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Effect of a dc bias magnetic field on the magnetization relaxation of antiferromagnetic nanoparticles
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The relaxation of the magnetization of antiferromagnetic nanoparticles owing to thermal agitation is treated via
the Fokker-Planck equation describing the evolution of the distribution function of the magnetization orientations
of an individual nanoparticle. By solving this equation using matrix-continued fractions, the correlation function
of the longitudinal component of the magnetization, its characteristic relaxation times, and dynamic susceptibility
are calculated for arbitrary dc field orientations across wide ranges of frequencies, temperatures, and damping.
Furthermore, a simple analytic equation for the dynamic susceptibility at low frequencies is also proposed. It
is shown that a dc field applied at an angle to the easy axis of the particle alters essentially the magnetization
dynamics of the particle owing to coupling of the magnetization reversal mode with the precessional modes.
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I. INTRODUCTION

Fine ferromagnetic particles are characterized by thermal
instability1 of their magnetization resulting in spontaneous
change in their orientation from one metastable state to
another by surmounting energy barriers, giving rise to
superparamagnetism.2,3 For antiferromagnetic nanoparticles,
the ensuing thermal instability of the magnetization may differ
in many respects from those of ferromagnetic nanoparticles
because of the intrinsic properties of antiferromagnetic mate-
rials. Moreover, the magnetic behavior of antiferromagnetic
nanoparticles can be quite different from that observed in
the bulk.4,5 The basic theory of antiferromagnetic nanopar-
ticles was developed by Néel,6,7 who concluded that total
magnetic compensation of the sublattices in antiferromagnetic
nanoparticles is not possible for a number of reasons, namely,
unequal numbers of spins in crystal planes, spin frustration
near the surface, lattice defects, etc. Hence, an equilibrium
magnetization should ensue in such particles, moreover, they
should become superparamagnetic at a finite temperature just
as ferromagnetic nanoparticles. According to Néel,6,7 the so-
called superantiferromagnetism arises in a nanoparticle with
an even number of sublattice planes, causing an appreciable
increase in transverse susceptibility in comparison to that
of a massive sample. An understanding of the dynamics
of the magnetization of the antiferromagnetic particles is
essential owing to their role played in various areas of science
and technology such as spintronics, biomedical applications,
catalysis, etc.4

The initial analytic treatment of the thermal fluctuations of
the magnetization of fine magnetic particles owing to Néel1

based on the classical transition state theory was further
developed by Brown8,9 and is consequently known as the
Néel-Brown theory. This treatment utilizes the classical theory
of Brownian motion with the Landau-Lifshitz-Gilbert equation
augmented by white-noise fields as Langevin equation govern-
ing the stochastic magnetization dynamics.10 This equation
is then used to derive the particular Fokker-Planck equation
describing the time evolution of the probability density
function of magnetization orientations. At temperatures much
lower than the ordering (Néel) temperature TN , this theory
may be adapted to antiferromagnetic nanoparticles, as has
been suggested by Raikher and Stepanov4 in connection with

the low-frequency magnetodynamics of antiferromagnetic
nanoparticles suspended in a fluid by means of a kinetic
model for the magnetization relaxation in the high magnetic
anisotropy limit. For an antiferromagnetic particle subjected to
a dc magnetic field H, the magnetic moments of the sublattices
m1 and m2 are given by4

m1,2 = u[vMS ± μ/2 − vχA(u · H)/2],

where MS is the sublattice magnetization in a bulk, χA is
a parameter characterizing the induced magnetic moment of
the particle, u = (m1 − m2)/2vMS is the unit vector along
the decompensation magnetic moment μ = uμ, and v is the
particle volume. The free energy of the particle subjected to a
dc magnetic field H applied at an angle to the easy axis is

V (ϑ,ϕ) = β−1σ [sin2 ϑ − 2h(γ1 sin ϑ cos ϕ

+ γ2 sin ϑ sin ϕ + γ3 cos ϑ)

+ 2σh2ζ (γ1 sin ϑ cos ϕ

+ γ2 sin ϑ sin ϕ + γ3 cos ϑ)2], (1)

where ϑ and ϕ are the polar and azimuthal angles of the
spherical coordinate system, β = (kT )−1, k is Boltzmann’s
constant, T is the absolute temperature, σ = vβK is the dimen-
sionless anisotropy parameter, K is the anisotropy constant,
h = μH/(2vK) is the applied-field parameter, ζ = vχA/βμ2

is the “antiferromagnetic” parameter, and γ1, γ2, γ3 are the
direction cosines of the vector H. As long as the applied
field H is much weaker than the exchange field, the only
possible motion of the vector μ is rotation that may be treated
using the Brown model.8,9 Thus the magnetization dynamics
are governed by a Fokker-Planck equation for the probability
density function W (μ,t) of μ, viz.,

