq. (3.3)
for c1 = 3.5, c5 = c4/3.0, and L = 24. At c4 = 0.7, AF LRO exists.
At c4 = 2.2, the AF LRO disappears. At c4 = 3.8, an FM correlation
appears as a result of the existence of “free electrons.”

We also calculated instanton densities of the gauge fields
Uxμ and Vxμ. For example, the U -instanton density ρU

is defined for Uxμ = eiθxμ , θxμ ∈ [−π,π ] in the following
way.18,20 We first consider the magnetic flux �xμν penetrating
the plaquette (x,x + μ,x + μ + ν,x + ν), which is defined as

�xμν ≡ θxμ + θx+μ,ν − θx+ν,μ − θxν(−4π � �xμν � 4π ).

(3.6)

Then we decompose �xμν into its integer part nxμν , which
represents the Dirac string (vortex line), and the remaining
fractional part �̃xμν ,

�xμν = 2πnxμν + �̃xμν (−π � �̃xμν � π ). (3.7)

The U -instanton density ρU (x) at the cube around site x +
1̂
2 + 2̂

2 + 3̂
2 of the dual lattice is then defined as

ρU (x) = −1

2

∑
μνλ

εμνλ(nx+μ,νλ − nx,νλ)

= 1

4π

∑
μ,ν,λ

εμνλ(�̃x+μ,νλ − �̃x,νλ), (3.8)

where εμνλ is the totally antisymmetric tensor. From this
definition, we define the average instanton density ρU as

ρU ≡ 1

L3

∑
x

〈|ρU (x)|〉. (3.9)

The V -instanton density ρV is defined similarly for Vxμ.
The instanton density ρU measures strength of fluctuations

of the gauge field Uxμ. In the deconfinement phase of Uxμ,
fluctuations of �xμν around its average �xμν = 0 are small
and ρU � 0. In the confinement phase of Uxμ, in contrast, �xμν

fluctuates violently, and ρU has a finite value. Here we note that
the confinement by the Uxμ field gives rise to quasiexcitations
that are gauge-invariant “composite particles” in the AF chan-
nel. Such combinations include z�

x+μUxμzx, ψx+μUxμzxσ , etc.
A similar interpretation holds for ρV concerning the gauge
dynamics of Vxμ. The confinement here works in the FM
channel, and the possible gauge-invariant quasiexcitations
are ψ̄xzxσ = Cxσ , ψ̄xψx, z̄xσ zxσ ′ , and their stretched versions
such as ψ̄x+μVxμzxσ .

In Fig. 4 we show ρU and ρV for c1 = 3.5. As we
increase c4, ρU starts to increase at the first phase transition
at c4 � 1.5. This result means that the fluctuation of Uxμ of
AF NN spinon pairs become large, and the U -confinement
spin-disordered phase appears. This result is consistent with
the previous interpretation based on Gs(r) above. In contrast, at
the second phase transition at c4 � 3.0, ρV tends to vanish. So,
for c4 < 3.0, the system stays in the V -confinement phase, and
holons and antispinons are bound within electrons as ψxz̄xσ .
For c4 > 3.0, the system is in the V -deconfinement phase, and
holons and spinons start to hop coherently and independently
as low-energy excitations. This indicates that the phenomenon
of charge-spin separation21 takes place and also the system is
metallic.

Let us turn to the low-T region and see how the locations of
these AF and MI phase transitions change. In Fig. 5, we pres-
ent the specific heat C and CAi

for c1 = 6.5. We again found
two peaks, at c4 � 3.4 and 5.4. Figures 5(b) and 5(c) show
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FIG. 4. (Color online) Instanton densities ρU and ρV as functions
of c4 for c1 = 3.5, c5 = c4/3.0, and L = 30. Arrows indicate the
phase transition points determined by the specific heat (see Fig. 2).
At the first phase transition point, c4 � 1.5, ρU starts to increase. In
contrast, at the second transition point, c4 � 3.0, ρV tends to vanish.

that both peaks develops systematically, indicating that both
phase transitions are of second order. Individual specific heat
in Fig. 5(d) shows that the peak of C at c4 � 3.4 corresponds
to fluctuations of the c4 and c5 terms, and so the MI transition,
while the peak at c4 � 5.4 is generated by the c1 term and so
the AF transition. Therefore the order of the AF and MI phase
transitions along the c4 axis has been interchanged compared
to the previous high-T case of c1 = 3.5.

