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Effects of disorder on magnetic vortex gyration
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A vortex gyrating in a magnetic disk has two regimes of motion in the presence of disorder. At large gyration
amplitudes, the vortex core moves quasi-freely through the disorder potential. As the amplitude decreases, the
core can become pinned at a particular point in the potential and precess with a significantly increased frequency.
In the pinned regime, the amplitude of the gyration decreases more rapidly than it does at larger precession
amplitudes in the quasi-free regime. In part, this decreased decay time is due to an increase in the effective
damping constant and in part due to geometric distortion of the vortex. A simple model with a single pinning
potential illustrates these two contributions.
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I. INTRODUCTION

In disks of magnetic material, the ground-state magnetic
configuration is commonly a magnetic vortex state which
forms due to the interplay between magnetostatic and ex-
change energies. In the vortex structure the magnetization
in the wall curls around a vortex core and points out of
the plane at the core region, as illustrated in Fig. 1. Alignment
of the magnetization parallel to the edge of the disk minimizes
the magnetostatic energy and the magnetization pointing
out of the plane in the core avoids a singularity in the
exchange energy. In the vortex state, the excitation spectrum
is significantly modified compared to that of a uniform
magnetization. In particular, there is a low-frequency gyration
mode, in which the vortex core orbits around its minimum
energy location.

The dynamics of a vortex state have been studied experi-
mentally by time-resolved Kerr microscopy,1–4 time-resolved
scanning transmission x-ray microscopy,5–7 and microwave
reflection technique8 and theoretically using a collective
coordinate approach or micromagnetic simulations,9–11 which
show gyration frequencies typically in the subgigahertz range.
If the vortex structure is excited strongly enough, the vortex
core switches magnetization direction. Vortex core switching
has been observed using time-resolved scanning transmission
x-ray microscopy12,13 and modeled using a collective co-
ordinate approach or micromagnetic simulations.14–17 These
studies show a reversal of the vortex core magnetization
with a relatively low threshold magnetic field on the order
of milliteslas by an in-plane oscillating external magnetic
field. Recent experiments have also studied vortex gyration
and core reversal under excitation by current in the plane of
the disk.13,18–22 Excitation by current perpendicular to the disk
has been studied theoretically.23–26 Current induced motion is
beyond the scope of the present article.

Of particular interest here are experiments that measure the
dynamics of vortices in disordered samples,27 particularly the
recent experiments by Compton et al.,3,4 who measured vortex
gyration in the presence of disorder. In these experiments, the
vortex core is displaced by a static in-plane magnetic field
and then a magnetic field pulse is applied to excite the vortex

motion. At small magnetic-field-pulse amplitudes, the vortex
gyrates about its equilibrium position with a frequency that
is characteristic of the local disorder potential. At large pulse
amplitudes, the vortex gyrates with a frequency determined by
the magnetostatic energy of the disk. Between the two ampli-
tudes, sharp transitions in the gyration frequency correspond
to pinning or depinning of the vortex at local defects.

The collective coordinate approach mentioned above read-
ily explains many aspects of these experiments.3,4 Here, we
address an aspect that has not yet been considered; that
is, whether disorder changes the effective damping constant
needed for a description of the behavior in terms of collec-
tive coordinates. This approach is motivated by our recent
theoretical demonstration28 that when a magnetic domain
wall propagates along a magnetic nanowire in the presence
of disorder, the effective damping is enhanced as disorder
increases, leading to increased or decreased domain wall
velocity depending on the conditions. As a domain wall moves
through disorder, internal degrees of freedom get excited,
increasing the energy dissipation rate and thus the effective
damping. The results of Compton et al. provide much more
detailed information about the interaction of vortices with
disorder than is typically accessible in experiments on domain
wall motion in nanowires. This detail suggests that it might
be possible to quantitatively connect theory and experiment
relating enhanced damping.