∂

∂t
W = LFPW = 1

2τN

{β[α−1u · (∇V × ∇W )

+∇ · (W∇V )] + ∇2W }, (2)

where LFP is the Fokker-Planck operator, ∇ = ∂u is the
gradient operator on the unit sphere, τN is the free diffusion
time of the magnetization, and α is the dimensionless damping
parameter.
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When a dc magnetic field is parallel to the easy axis
of the particle, i.e., γ1 = γ2 = 0, γ3 = 1, the free energy
Eq. (1) is independent of the azimuthal angle ϕ. Owing to axial
symmetry, no dynamical coupling between the longitudinal
and the transverse modes of motion exists, so that for the
longitudinal relaxation Eq. (2) reduces to a single-variable
Fokker-Planck equation for the distribution function W (ϑ,t),
namely,4,11

∂

∂t
W = 1

2τN sin ϑ

∂

∂ϑ

[
sin ϑ

(
∂W

∂ϑ
+ βW

∂V

∂ϑ

)]
. (3)

This axially symmetric case has been considered recently by
Raikher and Stepanov;4 by solving Eqs. (2) and (3), they
have calculated numerically the longitudinal and transverse
dynamic susceptibilities and corresponding integral relaxation
times.

The goal of the present paper is to study the longitu-
dinal relaxation of the magnetization of antiferromagnetic
nanoparticles subjected to a dc magnetic field applied at an
arbitrary angle to the easy axis of a particle (so that the
axial symmetry is broken). We present results of calculations
of the longitudinal complex magnetic susceptibility χ (ω)
of an antiferromagnetic particle and characteristic relaxation
times of the magnetization in broad temperature and damping
ranges. In particular, we calculate the reversal, effective, and
integral relaxation times that characterize, respectively, the
long, short, and overall behavior of the magnetization. The
calculations are mainly accomplished by using the matrix-
continued fractions,10 however, simple analytic equations for
the low- and high-frequency parts of the spectrum χ (ω) and
relaxation times are also obtained. In the low-temperature
limit, our matrix-continued fraction solution for the rever-
sal time of the magnetization τ agrees with independent
analytic estimates of Ouari et al.,11 who have evaluated τ

of antiferromagnetic nanoparticles by adapting the Kramers
escape rate theory12,13 to fine ferromagnetic particles given by
Coffey et al.14 We remark in passing that in the limiting case
ζ = 0, the free energy from Eq. (1) reduces to that of uniaxial
superparamagnets; this case has been treated in Refs. 10 and
15–19.

II. BASIC EQUATIONS

A concise theoretical description of the longitudinal relax-
ation of the magnetization in antiferromagnetic nanoparticles
can be given by linear response theory (see Ref. 10, Chap. 2).
Here it is supposed that a particle in the presence of a strong
uniform magnetic field H is subjected in addition to a small
probe field H1 [β(μ · H1) � 1] parallel to H. Then the decay
of the longitudinal component of the averaged magnetization
〈M||〉(t) = v−1〈μ||〉(t) of the particle, when the field H1 has
been switched off at time t = 0, is10

〈M‖〉(t) − 〈M‖〉0 = χC‖(t)H1, (4)

where C‖(t) is the normalized relaxation (correlation) function
of the longitudinal component of the magnetization defined as

C‖(t) = 〈M‖(0)M‖(t)〉0 − 〈M‖(0)〉2
0

〈M2
‖ (0)〉0 − 〈M‖(0)〉2

0

=
k=∞∑
k=1

cke
−λkt . (5)

λk are the eigenvalues of the Fokker-Planck operator LFP in
Eq. (2),

∑k=∞
k=1 ck = 1, χ = vβ[〈M2

‖ (0)〉0 − 〈M‖(0)〉2
0] is the

static susceptibility of the particle, and the brackets 〈 〉 and 〈 〉0

denote the nonequilibrium and equilibrium ensemble averages,
respectively. The equilibrium ensemble averages are defined
as 〈A〉0 = Z−1

∫ 2π

0

∫ π

0 A(ϑ,ϕ)e−βV (ϑ,ϕ) sin ϑ dϑ dϕ (Z is the
partition function). Having determined C‖(t), one can calculate
the longitudinal dynamic susceptibility of the particle χ (ω) =
χ ′(ω) − iχ ′′(ω) given by10

χ (ω)

χ
= 1 − iω

∫ ∞

0
e−iωtC‖(t)dt =

k=∞∑
k=1

ck

1 + iω/λk

. (6)

The dynamic susceptibility characterize the response of the
particle to a weak ac probe field H1(t) = H1 cos ωt , viz.,

〈M‖〉(t) − 〈M‖〉0 = H1[χ ′(ω) cos ωt + χ ′′(ω) sin ωt].