To verify the preceding observation, we calculated the
spin correlations, Gs(r). The result is shown in Fig. 6. In
the intermediate region 3.4 < c4 < 5.4, Gs(r) exhibits very
interesting behavior; that is, an AF correlation exists in a
FM background. This implies coexistence of the FM and AF
orders. We note that coexistence of FM and AM orders was also
observed previously in the CP 1 + Higgs boson model.11,22

This model is a bosonic counterpart of the present model and
the U(1) Higgs variable exp(iαx) there plays the role of the
fermionic holon variable ψx .

In Fig. 7 we present instanton densities. Compared with
the high-T result in Fig. 4, the result again indicates that
two phase transitions have interchanged their order along the
c4 axis. As a result, there appears a range of c4 in which
both ρU and ρV are small, which implies that spinons and
holons hop here in both U and V channels. In other words,
charges are transported by holons, whereas spin degrees of
freedom are transported by spinons in both the AF and the FM
channels.

We repeated similar calculations for various values of c1

and c4 and obtained the phase diagram of the model for c5 =
c4/3.0. In Fig. 8, we present the phase diagram: Fig. 8(a), in
the c4-c1 plane and Fig. 8(b) in the δ-T plane, the latter is
obtained from the former by using Eq. (2.35).

So far, we have studied the case of c5/c4 = 1/3.0. We
also studied other values of the ratio c5/c4 and found a phase
diagram similar to that in Fig. 8. As the value of c5/c4 is
increased, the MI transition line shifts to the region of smaller
δ. This is expected from Eq. (2.33) because a larger c5/c4

implies a smaller critical value of c4 and, therefore, a smaller
critical δ from Eq. (2.35).

To estimate roughly the critical δ of the MI transition, which
we call δMI, for real materials, one may put J � 0.1 eV, t �
0.3 eV, so J/t � 1/3. Then we have δ ∼ (J/t)2 · (c4/c1) �

C

4 6532
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c4

2 6543

20
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0
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9

5.75.55.35.1

3.3

11
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7
3.63.53.4 c4

c4

c4

C

C

CAi

CA1

CA4

CA5

(a)

(b)
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(d)

FIG. 5. (Color online) Specific heat C as a function of c4 for
c1 = 6.5 and c5 = c4/3.0. (a) C for L = 30. There are two peaks,
at c4 � 3.4 and 5.4. (b, c) Each peak of C develops as the system
size is increased. Results indicate that both phase transitions are of
second order. (d) Specific heat CAi

of each term. Values indicate that
the transition at c4 � 3.4 is the MI one and the transition at c4 � 5.4
is the AF one.

0.1(c4/c1) from Eq. (2.35). For c1 ∼ 10.0 (T ∼ 100 K), the
critical line in Fig. 8(a) shows c4/c1 ∼ 0.4, and this formula
gives rise to δMI � 0.04. As discussed following Eq. (2.33) the
higher-order terms in Eq. (2.28) enhance the metallic phase,
so the MI phase transition line is expected to be located in the
very underdoped region δ � 1.
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0 1284 r

FIG. 6. (Color online) Spin correlation function Gs(r) for c1 =
6.5, c5 = c4/3.0, and L = 30. At c4 = 2.0, the oscillatory behavior
around 0 shows AF order. At c4 = 4.0, there is AF order in the FM
background order. At c4 = 6.3, there is FM order.

IV. PHASE STRUCTURE OF THE FULL MODEL:
SC TRANSITION

In this section, we study the full model of Eq. (2.40) with
the action Afull = AAF + AV + AM. Besides the AF and MI
transitions observed in the previous section, we expect that
the new term AM in the action generates condensation of the
hole-pair field Mxμ and/or the holon-pair field M�

xμ as
the hole density δ is increased. This condensation implies the
generation of an SC state.

We studied the system Afull by means of MC simulations. As
M�

xμ is a composite of holons at x and x + μ, we put f1,2,3 ∝
δ2 ∝ c2

4 and M�
xμ ∈ U (1) as explained in Sec. II. Physically,

the proportional constants fi/c
2
4 (i = 1,2,3) depend on the

density of holes that actually participate in the SC fluid. We
studied the system Afull for various values of fi/c

2
4 and found

that the system is stable only for the case with small values of
fi/c

2
4. For example, the AF phase disappears at a very small

value of c4 for fi/c
2
4 ∼ O(1). In this section, we explicitly

show the results for the case with f1 = f2 = f3 = 0.03 c2
4.