In this article, we describe micromagnetic simulations of
vortex gyration both in the complex case of random disorder
and also in the simple case of a single pinning potential. Our
results indicate that disorder, which exists inevitably in real
experiments, affects the vortex dynamics in a way that can
be interpreted as an enhancement of the effective damping.
In Sec. II we describe the theoretical approach, in particular
the micromagnetic simulations and the description of the
dynamics in terms of a reduced set of degrees of freedom.
In Sec. III we compare our simulations with the results of
Refs. 3 and 4 showing the transition between quasi-free
gyration and pinned gyration. In Sec. IV, we study this
transition in a system with a single pinning potential to make
clear the origin of various effects. Finally, in Sec. V, we discuss
the implications of these results.
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FIG. 1. (Color online) (a) A typical vortex structure in a Ni80Fe20

disk with 400-nm diameter and 10-nm thickness calculated as
described in Sec. II B. The color indicates the in-plane angle of the
magnetization, and the arrows indicate the approximate magnetiza-
tion direction. (b) Cross section of the z-component magnetization
along the center of the vortex core in (a).

II. METHOD

A. Collective coordinate approach

Magnetization dynamics in a magnetic field can be
described by the Landau-Lifshitz-Gilbert equation

Ṁ = γ Heff × M + αG

Ms

M × Ṁ, (1)

where Heff is the effective magnetic field including the
external, exchange, demagnetization, and anisotropy fields;
γ is the gyromagnetic ratio; Ms is the saturation magnetization;
and αG is the Gilbert damping constant. In the calculations
described below, we study the dynamics of vortex gyration
with Eq. (1) using a fixed value of αG. We discuss an effective
damping parameter α in the context of a description of the
motion in terms of collective coordinates, which we describe
next.

Vortex motion is frequently studied in models that adopt a
description of vortex structures in terms of a limited number
of collective coordinates.29–33 For the simplest approximation,
the vortex gyration is described by a two-dimensional vector
X = (X1,X2) describing the vortex core position in a plane.
Then Eq. (1) reduces to 29–33

αDẊ = F + Ẋ × G, (2)

where

Dij = 1

M2
s

∫
dV

∂M
∂Xi

· ∂M
∂Xj

,

F = γ

Ms

∫
dV Heff · ∂M

∂X
= − γ

μ0Ms

∂E

∂X
, (3)

G = ẑ
1

M3
s

∫
dV M ·

(
∂M
∂X1

× ∂M
∂X2

)
,

and E is a total energy functional whose derivative gives
μ0Heff ≡ − δE

δM . Note that αD is a symmetric matrix which
characterizes viscous friction, F is a generalized force, and G
is a gyrotropic tensor (Ẋ × G is the gyrotropic force) which
characterizes magnetization precession. Thus the dynamic
properties of the vortex state are similar to that of a two-
dimensional massless charged particle moving through a
medium with a viscosity tensor αD in the presence of an
in-plane electric field F and a perpendicular magnetic field

G.33 The “masslessness” of the dynamics is inherited from
Eq. (1). In the absence of disorder, such a dynamics can be
solved analytically by assuming harmonic oscillation for the
vortex core. 9–11,34

Assume that E has a quadratic dependence on the radial
position of the vortex core r so that F = −kr r̂, where k is
a constant which characterizes the shape of the potential in
which the vortex core gyrates. In polar coordinates, Eq. (2)
can be expressed in the following matrix form

α

(
Drr Drφ

Drφ Dφφ

) (
ṙ

rφ̇

)
=

(−kr + Grφ̇

−Gṙ

)
, (4)

where φ is the azimuthal angle of the vortex core position from
the gyration center.

Assuming r = r0 exp(−t/τ ) and φ = 2πf t , and by elimi-
nating k, we have

2πf τCα = 1, (5)

where C = Dφφ/(G + αDRφ). These four parameters, the
gyration frequency f , the decay time τ , the effective damping
parameter α, and the geometrical factor C, are the focus of
the subsequent analysis. A related analysis was carried out
by Compton et al.3,4 to model behavior of the precession
frequency f in the presence of a pinning potential. They
assumed that D and G were constant. Here, we focus on the
decay time, τ , which is also measurable and examine the extent
it is modified by changes in D, G, and the effective damping,
α. The geometrical factor C is related to the deformation of a
vortex structure, which is hard to measure but can be evaluated
in a simulation using Eq. (3). In analyzing measurements of the
decay time, it would be tempting to assume that C is constant
and ascribe the observed changes in f τ as due to changes in α.
Here, we test the degree to which that would be correct. Note
that Eq. (5) is explicitly independent of k, thus independent of
a specific potential shape in which a vortex gyrates. However,
each of the parameters in Eq. (5) depends on k. In particular
C depends on the vortex shape and hence does depend weakly
on k for the disks of interest here.