Both χ ′(ω) and χ ′′(ω) can be measured experimentally.
The asymptotic behavior of χ (ω) in the extremes of very

low and very high frequencies is

χ (ω)

χ
∼

{
1 − iωτcor + · · · , ω → 0,

−i (ωτef)−1 + · · · , ω → ∞,
(7)

where

τcor =
k=∞∑
k=1

ck/λk and τef =
(

k=∞∑
k=1

ckλk

)−1

. (8)

We remark that the relaxation times so defined τcor and τef

parametrize the time behavior of C‖(t). The integral relaxation
time τcor, which can be also defined as the area under C‖(t),
viz.,10

τcor =
∫ ∞

0
C‖(t)dt, (9)

characterizes the overall behavior of C‖(t) while the effective
relaxation time τef yields precise information on the initial
decay of C‖(t), namely,

τef = −1/Ċ‖(0). (10)

The relaxation times τcor and τef contain contributions from
all the eigenvalues λk of the Fokker-Planck operator LFP. The
smallest nonvanishing eigenvalue λ1 is associated with the
slowest interwell (or overbarrier) relaxation mode and so with
the reversal time of the magnetization τ = 1/λ1; the other
eigenvalues λk characterize high-frequency “intrawell” modes.
The dependences of the effective relaxation time τef on the
model parameters (external field and anisotropy constants)
may differ considerably from those of τcor and τ as τef is not
governed by λ1. The effective relaxation time τef can also be
expressed in terms of equilibrium averages as10

τef = 2τN

〈u2
‖〉0 − 〈u‖〉2

0

1 − 〈u2
‖〉0

, (11)

where u‖ = cos ψ cos ϑ + sin ψ sin ϑ cos ϕ. Here and be-
low without loss of generality it is supposed that the field H
is in the xz plane so that the direction cosines in Eq. (1) are
γ1 = sin ψ , γ2 = 0, and γ3 = cos ψ , where ψ is the angle
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between H and the Z axis is taken as the easy axis of the
particle.

The reversal and integral relaxation times can be used to
evaluate the low-frequency dynamics of the magnetization
by using a single-mode approximation.10 According to this
approximation, the dynamic susceptibility χ (ω) given as an
infinite series of Lorenzians, Eq. (6), may be approximated at
low frequencies by a single Lorentzian,10

χ (ω)

χ
≈ 1 − iωτcor

1 + iωτ
, (12)

guaranteeing the correct asymptotic behavior of χ (ω) at low
frequencies ωτ � 1 [cf. Eq. (7)].

III. CALCULATION OF THE OBSERVABLES

By applying the method of solution of the Fokker-Planck
equation (2) developed in Ref. 20, one can obtain 25 terms
differential-recurrence equation for the relaxation functions
cl,m(t) = 〈Yl,m〉(t) − 〈Yl,m〉0 governing the dynamics of the
magnetization, viz.,

d

dt
cl,m(t) =

2∑
r,s=−2

dl,m,l+r,m+scl+r,m+s(t), (13)

where Yl,m(ϑ,ϕ) are the spherical harmonics and dl,m,l′,m′ are
the matrix elements of the Fokker-Planck operator in Eq. (2).
Details of the derivation of Eq. (13) for an arbitrary free energy
V (ϑ,ϕ) are given in Refs. 10 and 20. The dl,m,l′,m′ for V (ϑ,ϕ)
from Eq. (1) are listed in the Appendix.

Equation (13) can be solved exactly for the one-sided
Fourier transforms c̃l,m(ω) = ∫ ∞

0 cl,m(t)e−iωt dt by matrix-
continued fractions (see the Appendix). Having deter-
mined c̃l,m(ω), we can evaluate the spectrum C‖(ω) =∫ ∞

0 e−iωtC‖(t)dt of the longitudinal relaxation function C‖(t)
as

C̃‖(ω)

=
√

2γ3c̃1,0(ω) − (γ1 − iγ2)c̃1,1(ω) + (γ1 + iγ2)c̃1,−1(ω)√
2γ3c1,0(0) − (γ1 − iγ2)c1,1(0) + (γ1 + iγ2)c1,−1(0)