Let us first study the high-T region first by choosing c1 =
4.0, c5 = c4/3.0. In Fig. 9, we present various specific heats as

2 6543
0

0.1

0.2

0.3

c4

ρ

V 
ρ

U 
ρ

FIG. 7. (Color online) Instanton densities ρU and ρV as functions
of c4 for c1 = 6.5, c5 = c4/3.0, and L = 30. Arrows indicate the
phase transition points determined by the specific heat (see Fig. 5).
At the first transition point c4 � 3.4, ρV tends to vanish. In contrast,
at the second transition point c4 � 5.4, ρU gets large values, showing
that the system enters the U -confinement phase.

1 65432
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AF & Metal
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(b)

FIG. 8. (Color online) Phase diagram of the UV model for c5 =
c4/3.0: (a) in the c4-c1 plane and (b) in the δ-T plane. Each phase
is separated by two transition lines: the AF transition line and MI
transition line. All transitions are of second order.

functions of c4. The total specific heat C in Fig. 9(a) exhibits
four peaks, at c4 � 2.0, 3.2, 3.5, and 4.1. To identify the
physical meaning of each peak, we show the individual specific
heat CAi

in Fig. 9(b) and Cfi
(i = 1,2,3) for the fi term in AM

defined similarly to Eq. (3.2) in Fig. 9(c). From these results,
it is expected that the first two peaks correspond to the AF
transition at c4 � 2.0 and the MI transition at c4 � 3.2. The
remaining two terms correspond to fluctuations of f terms
in the action and, therefore, the SC phase transition. More
precisely, the third peak, at c4 � 3.5, in C corresponds to the
f1, f2 terms and the fourth one, at c4 � 4.1, to the f1, f3

terms. We comment on them later.
In Fig. 10 we present the spin correlation function Gs(r)

for various values of c4. It is obvious that only at c4 = 1.2 does
AF LRO exist. At c4 = 5.0, there is solid FM order. This is
consistent with the preceding interpretation of the four peaks.

To study the symmetry of the SC state, we consider the
quantity M2, the expectation value of MxμM̄x+μ,ν (μ �= ν),
defined as

M2 ≡ 1
8 〈Mx+1,2M̄x1 + M̄x+2,1Mx+1,2

+ M̄x2Mx+2,1 + M̄x2Mx1〉 + c.c. (4.1)

In Fig. 11 we present M2. It takes negative values and starts
to develop significantly at c1 ∼ 3.5, that is, at the third peak
of C. It is obvious that a d-wave correlation between adjacent
hole-pair fields is generated beyond the third peak.

We also measured the instanton densities ρU, ρV , and ρM� .
ρM� is defined in a similar manner to ρU but by using the
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FIG. 9. (Color online) Specific heats (a) C, (b) CAi
, and (c) Cfi

as
functions of c4 for c1 = 4.0, c5 = c4/3.0, and L = 24. CA45 implies
the fluctuation of A4 + A5; Cf 123, that of AM = Af1 + Af2 + Af3 .

holon-pair field M�
xμ(≡MxμUxμ ∼ ψ̄x+μψ̄x) instead of Uxμ.

ρM� reflects the vortex density of M�
xμ. These three instanton

densities are shown in Fig. 12. By comparing Fig. 12 with
Fig. 4 we see that the behavior of ρU and ρV is not influenced

Gs(r)
1

0.5

0

-0.5
0 1284 r

FIG. 10. (Color online) Spin correlation functions for various
values of c4 for c1 = 4.0, c5 = c4/3.0, and L = 24. At c4 = 1.2 there
is AF order; at c4 = 2.4, no magnetic order; at c4 = 3.3, a tiny FM
order; and at c4 = 5.0, FM order.

1 43 52 c4

0

-0.04

-0.08

-0.12

M2

FIG. 11. (Color online) Expectation value M2 of Eq. (4.1) for
c1 = 4.0, c5 = c4/3.0, and L = 24. The result shows that a d-
wave correlation between adjacent hole-pair fields starts to appear
at c4 ∼ 3.5.

strongly by the existence of the f terms; that is, ρU starts
to increase at c4 � 2.0 and ρV vanishes at c4 � 3.2. The M�-
instanton density ρM� starts to decrease rapidly at c4 � 3.5 and
vanishes at c4 � 4.1. We think that the SC phase transition,
which is signaled by vanishingly small ρM� , takes place at
c4 � 4.1.