Now imagine a vortex gyration experiment in a disk with a
pinning potential at the center. When a large enough field pulse
is applied, a vortex gyrates outside of the pinning potential and
as the orbit decays, it is eventually trapped by the potential.
The frequency of the precession f and its decay time τ change
when the vortex becomes pinned

f0τ0

f τ
= αeff

α0

C

C0
, (6)

where αeff , f , τ , and C indicate values in the trapped region
while those with the subscript 0 indicate values in free region.
The frequency and decay time can be measured so if the
vortex geometry stays the same, that is, if C remains constant,
measurements of f and τ could be used to infer the change in
the effective damping constant. In Sec. IV, however, we will
show that C is not constant in the presence of disorder.

When the motion of the vortex is well described by
the collective coordinates, we expect that αeff = α0 = αG.
However, if other modes of the system are excited, the total
energy dissipation rate would increase leading to an increase
in the effective values of α and faster decay (smaller τ ). One
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of the goals of this work is to characterize this increase and
to compare it to the increase observed in the modeled motion
of vortex domain walls.28 In the subsequent sections, we use
micromagnetic simulations to study how the effective damping
is changed during the gyration motion and how it affects the
decay time of the gyration. We stress that the “real” damping
constant does not change, but the value consistent with the
collective coordinate description does.

B. Micromagnetic simulation

We compute the dynamics of the vortex state through
numerical solution of Eq. (1) using the Object Oriented Micro-
Magnetic Framework (OOMMF).35 We set up a Ni80Fe20 disk
with a 400-nm diameter and a 10-nm thickness, as shown
in Fig. 1(a). We use computational cells that are uniform
through the thickness and have an in-plane size of 2.5 nm.
For material constants, we use the saturation magnetization
Ms = 800 kA/m, damping constant αG = 0.01 and either a
fixed value of the exchange stiffness constant A = 13 pJ/m or
the exchange length lex = 5.7 nm. Note that

lex ≡ [
2A/

(
μ0M

2
s

)]1/2
. (7)

We tested the cell size dependence by studying a system
with reduced size—200 nm diameter and 5 nm thickness—and
compared the results of simulations with cell sizes 1.25 and
2.5 nm. We found that these simulations agree to within 5%
with no qualitative differences. Thus, for the bigger system we
treat in this article, with 400-nm diameter and 10-nm thickness,
we use a 2.5-nm cell size.

C. Disorder model

We motivate our model for disorder on the measurements in
Ref. 3. The article shows magnetic force microscopy images
that reveal thickness fluctuations with a characteristic length
scale of about 10 nm. Rather than dealing with a full-fledged
model of thickness fluctuations, we introduce disorder by
varying the saturation magnetization Ms while fixing either
A or lex. In the main text, we fix A and, in the Appendix, we
discuss the quantitative but not qualitative changes that occur
when we fix lex. We generate a random, white-noise model
for the variation of Ms and convolute it with a Gaussian that
has a width of 10 nm. A typical disorder image is shown in
Fig. 2(a), showing the smooth variation of Ms guaranteed
by the convolution. Regions with reduced magnetization,
intended to model thin parts of the sample, are shown in black
and tend to create pinning centers for the vortex core and
locally increase the gyration frequency as shown in Fig. 2(b).

To estimate realistic disorder amplitudes, we compute the
variation of the gyration frequencies to be compared with
the measurements in Ref. 3, which show a factor of 2 to 3
variation in resonance frequency as a vortex is scanned over
a disk-shaped sample. We compute the precession frequency
in the limit of low precession amplitudes as a function of Hx

and Hy , in correspondence with the experimental procedure.
In distinction to the experiment, we can view the equilibrium
position of the vortex in real space and plot the frequency as
a function of position to see the correlations with the disorder
image. The mapping from applied field to vortex position