,

(14)

as well as the dynamic susceptibility χ (ω) from Eq. (6).
Moreover, by using matrix-continued fractions, we can also
evaluate the integral relaxation time

τcor = C̃‖(0), (15)

and the smallest nonvanishing eigenvalue λ1 of the Fokker-
Planck operator and consequently the reversal time τ = 1/λ1

(see the Appendix).
Now the smallest nonvanishing eigenvalue λ1 characterizes

the slowest overbarrier relaxation mode and, hence, the
long-time behavior of the magnetization. In order to find a
low-temperature (high barrier) asymptotic estimate for λ1 of
the Fokker-Planck operator LFP in Eq. (2), Brown9 and Smith
and De Rozario21 adapted to magnetic relaxation an ingenious
method originally proposed by Kramers12,13 for thermally
activated escape of point Brownian particles from a potential
well. Thus they estimated the superparamagnetic relaxation
time τ = 1/λ1 in the so-called intermediate-to-high damping

(IHD) limit (α � 1). Later, Klik and Gunther22,23 derived the
corresponding formula for τ in the very low damping limit
(α � 1). Finally, Coffey et al.14 have obtained the asymptotic
formula for τ , which is valid for all values of damping.
The results of Coffey et al.14 agree closely with numerical
solutions of the Fokker-Planck equation (2) (Refs. 18 and 24)
and Langevin dynamics simulations25–27 of the magnetization
reversal time for a variety of magnetocrystalline anisotropy
potentials (cubic, biaxial, etc.); they also have been success-
fully compared with experiments on the angular variation
of the switching field for individual Co and BaFeCoTiO
particles.28 For antiferromagnetic nanoparticles with the free
energy, Eq. (1), the reversal time of the magnetization τ have
been estimated analytically by Ouari et al.11 by using the
approach of Coffey et al.14 as

τ ∼ τIHD
A(αS1 + αS2)

A(αS1)A(αS2)
, (16)

where τIHD is the reversal time in the IHD limit, α � 1,
S1,2 are the dimensionless actions, and A(δ) is the so-called
depopulation factor14 (equations for τIHD, A, and S1,2 are given
in Ref. 11).

For the axially symmetric case, γ1 = γ2 = 0, γ3 = 1, all
equations for the relaxation times can be simplified. So using
the mean first passage method, Ouari et al..11 have derived
from Eq. (3) the analytic equation for the reversal time τ in
the low-temperature limit, viz.,

τ ∼ τN

√
πeσ ′(1−ξ/2σ ′)2

σ ′3/2[1 − (ξ/2σ ′)2][1 − ξ/2σ ′ + (1 + ξ/2σ ′)e−2ξ ]
,

(17)

where σ ′ = σ − ξ 2ζ/2 is an effective anisotropy constant. For
axial symmetry, Eq. (16) is no longer valid. If the departures
from axial symmetry are small, the nonaxially symmetric
asymptotic Eq. (16) for the reversal time may be smoothly
connected to the axially symmetric results given in Eq. (17) by
means of suitable bridging integrals.14 Yet another method of
treatment of the uniaxial-nonuniaxial crossover, which does
not need bridging integrals, was proposed by Usov.29 Now,
because the dynamics of the system are governed by a single
variable ϑ , the integral relaxation time τcor = C̃‖(0) can also
be calculated from the analytic equation as (see Ref. 10,
Chap. 2, Sec. 2.10 for details)

τcor = 2τN

Z
(〈cos2 ϑ〉0 − 〈cos ϑ〉2

0

)
×

∫ 1

−1

[∫ z

−1
(z′ − 〈cos ϑ〉0)e−βV (z′) dz′

]2
eβV (z)

1 − z2
dz,

(18)

where βV (z) = −σ ′z2 − ξz, z = cos ϑ , ξ = βμH is the
external field parameter,

〈cos ϑ〉0 = 1

Z

∫ 1

−1
xe−βV (x) dx = eσ ′ sinh(2σ ′h′)

σ ′Z
− h′,

(19)
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〈cos2 ϑ〉0 = 1

Z

∫ 1

−1
x2e−βV (x) dx

= eσ ′
[cosh(2σ ′h′) − h sinh(2σ ′h′)]

σZ′ + h′2 − 1

2σ ′ ,

Z =
∫ 1

−1
e−βV (z)dz = 1

2

√
π

σ ′ e
−σ ′h′2

×{erfi[(1 + h′)
√

σ ′] + erfi[(1 − h′)
√

σ ′]}, (20)

is the partition function, h′ = ξ/(2σ ′), and erfi(z) =
(2/

√
π )

∫ z

0 et2
dt is the error function of imaginary argument.