From the preceding numerical calculations, we understand
the physical meanings of the two peaks at c4 � 3.5 and 4.1
as follows. The third peak, at c4 � 3.5, is generated by the
f1 and f2 terms and is located just after the MI transition at
c4 � 3.2. After the MI transition, the holon-hopping amplitude
Vxμ becomes stable, and as a result, these f1 and f2 terms start
to correlate the phases of a pair of adjacent link fields M�

xμ.
In fact, these two terms in Eq. (2.43) need a stabilized Vxμ to
let M�

xμ stabilize. Figure 12 shows that ρM� at c4 � 3.5 is still
large. So this effect is not strong enough to stabilize the holon-
pair field M�

xμ completely in this region of c4. To suppress
vortex excitations of the holon-pair field M�

xμ (making ρM�

small enough), a sufficient amount of the f3 term is necessary.
The fourth peak of C, at c4 � 4.1, corresponds with the critical
value of f3 to realize such M�

xμ stabilization with phase
coherence and generation of SC. These considerations lead
to our conclusion that the genuine SC starts at the fourth peak,
c4 � 4.1.

From the preceding consideration, we expect that the region
between the third and the fourth peaks corresponds to a

1 43 52 c4

0.4

0

0.2

ρ

V 
ρ

M 
ρ

U 
ρ

FIG. 12. (Color online) Instanton densities ρU , ρV , and ρM� as a
function of c4 for c1 = 4.0, c5 = c4/3.0, and L = 12. Arrows indicate
the locations of the four peaks in C in Fig. 9.
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primordial SC state. In this region we expect that holons
acquire a pseudogap. In fact, as M�

xμ couples to ψx

as M�
xμψx+μψx , a finite expectation value of M�

xμ sup-
plies fermion-number-nonconserving hopping processes ef-
fectively. Together with the fermion-number-preserving hop-
ping term supplied in Ahop, these processes give rise to a gap
in the excitation energy of holons.23

Furthermore, from the local gauge symmetry of the system,
terms like M̄�

xμzx+μzx are also generated by the renormaliza-
tion effect of high-energy modes of zx and ψx . Then the spinon
field zx also acquires an extra contribution to its pseudogap,
irrespective of a possible pseudogap expected by the mixing
of two channels, c1Uxμz�

x+μzx and c4Vxμz̄x+μzx . At any rate,
the physical properties of that state, such as its excitation
spectrum, are interesting and should be reserved as a future
problem.

Next let us study the system Afull in the lower-T region by
setting c1 = 6.5, c5 = c4/3.0. Behaviors of various specific
heats, C, CAi

, and Cfi
are shown in Fig. 13. There are again

four peaks in the total specific heat C: at c4 � 3.4, 3.6, 4.0,

2 864
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FIG. 13. (Color online) Specific heat C, CAi
, and Cfi

as functions
of c4 for c1 = 6.5, c5 = c4/3.0, and L = 24.

0 1284
r
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FIG. 14. (Color online) Spin correlation functions Gs(r) for
various values of c4 with c1 = 6.5 and c5 = c4/3.0. At c4 = 2.7 there
is AF order; at c4 = 4.5, AF order in an FM background; and at
c4 = 6.5 and c4 = 8.0, FM order.

and 5.6. From the behavior of CAi
and Cfi

, the first peak
at, c4 � 3.4, corresponds to the MI transition; the peak(s)
at c4 � 4.0 (and 3.6), to the SC transition; and the fourth
peak, at c4 � 5.6, to the AF transition. The order of these
transitions is different from that in the previous high-T case,
as we have already seen in the UV model. To verify the
preceding identification, we calculated Gs(r), the expectation
value of the adjacent hole-pair field M2, and the instanton
densities as before. We show the results in Figs. 14, 15, and 16.
These results support the interpretation of each phase already
given.