FIG. 2. (Color online) (a) A typical disorder image with 10-nm
spatial correlation length and (b) contour maps of the gyration
frequency as a function of position. (a) Part of the saturation
magnetization within a Ni80Fe20 disk with a 400-nm diameter and
a 10-nm thickness. White indicates maxima in the magnetization and
black minima. These results are based on a model of the disorder
with D = 0.05 and a fixed exchange stiffness constant A. (b) The
gyration frequency according to the color scale on the right. To move
the vortex positions, in-plane static magnetic fields from −10 mT
to +10 mT along the x and y directions were applied. The gyration
frequency is obtained by applying a field pulse of 0.1 mT for 200 ps
along the y direction. The final location of the vortex core determines
the real space position used in the figure.

is responsible for the irregular grid seen in Fig. 2(b). For
these calculations, we characterize the size of the disorder
by the ratio of the standard deviation of the fluctuations
in the magnetization to the saturation magnetization, D =√

〈(M(r) − Ms)2〉/Ms . We limit the size of the fluctuations
to ensure that the magnetization stays positive. We find that
for a fixed A, a disorder value of D = 0.05 gives roughly
the same gyration frequency variation as the experiment. The
modeled frequency variation is shown in Fig. 2(b).

III. VORTEX GYRATION IN A DISORDERED FILM

First, we study the dynamics of vortex gyration in the
disordered sample shown in Fig. 2 for D = 0.05 with fixed A.
To move a vortex core to different positions, we apply in-plane
static magnetic fields to the sample. Maintaining the static
in-plane magnetic fields, we apply an additional Gaussian-type
field pulse of 20 mT along the y direction with a 1-ns full
width at half maximum to excite the gyration motion. This
pulse is large enough to induce a free vortex gyration with an
initial radius that is much larger than the disorder correlation
length. The gyration radius decreases with time because of the
energy dissipation through damping, and eventually the vortex
is trapped by the disorder potential when its gyration radius is
approximately the correlation length of the disorder potential,
which is 10 nm in the simulations.

Figure 3 shows the behavior of the gyration for vortex
center positions, A, B, and C in Fig. 2. Position A is in a
relatively flat region of the disorder potential, position C is
close to a minimum in the disorder potential, and position B
is intermediate between the two. Figure 3(a) shows the time
evolution of the gyration radius r . For “free” precession, before
the vortex becomes trapped, the gyration frequency and decay
rate are almost the same as the corresponding quantities in a
disk without disorder, and the vortex gyration motion is not
changed significantly by the disorder potential. As we discuss
in Sec. V, these results indicate that gyration in the “free”
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FIG. 3. (Color online) (a) Time evolution of gyration radius r for
the disordered sample in Fig. 2 at points A, B, and C for D = 0.05
with fixed A. To excite a vortex state, a Gaussian-type field pulse
of 20 mT with 1 ns of the full width at half maximum along the
y direction is applied. The black line is for the case without disorder.
The small amplitude oscillations are due to the excitation procedure,
which does not produce purely circular precession. (b) The gyration
frequency averaged from t = 2 ns to 12 ns as a function of field-pulse
amplitude at the points A, B, and C.

regime is minimally affected by disorder and there does not
appear to be an increase in the effective damping parameter in
this regime. This result is in stark contrast to the behavior found
for the motion of a vortex domain wall through a disorder
potential. This contrast will be discussed in more detail in
Sec. V. In the trapped regime, after approximately 90 ns, the
decay rate of the precession radius increases dramatically for
positions B and C, those points close to minima in the disorder
potential. This change in decay rate is associated with changes
in the precession rate.

Figure 3(b) shows the change of the gyration frequency
as the field-pulse amplitude is varied, by averaging over a
fixed interval (from t = 2 ns to 12 ns) after the pulse. At
small field-pulse amplitudes, the vortex gyrates about its
equilibrium position at points A, B and C with a frequency
characteristic of each pining site. At large pulse amplitudes,
the vortex core is depinned and gyrates with the frequency
of the free region. Between the two amplitudes, as a function
of field-pulse amplitude, there is a crossover above which the
gyration frequency drops to the value of the free region due
to depinning of the vortex core from the pinning site. Here,

the transition is gradual because, for some fields, the vortex
core does not completely escape the pinning potential and
may even, for slightly higher fields, become repinned during
the averaging interval. A related measurement in Ref. 4 shows
much more abrupt transitions in Fig. 10(b). However, there
are significant differences in the excitation pulse shape that
strongly affect transition width as illustrated in Fig. 10(d) in
that same article. Note that the crossover field here is a field
range corresponding to the vortex completely escaping the
pinning potential without being trapped again for a fixed time
interval. For a Gaussian field pulse with a 1-ns full width
at half maximum, the crossover field for the time average
between 2 and 12 ns is approximately 2 mT for points B
and C.