Finally, the effective relaxation time τef from Eq. (11) is given
by

τef = 2τN

〈cos2 ϑ〉0 − 〈cos2 ϑ〉2
0

1 − 〈cos2 ϑ〉0
, (21)

where 〈cos ϑ〉0 and 〈cos2 ϑ〉0 are defined by Eqs. (19) and
(20), respectively.

IV. RESULTS AND DISCUSSION

The inverse of the smallest nonvanishing eigenvalue of the
Fokker-Planck equation λ−1

1 , the integral relaxation time τcor

(both calculated with the matrix-continued fraction method),
and the reversal time τ predicted by Eq. (16) as functions
of the anisotropy (or the inverse temperature) parameter σ

are shown in Fig. 1 for various values of the external field
parameter parameters h. As is apparent from Fig. 1, with
increasing h, the integral relaxation time τcor may have a
behavior dramatically different from that of λ−1

1 above certain
critical values of the parameters hc. In particular, if the dc
field parameter h exceeds hc nevertheless well below that
destroying the bistable potential structure of the potential, then
τ may differ exponentially from τcor owing to the so-called
depletion effect.30 This effect is qualitatively similar to that
for ferromagnetic nanoparticles.10,30 The integral relaxation
time τcor as functions of the antiferromagnetic parameter
ζ calculated numerically by the matrix-continued fraction
method are shown in Fig. 2 for various values of the oblique
angle ψ . This figure demonstrates that the variations in the
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FIG. 1. (Color online) τcor/τN and (λ1τN )−1 vs the anisotropy
(inverse temperature) parameter σ for ζ = 0.1, α = 0.01, ψ = π/4,
and various values of the field parameter h. Solid lines 1–3: Matrix-
continued fraction solution for τcor/τN , Eqs. (9) and (15). Dashed
lines: Eq. (16). Symbols: Eq. (A3).
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FIG. 2. (Color online) τcor/τN vs the antiferromagnetic parameter
ζ for σ = 10, α = 1, h = 0.3, and various values of the angle ψ .

antiferromagnetic parameter ς have a very pronounced effect
on the relaxation process.

Figures 3 and 4 illustrate the results of the calculation of the
imaginary part of the susceptibility χ ′′(ω) = χω Re[C̃‖(ω)] for
α = 1 (moderate damping) and various values of the model
parameters σ , ψ , and h, using the matrix-continued fraction
solution and the approximate Eq. (12). These figures indicate
that at α � 1 only two distinct dispersion bands appear in
the spectrum of χ ′′(ω). The low-frequency relaxation band
of χ ′′(ω) is dominated by the barrier crossing mode so that
the characteristic frequency ω1 and half-width �ω1 of this
band are completely determined by the smallest nonvanishing
eigenvalue λ1. In addition, a far weaker second relaxation band
appears at high frequencies. This relaxation band is owing
to the individual near degenerate high-frequency “intrawell”
modes corresponding to the eigenvalues λk � λ1. At low
fields, the amplitude of this band is far weaker than that of
the first band. However, in a strong magnetic field, this band
can dominate in the spectrum χ ′′(ω) [Fig. 4(a)].
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FIG. 3. (Color online) −Im[χ (ω)] vs ωτN (a) for α = 1, h = 0.2,
ζ = 0.3, σ = 10, and various values of ψ and (b) for h = 0.2, α = 1,
σ = 10, ψ = π/4 and various values of ζ . Solid lines: Matrix-
continued fraction solution, Eqs. (6) and (14). Symbols: Eq. (12);
dotted and dashed lines: Eqs. (7), (9), and (11).
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FIG. 4. (Color online) −Im[χ (ω)] vs ωτN (a) for σ = 15, α = 1
(moderate damping), ζ = 0.15, ψ = 0, and various values of the field
parameter h and (b) for h = 0.3, α = 1, ζ = 0.15, ψ =π/4, and various
values of the anisotropy parameter σ . Solid lines: Matrix-continued
fraction solution, Eqs. (6) and (14). Symbols: Eq. (12); dotted and
dashed lines: Eqs. (7), (9), and (11).

At low damping α � 1, there is an inherent geometric
dependence of χ ′′(ω) on the value of α arising from the
coupling of the longitudinal and transverse relaxation modes.
This coupling appears in the dynamical equation of motion
and results in the appearance of the third antiferromagnetic
resonance peak in the spectrum of χ ′′(ω) owing to excitation
of transverse (precessional) modes with characteristic frequen-
cies close to the precession frequency of the magnetization
(see Figs. 5–7). This peak appears only at low damping
(α � 1) and strongly manifests itself at high frequencies.
As α decreases, the peak shifts to higher frequencies and its
half-width decreases (in our normalized units, see Fig. 5).
Clearly, in Figs. 5–7, the agreement between the numerical
calculation and Eq. (12) is very good at low frequencies
because the low-frequency response is mainly determined by
the overbarrier relaxation mode.