In Fig. 17, we present the phase diagram obtained with
the full model Zfull of Eq. (2.40) in the δ-T plane. Phases
are separated by three transition lines, for AF, MI, and SC
transitions. The SC phase always exists inside the metallic
phase, whereas there is a phase of coexisting AF and SC in the
low-T region. In addition to these three lines, one may add the
line corresponding to the primordial SC transition as the line
of pseudogap generation. Except for the pseudogap transition,
which seems not to be a sharp transition in experiments, this
phase diagram is consistent with that observed experimentally
for homogeneous, clean, underdoped samples.8

2 864
c4

0

-0.1

-0.2

M2

FIG. 15. (Color online) Expectation value M2 for c1 = 6.5, c5 =
c4/3.0, and L = 24. The result shows that a d-wave correlation
between adjacent hole-pair fields appears at c4 ∼ 3.6. It is interesting
to observe that the correlation decreases slightly in the region without
AF LRO c4 > 5.6.
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FIG. 16. (Color online) Instanton densities ρU , ρV , and ρM�

as functions of c4 for c1 = 6.5, c5 = c4/3.0, and L = 12. Arrows
indicate phase transition points determined by the specific heat
(see Fig. 9). Their behavior is consistent with the phase transition
discussed in the text based on Fig. 9.

V. CONCLUSION AND DISCUSSION

In the present paper, we have studied the phase structure in
the underdoped region of the t-J model by using the slave-
fermion representation. In this formalism, the AF-insulator
phase naturally appears and it is expected that beyond a
critical hole concentration δMI the coherent hopping of holes is
generated and the system enters into the metallic phase. This
phenomenon was previously studied by the mean-field theory,
and the critical hole concentration was estimated as δMI = 0.24

We have investigated the system by integrating out the
fermionic holon field by the hopping expansion, which is
legitimized for the region in and near the insulating phase, and
then numerically studied the AF, MI and SC phase transitions.
The obtained phase diagram is consistent with that observed
experimentally for clean and homogeneous samples at low
hole concentrations. The present study also implies that the

c4/c1∝δ

1/
c1

∝
T

PM

Metal

SCAF

0.2 1.00.6 1.4

0.4

0.3

0.2

0.1

FIG. 17. (Color online) Phase diagram of the full model of
Eq. (2.40) in the δ-T plane. The three lines, for the AF transition,
MI transition, and SC transition, separate each phase. All transitions
are of second order. One may add the pseudogap transition line as the
fourth line.

observed pseudogap corresponds to a primordial formation of
the SC order parameter Mxμ.

For the SC phase transition, we have treated the coeffi-
cients of effective action in a more flexible manner than in
the original hopping expansion, although we maintain the
structure of interaction terms. As explained, this is because
these coefficients certainly acquire renormalization and even
change their signature as we go into the SC state. Some of the
results in the present paper may reflect this flexibility; that is,
they may not be possible in the original t-J model due to the
restrictions among the coefficients. The pseudogap transition
might disappear (merge to the genuine SC transition) with
different treatments of the coefficients. Even in such a case, the
results obtained in the present paper have important meaning
as knowledge of a reference system for the t-J model and
other canonical models of high-Tc materials.

Concerning the SC order parameter, we proposed the gauge-
invariant Mxμ for hole pairs as the most direct possibility.7 We
have calculated its correlation function 〈M̄xμMyν〉 but found
no LRO of Mxμ even in the SC phase. We understand this in
the following way. If one could calculate this correlation of
the t-J model exactly, one would have LRO in the SC state.
The effective model in exact treatment certainly contains a
lot of nonlocal interaction terms among Mxμ, although their
coefficients are small. Nonvanishing LRO is to be supported
by these nonlocal interactions. However, the present model
truncates the effective interaction terms to short-range ones
and, so, fails to produce LRO of Mxμ.

However, the study of lattice gauge theory25 provides us
with a viable alternative for describing a SC state. An effective
system may involve only short-range interactions but it may
generate the Higgs phase, in which Meissner effects actually
take place. The price to pay is that there are no local order
parameters to signal LRO. Our present model, with the action
AM , is just such a model. Because our gauge-noninvariant
M�

xμ for holon pairs has vanishing correlations owing to
gauge-invariant action due to Elitzur’s theorem,26 one need
to introduce complicated nonlocal order parameters27 to show
that some kind of LRO exists. Here we note that the existence
of LRO is a beautiful theoretical criterion to demonstrate an
SC phenomenon, but not a necessary condition. A simple and
direct proof of an SC state may be to measure the mass
of the external electromagnetic field and demonstrate the
Meissner effect, that is, the Higgs mechanism. We have not
made such a proof, but the existence of an anomalous peak
of the specific heat certainly demonstrates a new phase,
which should correspond to the Higgs phase. In fact, we
have considered a U(1) Ginzburg-Landau model,28 which is
obtained from AM of Eq. (2.43) by putting Vxμ to a certain
constant. So the model loses gauge symmetry or can be viewed
as a gauge-fixed version. The MC simulation of this model
certainly exhibits a Higgs phase for sufficiently large fi in
which the correlation functions 〈M̄�

xμM�
yν〉 exhibit LRO. Let

us summarize the situation. Because the faithful effective
model of Mxμ is full of nonlocal interactions, we replace
it with a short-range model. By sacrificing the LRO of the
gauge-invariant local order parameter, we are able to obtain
the new phase. The analysis of the related model and the
experience of lattice gauge theory strongly indicate that this
phase is a Higgs phase that is necessary to support SC.
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The reason we integrate out the fermionic holon field
analytically is obvious; that is, it is technically difficult to
study fermion systems by numerical methods. In recent years,
however, it has become possible to numerically simulate
relativistic fermion systems, and therefore it is important and
also interesting to study the MI phase transition in the present
system by means of those simulation methods. This problem
is under study and we hope that the result will be reported
in a future publication. Even in this situation, the content
of the present paper may be useful as some basis and a
reference for obtaining further understanding of physics of
high-Tc superconductors.

Finally, it seems useful to compare the results obtained in
this paper for the t-J model and the present knowledge of the
2D repulsive Hubbard model. In the intensive investigations
for more than two decades, some aspects of the phase structure
of the Hubbard model have been revealed. For example, the
Néel state with AF long order appears to be the ground
state at half-filling. For the doped case, many basic issues
remain unknown, partly because numerical studies of a large
system size have proven very difficult. However, very recently,
an investigation using a constrained-path MC method has
revealed some interesting aspects of the Hubbard model.29

Upon doping at intermediate interaction strengths, the AF
ordered state changes to a state with an incommensurate spin
density wave (SDW) with long-wave modulation. In the SDW
state, holes are delocalized and metallic behaviors appear. As
the concentration of holes is increased beyond a critical value,
the SDW order vanishes. As the strength of the interaction
is increased there, some correlation develops in the charge
sector, and it is expected that the system eventually evolves
into a stripelike state. Therefore, these results for the Hubbard
model shows some resemblance to the t-J model that we
studied in this paper, though the stripelike state in the Hubbard
model is to be replaced with the SC state in the t-J model.
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APPENDIX A: EFFECT OF THERMAL MODES WITH
NONVANISHING MATSUBARA FREQUENCIES

In this Appendix we discuss the effect of bosonic modes
having nonvanishing Matsubara frequencies that we have
ignored in the text. As a model, we consider a 3D lattice
system of a complex boson field φx with the normal-ordered
Hamiltonian HB(φ), because our argument below is rather
general and not restricted to the spinon field.

The partition function Zφ for HB(φ) is given by the path
integral:30

Zφ =
∫

[dφ] exp

[ ∫ β

0
dτAφ(τ )

]
,

(A1)
Aφ(τ ) = −

∑
x

φ̄x(τ )∂τφx(τ ) − HB[φ(τ )].

The boson field φx(τ ) is a function of the imaginary time τ ∈
[0,β]. φx(τ ) satisfies the periodic boundary condition φx(0) =

φx(β) and is decomposed into Fourier series as

φx(τ ) =
∞∑

n=−∞
φx,ne

iωnτ , ωn ≡ 2πn

β
, (A2)

where ωn is the Matsubara frequency. Then the first term of
Aφ is expressed as

−
∫ β

0
dτ φ̄x(τ )∂τφx(τ ) = −

∑
n

(2πni)φ̄x,nφx,n. (A3)

The HB term of action Aφ is separated as∫ β

0
dτHB [φx(τ )] = βHB(φ0) + βH1(φ0,φn�=0) (A4)

(we suppress the index x in φx,n if not necessary.) The first
term, HB(φ0), contains only the zero modes φ0, whereas the
second term, H1(φ0,φn�=0), contains the interactions between
the zero modes and the nonzero modes φn�=0, and the self and
spatial interactions among φn�=0 themselves. Typical terms of
H1(φ0,φn�=0) are given as

H1 =
∑

x

[ ∑
n�=0

φ̄x,0φx,0φ̄x,nφx,n

+
∑

n,m�=0

(φ̄x,0φ̄x,nφx,mφx,−n−m + c.c.)

]
+ · · · . (A5)

Our treatment in the text corresponds to retaining only
the zero modes φ0 as the relevant variables at high T ’s
and considering βHB(φ0) as their action. Of course, φ0 are
important because their condensation is necessary to form an
ordered state with an off-diagonal LRO of φx . So the question
is how the phase structure of the 3D system of φ0 with action
βHB (φ0) is to be modified by the effect of the remaining
nonzero modes, φn�=0.