IV. GYRATION IN A SINGLE PINNING POTENTIAL

A. Numerical results

The existence of two regimes of motion of a vortex in a
disordered disk suggests that the behavior should be captured
by a simple model of a single pinning potential in the center of
an otherwise ideal disk. Extreme examples of such samples,
in which a hole has been fabricated in the disk have been
studied experimentally27,36 and theoretically.34 Theoretical
studies in Ref. 4 are similar to ours but focus on changes
in the gyration frequency. We choose the radius of the single
pinning potential to be rpin = 10 nm as a typical length scale of
the potential. Inside the potential, the magnetization increases
quadratically from the center. We characterize the potential
depth as the ratio of reduced magnetization at the center 	Mc

to the saturation magnetization Ms , δ = 	Mc/Ms . The vortex
gyration is excited by a Gaussian-type field pulse along the
y direction of 20 mT with a 1-ns full width at half maximum.
When the strength of the field pulse is large enough, the vortex
core gyrates outside of the pinning potential with a frequency
that is determined by the geometry of the disk. The radius of
the gyration decreases due to the energy dissipation through
damping. When the vortex core enters the pinning potential, it
is trapped by the potential and the gyration frequency changes.

Figure 4 shows the time evolution of the gyration radius
r , the gyration frequency f , and the deformation factor C for
depth ratios δ = 0,0.1,0.2,0.3, and 0.4 with fixed A. Here f is
obtained from the angular velocity of gyration motion and C is
calculated from Eq. (3). From the slope of the logarithm of r we
can obtain the decay time τ . When the gyration radius becomes
close to 10 nm, which is the radius of the pinning potential, τ ,
f , and C change, indicating that the vortex has become trapped
by the pinning potential. As δ increases, τ and C decrease
while f increases in the trapped regime. Note that additional
oscillations superimposed on the curves have a frequency of
twice the gyration frequency and originate because the short
pulse with which we excite the gyration leads to a slightly
elliptical orbit for the vortex core.

Figure 5 shows the evolution of the different factors in
Eq. (6) as the depth of the pinning potential is varied. Since
f and τ can be measured experimentally, for example, from
the Kerr microscopy analysis, it is tempting to attribute the
change in the decay to the change in the effective damping.
However, Fig. 5 shows that, in fact, most of the change is
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FIG. 4. (Color online) Time evolution of (a) gyration radius r ,
(b) gyration frequency f and (c) deformation factor C in a single pin-
ning potential of the radius 10 nm for the depth ratio δ = 0,0.1,0.2,0.3
and 0.4 with fixed A. The gyration is excited by a 1 ns pulse of
20 mT.

due to a change in the geometry of the vortex through the
factor C, which can be extracted from the simulations. In
fact, ignoring the changes in C would lead to the erroneous
conclusion that damping decreases as the depth of the well
increases for the case considered here. The actual values of
the enhancement rate depend on various factors such as the
type of disorder, geometry of samples, and material proper-
ties such as the saturation magnetization and the exchange
constant.

FIG. 5. (Color online) Enhancement ratio of f τ , C, and αeff as a
function of depth ratio δ for (a) fixed A and (b) fixed lex. Subscript 0
indicates values in the free region before trapping.

B. Radius dependence of the effective damping

Figure 6 shows the frequency dependence of the effective
damping for the different radii of the pinning potential rpin

with fixed A. As the frequency increases, the vortex gets more
excited increasing the effective damping. Note that its slope

0.0 0.5 1.0 1.5
1.0

1.1

1.2

rpin = 10 nm
rpin = 20 nm
rpin = 30 nm
rpin = 40 nm
rpin = 50 nm
rpin = 60 nm
rpin = 70 nm

f (GHz)

FIG. 6. (Color online) Frequency dependence of the effective
damping for fixed A and various pinning potential radii rpin = 10,
20, . . . 70 nm and depth ratios δ = 0,0.1,0.2,0.3,0.4. Solid lines
indicate values for constant rpin and dashed lines constant δ.
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increases as the radius of the pinning potential increases and
then saturates around rpin ≈ 60 nm, which is approximately
the distance from the center of a disk to the point where the
z component becomes zero, as shown in Fig. 1(b).