Our results demonstrate that variations in the bias field
parameter h and antiferromagnetic parameter ζ significantly
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FIG. 5. (Color online) −Im[χ (ω)] vs ωτN for α = 0.01, σ = 10,
ζ = 0.2, ψ = π/4, and various values of h. Solid lines: Matrix-
continued fraction solution, Eqs. (6) and (14). Symbols: Eq. (12);
dotted and dashed lines: Eqs. (7), (9), and (11).
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FIG. 6. (Color online) −Im[χ (ω)] vs ωτN for α = 0.01, h = 0.2,
ζ = 0.2, ψ = π/4, and various values of σ . Solid lines: Matrix-
continued fraction solution, Eqs. (6) and (14). Symbols: Eq. (12);
dotted and dashed lines: Eqs. (7), (9), and (11).

affect the magnetization relaxation process. These parameters
are controlled, respectively, by the decompensation magnetic
moment μ and parameter χA, characterizing the induced
magnetic moment of the particle. In our calculations, μ and
χA were considered as model parameters. Conversely, μ can
be estimated for randomly oriented spins as4 μ ∼ zμBN1/2,
where z is the number of uncompensated spins per atoms, μB

is the Bohr magneton, and N is the number of magnetic atoms.
Simple estimations show4 that the effective spontaneous
magnetization of antiferromagnetic nanoparticles ranges from
several tenths to several units of gauss, i.e., it is of the same
order of magnitude as the magnetization of weak ferromagnets.
Furthermore, μ and χA as well as their temperature dependence
also can be obtained experimentally from static magnetic
measurements.31

In conclusion, we have treated the longitudinal relaxation
of the magnetization of antiferromagnetic particles subjected
to a uniform external field H applied at an arbitrary angle
to the easy axis of the particle (so that the axial symmetry
is broken) by using the kinetic model suggested by Raikher
and Stepanov.4 Numerically exact calculations of the observ-
ables (dynamic magnetic susceptibility, relaxation times of

10−2 100 102 104

10−4

10−3

10−2

ψ = = = = π/4, α = 0.01, σ = 10, h = 0.2

ωτΝ

1:: : : ζ =  0.0

2:: : : ζ =  0.2

3: ζ =  0.3

4: ζ =  0.4

3

2

4

1−Ι
m

[χ
( ω

)]

FIG. 7. (Color online) −Im[χ (ω)] vs ωτN for α = 0.01, h =
0.2, σ = 10, ψ = π/4, and various values of the antiferromagnetic
parameter ζ . Solid lines: Matrix-continued fraction solution, Eqs. (6)
and (14). Symbols: Eq. (12); dotted and dashed lines: Eqs. (7), (9),
and (11).
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the magnetization, etc.) have been accomplished by using
an effective matrix-continued fraction method. The main
advantage of this method is that it allows us to evaluate the
quantity of interest [χ (ω), etc.] in wide ranges of damping and
temperatures including relatively high temperatures, where
asymptotic approaches (such as that owing to Kramers) are
no longer applicable. We have shown that the magnetization
dynamics in the presence of thermal agitation are very sensitive
to both the dc field strength and orientation and damping owing
to the coupling between the precession of the magnetization
and its thermally activated reversal over the saddle point. In
particular, the pronounced damping and dc field dependence
of χ (ω) can be used to determine the damping coefficient α

just as for uniaxial superparamagnets.19,28 Furthermore, we
have shown that the simple analytic Eq. (12) provides an
accurate description of the dynamic susceptibility χ (ω) of
antiferromagnetic nanoparticles at low frequencies (ωτ � 1).
This implies that the long-time behavior (τ � t) of the
longitudinal component of the magnetization 〈M‖〉(t) may
be accurately approximated by a single exponential, viz.,
〈M‖〉(t) − 〈M‖〉0 ∼ exp(−t/τ ) with the relaxation time τ from
Eq. (16).