One way to study it is to integrate out the nonzero modes
in Eq. (A1) to obtain the effective action of φ0 as

Zφ =
∫

[dφ0]e−β(HB (φx,0)+Hr (φx,0)),

e−βHr (φx,0) ≡
∫

[dφn�=0] exp

[
−

∑
x

∑
n�=0

(2πni)φ̄x,nφx,n

−βH1(φx,0,φx,n�=0)

]
. (A6)

Although the behavior of the Green function of φn�=0

depends on HB , it is practical and general, to some extent,
to assume the behavior

〈φ̄x,nφy,n〉 ∼ exp
[−√

(2πnT/v)2 + m2
φv2 |x − y|] (A7)

for |x − y| → ∞. Here v is “the speed of light” of the bosonic
excitation and mφ is the energy gap. For example, for the spin-
wave excitations above the ordered state, v ∝ Ja (a = lattice
spacing) and mφ = 0. Equation (A7) corresponds to the case of
excitations with a relativistic dispersion as in the Nèel state of
antiferromagnets,30 but similar exponential damping behavior
appears for excitations having a nonrelativistic dispersion.
Then the integration over φn�=0 in Eq. (A6) using propagator
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(A7) adds the renormalization term Hr (φ0) in the effective
action.

Without going into detail on the structure of Hr (φ0), one
can argue its effect based on physical grounds. First, for
mφ �= 0 the renormalization term Hr (φ0) does not drasti-
cally change the phase structure of HB(φ0) because of the
short-range nature of Eq. (A7). Concerning the qualitative
effect of Hr (φ0), it works in the direction of enhancing
ordered states, that is, supporting the condensation of φ0.
This is because φn�=0 become more relevant at lower T , as
Eq. (A7) shows, and work to suppress the thermal fluctuations,
which would potentially destroy the LRO. In short, the
critical temperature for the ordered state should be raised
by Hr (φ0).

Next, let us consider the case of gapless excitations mφ = 0.
As long as T > 0, the qualitative effect of Hr (φ0) is the same
as before, but somewhat enhanced as shown by Eq. (A7).
At T = 0 a drastic change can be expected, because the
Green functions, Eq. (A7), have only an algebraic decay, and
therefore nonlocal interactions should be generated in Hr (φ0)
via integration over φn�=0. Such nonlocal interactions may
change the phase structure of the system and generate some
new ordered states.12

In any case, the term Hr (φ0) is more efficient at lower T ,
and it is physically expected that the renormalization enhances
ordered states. Therefore, an ordered phase at finite T survives
at lower T . This statement is actually supported by a couple
of systems.10,11

APPENDIX B: HOLON-FIELD INTEGRATION

In this Appendix, we show some details of holon-field
integration to derive Eq. (2.26). The same techniques are

applicable for deriving AM in Eq. (2.43). It is useful to
start with the original path-integral expression,7 in which
the Grassmann number ψx(τ ) is a function of the imaginary
time τ . This is because the ordering of variables is crucial
to obtain the correct results. Then the relevant integration
reads as∫

dψxdψx+μ exp

[
c3

2β

∫ β

0
dτ (z̄x+μzx)ψ̄xψx+μ(τ ) + c.c.

]

=
(

c3

2β

)2

|z̄x+μzx |2

×
∫ β

0
dτ1dτ2〈ψ̄x+μ(τ1)ψx(τ1)ψ̄x(τ2)ψx+μ(τ2)〉

= −
(

c3

2β

)2

|z̄x+μzx |2
∫ β

0
dτ1dτ2〈ψx+μ(τ2)ψ̄x+μ(τ1)〉

× 〈ψx(τ1)ψ̄x(τ2)〉

= δ

(
c3

2

)2

|z̄x+μzx |2, (B1)

where we have used the following Green function of the
hopping expansion,

〈ψx(τ1)ψ̄x(τ2)〉 = e−m(τ1−τ2)

1 + e−βm
[θ (τ1 − τ2) − e−βmθ (τ2 − τ1)].

(B2)

In Eq. (B2), m is the chemical potential and the following
relation holds:

δ = 〈ψ̄x(τ + 0)ψx(τ )〉 = e−βm

1 + e−βm
. (B3)
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