V. DISCUSSION

Disorder in magnetic samples can increase the energy
dissipation rate both for vortex gyration and domain wall
propagation as shown earlier.28 An important contribution to
this appears to occur when the motion through the disorder
excites additional degrees of freedom in addition to the overall
motion. We refer to these degrees of freedom as internal. If
these internal degrees of freedom are not included explicitly
in a collective coordinate model,33 they will typically lead to
an increase in the effective damping parameter that describes
the motion. Vortex gyration appears to give much smaller
increase in the effective damping than is found for domain
wall motion28 but may be more accessible experimentally.3,4

The modeling results described in this article agree with
the recent experiments and theoretical analysis in Refs. 3
and 4, demonstrating the frequency changes between the free
and trapped regimes. Perhaps not surprisingly, the transition
between high-amplitude and low-amplitude occurs when the
gyration radius is comparable to the correlation length. Here,
we focus not on the change of the frequencies between the two
regimes but on the change of the effective damping constant,
which is much smaller than that of the frequency.

Disorder has a negligible effect on the gyration decay rate
when the gyration amplitude is large. However, the decay
rate is increased by disorder when gyration amplitude is
small. While a naive interpretation would attribute changes
in the product of gyration frequency and decay time f τ to
changes in the effective damping parameter α, a more detailed
interpretation in the context of the collective coordinate
approach shows that the majority of the change in f τ is
due to disorder-induced changes in the deformation factor
C and that the change in α is modest. Even though the
change in the frequency can be successfully modeled assuming
the deformation factor C is constant, evaluating the effective
damping correctly requires detailed calculation.

Comparing these vortex gyration results with the results of
similar calculations on vortex wall propagation, it is clear that
the domain wall motion is more sensitive to disorder. For field
or current induced vortex wall propagation in the presence
of Ms fluctuations with fixed A,28 the effective damping
is enhanced almost two times for D = 0.05 (5% average
fluctuation of Ms). For vortex gyration in a single pinning
potential with fixed A, however, the damping is enhanced by
only 6% even for δ = 0.4 (40% of reduced magnetization at
the center), as shown in Fig. 5.

One possible reason for this difference is the appearance
of half antivortices in domain wall propagation. As the vortex
wall propagates either by field or current along a magnetic
nanowire, energy dissipates mostly through the motion of the
vortex core and two half antivortices.28 The relative motions of
these structures are examples of internal degrees of freedom.
When these are excited by moving in the disorder potential,
the energy dissipation rate increases. In a disk, on the other
hand, there are no antivortices, as seen in Fig. 1. When vortices

are driven to large amplitudes, antivortices can appear and can
lead to core reversal14 when the system is driven hard enough.
In the simulations we consider here, we are not in this regime
and the distortions of the vortex are relatively small. The lack
of antivortices in these simulations is consistent with a reduced
excitation of internal degrees of freedom as compared to the
vortex wall propagation, resulting in the smaller enhanced
effective damping.

In summary, we have demonstrated that disorder enhances
the effective damping, and the enhancement ratio can be
estimated up to the deformation factor by a vortex gyration
experiment in a magnetic disk with a single pinning potential
at the center. By measuring the frequency f and decay time τ

in free and trapped regions, we can estimate the enhancement
ratio of the effective damping times the deformation factor.
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APPENDIX: FIXED A VS FIXED lex

In this article we are using a simple approximation to
model the effect of thickness fluctuations. Since the important
energies in the problem are the magnetostatic (stray field)
energy, the Zeeman energy, and the exchange energy, we can
capture the changes in the first two by locally varying the
saturation magnetization Ms . In the main body of the text,
we report results for vortex gyration as we model thickness
variations by changing Ms while keeping the exchange
constant A constant. An alternate approach would be to keep
the exchange length lex = [2A/(μ0M

2
s )]1/2 constant. In this

appendix, we describe the quantitative but not qualitative
changes that result.