Here we have restricted ourselves to the study of a single
particle. For practical applications, in order to account for
the polydispersity of the particles of a real sample and
the fact the particles are randomly oriented in space, one
must also average the reversal time, dynamic susceptibility,
etc., over appropriate distribution functions (averaging over
particle volumes and orientations can be readily accomplished
numerically by using Gaussian quadratures). Our approach
also can be used to estimate other physical parameters, such as
angular and temperature variations in the switching field of an
individual nanoparticle and nonlinear dynamic susceptibilities.
Furthermore, our results can be used to study stochastic
resonance32 and dynamic hysteresis33 in antiferromagnetic
nanoparticles, which may differ essentially from those in fine
ferromagnetic particles.34–37
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APPENDIX: MATRIX-CONTINUED FRACTION SOLUTION

Equation (13) can be transformed into the tree-term vector
recurrence equation

τN

d

dt
Cn(t) = Q−

n Cn−1(t) + QnCn(t) + Q+
n Cn+1(t). (A1)

Here the column vectors Cn(t) are arranged from cn,m(t), viz.,

C0(t) = 0, Cn(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2n,−2n(t)

c2n,−2n+1(t)
...

c2n,2n(t)

c2n−1,−2n+1(t)

c2n−1,−2n+2(t)
...

c2n−1,2n−1(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

while the matrices Qn, Q+
n , Q−

n are defined as

Qn =
(

X2n W2n

Y2n−1 X2n−1

)
, Q+

n =
(

Z2n Y2n

0 Z2n−1

)
,

Q−
n =

(
V2n 0

W2n−1 V2n−1

)
.

In turn, the matrices Qn, Q+
n , Q−

n consist of submatrices Vl ,
Wl , Xl Yl , and Zl , which have the dimensions (2l + 1) × (2l −
3), (2l + 1) × (2l − 1), (2l + 1) × (2l + 1), (2l + 1) × (2l +
3), and (2l + 1) × (2l + 5), respectively. The elements of these
submatrices are expressed in terms of the matrix elements of
the Fokker-Planck operator dl,m,l′,m′ and are given by

(Vl)n,m = δn−4,mv−−
l,−l+m+3 + δn−3,mv−

l,−l+m+2

+ δn−2,mvl,−l+m+1 + δn−1,mv+
l,−l+m + δn,mv++

l,−l+m−1,

(Wl)n,m = δn−3,mw−−
l,−l+m+2 + δn−2,mw−

l,−l+m+1+δn−1,mwl,−l+m

+ δn,mw+
l,−l+m−1 + δn+1,mw++

l,−l+m−2,

(Xl)n,m = δn−2,mx−−
l,−l+m+1 + δn−1,mx−

l,−l+m + δn,mxl,−l+m−1

+ δn+1,mx+
l,−l+m−2 + δn+2,mx++

l,−l+m−3,

(Yl)n,m = δn−1,my−−
l,−l+m + δn,my−

l,−l+m−1 + δn+1,myl,−l+m−2

+ δn+2,my+
l,−l+m−3 + δn+3,my++

l,−l+m−4,

(Zl)n,m = δn,mz−−
l,−l+m−1 + δn+1,mz−

l,−l+m−2 + δn+2,mzl,−l+m−3

+ δn+3,mz+
l,−l+m−4 + δn+4,mz++

l,−l+m−5,

where

xn,m = −n(n + 1)

2
− i

hmσγ3

α
+ σ

[
h2ζσ

(
1 − 3γ 2

3

) + 1
] n(n + 1) − 3m2

(2n − 1) (2n + 3)
,

x−
n,m

x+
n,m

= ± (γ1 ± iγ2) hσ

[
3hζγ3σ (2m ∓ 1)

(2n − 1)(2n + 3)
∓ i

2α

] √
(n + 1 ∓ m) (n ± m),

x−−
n,m

x++
n,m

= 3ζh2 (γ1 ± iγ2)2 σ 2

2(2n − 1)(2n + 3)

√
(n − 1 ± m) (n ± m) (n + 1 ∓ m) (n + 2 ∓ m),
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yn,m = −σh

(
nγ3 + m

ζhσ
(
3γ 2

3 − 1
) − 1

iα

) √
(n + 1)2 − m2

(2n + 1) (2n + 3)
,

y−
n,m

y+
n,m

= hσ (γ1 ± iγ2)

[
ihζγ3σ

α
(n ± 2m) ∓ n

2

] √
(n + 1 ∓ m) (n + 2 ∓ m)

(2n + 1) (2n + 3)
,

y−−
n,m

y++
n,m

= ± ih2ζσ 2 (γ1 ± iγ2)2

2α

√
(n ± m) (n + 1 ∓ m) (n + 2 ∓ m) (n + 3 ∓ m)

(2n + 1) (2n + 3)
,

wn,m = σ
[
γ3hα(n + 1) + im[h2ζ

(
3γ 2

3 − 1
)
σ − 1]

]
2

√
n2 − m2

4n2 − 1
,

w−
n,m

w+
n,m

= ∓ (γ1 ± iγ2) hσ

[
n + 1

2
∓ ihσζγ3

α
(n + 1 ∓ 2m)

] √
(n ± m) (n − 1 ± m)

4n2 − 1
,

w−−
n,m

w++
n,m

= ∓ i (γ1 ± iγ2)2 ζh2σ 2

2α

√
(n − 2 ± m) (n − 1 ± m) (n + 1 ∓ m) (n ± m)

4n2 − 1
,

zn,m = nσ
[
ζh2σ

(
3γ 2

3 − 1
) − 1

]
2n + 3

√
[(n + 1)2 − m2][(n + 2)2 − m2]

(2n + 1) (2n + 5)
,

z−
n,m

z+
n,m

= ±2h2ζ (γ1 ± iγ2) γ3σ
2n

2n + 3

√
[(n + 1)2 − m2] (n + 2 ∓ m) (n + 3 ∓ m)

(2n + 1) (2n + 5)
,

z−−
n,m

z++
n,m

= h2ζ (γ1 ± iγ2)2 σ 2n

2 (2n + 3)

√
(n + 1 ∓ m) (n + 2 ∓ m) (n + 3 ∓ m)(n + 4 ∓ m)

(2n + 1) (2n + 5)
,

vn,m = −σ
[
ζh2σ

(
3γ 2

3 − 1
) − 1

]
(n + 1)

(2n − 1)

√
[(n − 1)2 − m2](n2 − m2)

(2n + 1) (2n − 3)
,

v−
n,m

v+
n,m

= ±2ζh2 (γ1 ± iγ2) γ3σ
2(n + 1)

(2n − 1)

√
(n − 2 ± m) (n − 1 ± m)(n2 − m2)

(2n + 1) (2n − 3)
,

v−−
n,m

v++
n,m

= −ζh2 (γ1 ± iγ2)2 σ 2(n + 1)

2(2n − 1)

√
(n − 3 ± m) (n − 2 ± m) (n − 1 ± m) (n ± m)

(2n + 1) (2n − 3)
.

The exact solution of Eq. (A1) for the Laplace transform
C̃1(s) = ∫ ∞

0 C1(t)e−st dt can be given in terms of matrix-
continued fractions10

C̃1(s) = τN�1(s)

{
C1(0) +

∞∑
n=2

[
n∏

k=2

Q+
k−1�k(s)

]
Cn(0)

}
;

(A2)

the infinite matrix-continued fraction �n(s) is defined by the
recurrence equation

�n(s) = [τNsI − Qn − Q+
n �n+1(s)Q−

n+1]−1.

The initial value vectors Cn(0) can be evaluated in term
of �n(0). Here we may apply with small modifications the
algorithm developed for uniaxial anisotropy.10 As shown in
Ref. 10, Sect. 9.2.2, the initial vectors Cn(0) are given by

Cn(0) = ξ1√
4π

[
K̂n + [

Kn + K̂H
n+1Sn+1

]
Sn

]
Sn−1 · · · S1,

where ξ1 = βμH1, Sn = �n(0)Q−
n , the superscript H designed

the Hermitian (i.e., transposition and complex) conjugate, and

Kn =
[

F2n D2n

DH
2n F2n−1

]
,

K̂n =
[

0 0

D2n−1 0

]
,

K̂1 =
(

0

D1

)
.

The matrices Kn and K̂n are constituted from the diagonal
submatrix Fl and the tridiagonal submatrix Dl , with the matrix
elements defined as

(Fl)n,m = −
√

4π

3
Re[γ3〈Y1,0〉0 −

√
2(γ1 − iγ2)〈Y1,1〉0]δn,m,

(Dl)n,m = δn−2,md−
l,−l+m+1 + δn−1,mdl,−l+m + δn,md+

l,−l+m−1,
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with

dn,m = γ3

√
n2 − m2

4n2 − 1
,

d−
n,m = −(d+

n,−m)∗ = − (γ1 + iγ2)

2

√
(n + m − 1)(n + m)

4n2 − 1
.

The smallest nonvanishing eigenvalue λ1 of the Fokker-
Planck operator can also be estimated by using matrix-
continued fractions from the secular equation as10,11

det[λ1τN I + Q1 + Q+
1 �2(−λ1)Q−

2 ] = 0. (A3)

In the low-temperature limit, the behavior of λ1 must
correspond to the Kramers escape rate,6,23 so providing a
numerical check on the asymptotic Eq. (16) for the reversal
time τ ≈ 1/λ1.
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