For a fixed lex, a disorder value of D = 0.0125 gives a
similar variation in gyration frequency as a value of D = 0.05
for constant A. We attribute the higher sensitivity to disorder
with fixed lex to changes in exchange energy in the region
outside the vortex core. Briefly, Eq. (7) shows that A becomes
a function of Ms when lex is fixed. Consequently, the exchange
energy associated with the curling of the magnetization around
the vortex core decreases when Ms decreases.

For a single pinning potential, simulations for the fixed
lex case show similar trends as seen in Fig. 4 but with larger
frequency and smaller decay time compared with the fixed
A case. In addition, we see in Fig. 5(b) that the fixed lex case
leads to a smaller change in the effective damping for a given
change in f τ as compared to the fixed A case.

To understand the difference between Ms fluctuations with
fixed A and those with fixed lex, consider a simple model of
a vortex in a thin film disk with thickness z. We estimate
the core energy and how it varies with the reduction in the
magnetization in the pinning potential for both fixed A and
fixed lex. We model the pinning potential as a circular region
of radius rpin of uniformly reduced magnetization Mpin. We
assume that the vortex can be described as a core region within
a radius rc where the magnetization points out of plane, and
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an outer region r > rc where the magnetization is directed
azimuthally. Our approach is to estimate the change in vortex
energy as Mpin is varied in the pinning potential region, r <

rpin. For simplicity, we just consider the case for rc < rpin.
In the core region, the magnetization is uniform, and the

energy density is magnetostatic, thus we can approximate the
energy of the core as

Ecore = πr2
c z 1

2μ0M
2
pin. (A1)

In this expression we have assumed that z � rc for simplicity.
The divergence of the magnetization in the outside region,

r > rc, is zero and the magnetization is perpendicular to the
stray fields from the core region, so the energy in the outside
region is entirely exchange energy. Since the magnetization
outside rpin does not depend on Mpin and the geometry of the
vortex is fixed (exactly in this simple model and approximately
in a full simulation), the energy of the magnetization from rpin

out to R, the radius of the disk, does not change. Ignoring that
constant contribution leaves the Mpin-dependent change in the
exchange energy from rc to rpin

Eoutside =
∫

dv
A

M2
pin

(
dM
dx

)2

= 2πzA ln(rpin/rc). (A2)

As a further approximation, we ignore any exchange energy
associated with the sharp transition from vertical to in-plane
magnetization at the core boundary, rc.

So far, the core radius has been left as a variable, and we
determine its value by minimizing the total energy Etotal =
Ecore + Eoutside. The result is

rc,min =
√

2A

μ0M2
pin

≡ lex, (A3)

and the minimized energy is

Etotal = πzA

[
1 + ln

(
r2

pinμ0M
2
pin

2A

)]
(A4)

or, equivalently,

Etotal = πl2
exz

1

2
μ0M

2
pin

[
1 + 2 ln

(
rpin

lex

)]
. (A5)

Therefore, from Eqs. (A4) and (A5), the ratio of
the total energy changes using constant A compared to
constant lex is

dEtotal
dMpin

∣∣∣
lex

dEtotal
dMpin

∣∣∣
A

= 1 + 2 ln

(
rpin

lex

)
. (A6)

For rpin = 10 nm and lex = 5.7 nm, the ratio is ≈2.1. That is,
the energy is more sensitive to variations in Mpin for fixed lex

than for fixed A.
With A fixed, a decrease in Mpin results in an expansion

of the core radius [see Eq. (A3)] such that the decreased
magnetostatic energy density within the core is compensated
by an increased core volume, yielding no net change in the
magnetostatic energy. The net energy change is due to a
decrease in the exchange energy as the region rc < r < rpin

becomes smaller as rc increases.
In contrast, for fixed lex, the geometry of the core is fixed,

and there is a decrease in the magnetostatic energy of the
core associated with a decrease in Mpin. Further, with lex

fixed it can be seen from (A3) that A must decrease with
Mpin, and this results in reduced exchange energy calculated
in the region rc < r < rpin.
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