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It is generally difficult experimentally to distinguish magnetic multipolar orders in spin systems. Recently, it was
proposed that the temperature dependence of the nuclear magnetic resonance relaxation rate 1/T1 can involve an
indirect but clear signature of the field-induced spin nematic or multipolar Tomonaga-Luttinger (TL) liquid phase
[Phys. Rev. B 79, 060406(R) (2009)]. In this paper, we evaluate accurately the field and temperature dependence
of 1/T1 in spin- 1

2 frustrated J1-J2 chains combining field-theoretical techniques with numerical data. Our results
demonstrate that isotherms of 1/T1 as a function of magnetic field also exhibit distinctive nonmonotonic behavior
in spin nematic TL liquid, in contrast with the standard TL liquid in the spin- 1

2 Heisenberg chain. The relevance
of our results to quasi-one-dimensional edge-sharing cuprate magnets, such as LiCuVO4, is discussed.
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I. INTRODUCTION

One of the current topics in solid-state magnetism
is multiple-spin ordering without any single-spin dipole
moment.1,2 Vector and scalar chiral orders and spin multipolar
orders are typical examples expected to appear in real com-
pounds. The emergence of vector and scalar chiralities accom-
panies the spontaneous breakdown of parity or time-reversal
symmetries, and these two could be detected indirectly from
parity- or time-reversal-odd observables and related quanti-
ties (e.g., electric polarization in multiferroics, asymmetric
momentum dependence of spin structure factors, Hall con-
ductivity, etc.). On the other hand, spin multipolar orders, for
example, spin nematic and spin triatic orders, in spin- 1

2 mag-
nets can occur without breaking spatial symmetry, since they
are characterized as condensation of bound multimagnons3–8

or a spin-triplet resonating valence bond state.9 The absence
of both spin long-range order and lattice symmetry breaking
makes it difficult to find them in experiments. Furthermore, no
clear experimental proof of the spin multipolar orders has ever
been reported, because there is no established experimental
method of probing spin multipolar orders.

Thanks to recent theoretical studies, it has been gradually
recognized that magnetic multipolar states occur in several
geometrically frustrated spin- 1

2 magnets, especially in low
dimensions.3–8,10–14 In this paper, we focus on spin- 1

2 frus-
trated chains with ferromagnetic (FM) nearest-neighboring
exchange J1 < 0 and competing antiferromagnetic (AF) next-
nearest-neighboring exchange J2 > 0. The Hamiltonian is
given by

HJ1−J2 =
∑
n=1,2

∑
j

JnSj · Sj+n − H
∑

j

Sz
j , (1)

where Sj is the spin- 1
2 operator on the j th site and H is the

applied magnetic field along the z axis. Recent studies revealed
that this model possesses a series of field-induced multipolar
Tomonaga-Luttinger (TL) liquid phases in high magnetization
regime.7,8,10,11,15 These multipolar TL liquids are interpreted
as a hard-core Bose gas of multimagnon bound states,7,8 where

the number p of magnons forming a multimagnon bound state
changes successively from p = 2 to 4 with varying J2/|J1|.
In the multipolar phase with p = 2, the quadrupolar (or spin
nematic) operator S±

j S±
j+1 exhibits a quasi-long-range order.

Similarly, the octupolar (or triatic) operator S±
j S±

j+1S
±
j+2 and

the hexadecapolar operator S±
j S±

j+1S
±
j+2S

±
j+3 show a quasi-

long-range order, respectively, in the phases with p = 3 and
4. In all of these phases, the longitudinal spin correlation also
decays algebraically, while the transverse spin correlation is
short-ranged. These characteristic properties of the multipolar
TL liquid phases are distinct from those in the standard TL
liquid (e.g., spin- 1

2 Heisenberg chain). Numerical studies8,11

of the quadrupolar and octupolar TL liquid phases showed
that the relevant multipolar correlations are dominant in the
high-magnetization regime, whereas the longitudinal spin-
density-wave (SDW) correlation becomes dominant in the
lower-magnetization regime. We call the high-field multipolar
states with p = 2 and 3 quadrupolar and octupolar liquids
and the low-field multipolar states SDW2 and SDW3 liquids,
respectively, following Ref. 8.

In these multipolar TL liquids, bulk static quantities, such as
entropy, specific heat, and uniform susceptibility, exhibit quali-
tatively the same behaviors as those of standard TL liquids, and
hence it is impossible to distinguish multipolar and standard
TL liquids from them. To detect direct evidence of their
ordering, we need to measure multiple-spin order parameter or
relevant multiple-spin correlation functions, which is generally
difficult. Instead, to find any indirect evidence, it is necessary
to specify an effective method of detecting any signature of
spin multipolar ordering through usual experiments. Recently,
Ref. 15 has proposed an experimental way of detecting a
signature of multipolar TL liquids, showing that the nuclear
magnetic resonance (NMR) relaxation rate 1/T1 decreases
with lowering temperature T in the multipolar TL liquids near
saturation. This is completely different from the behavior of
standard TL liquids in one-dimensional (1D) AF magnets such
as the spin- 1

2 Heisenberg chain, in which 1/T1 always increases
with lowering T irrespective of the value of applied magnetic
field H . However, it is generally hard to experimentally
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approach the vicinity of the saturation field, especially in
magnets with strong exchange couplings. In fact, the saturation
field of a J1-J2 magnet LiCuVO4 is about 40 − 50 T,16,17 and
to perform NMR measurement under such a high field is not an
easy task. An experimentally detecting scheme at low magnetic
field is therefore desirable. It was also shown in Ref. 15 that
the momentum dependence of dynamical structure factors in
the multipolar TL liquids shows a distinct difference from that
of the spin- 1

2 AF Heisenberg chain.
In this paper, we reexamine the NMR relaxation rate 1/T1 in

the spin quadrupolar (nematic) and SDW2 TL liquids, includ-
ing both low- and high-magnetic-field regimes, and evaluate its
field and temperature dependence quantitatively. To this end,
we combine the field-theoretical (bosonization) approach with
the density-matrix renormalization-group (DMRG) method,
substituting numerical values for nonuniversal parameters in
analytic results. We compare these results with the relaxation
rate 1/T1 of the spin- 1

2 AF Heisenberg chain. It is found
that, in addition to the temperature dependence, the field
dependence of 1/T1 in the nematic and SDW2 liquids clearly
differs from that in the usual TL liquid of the spin- 1

2 AF
chain. In the J1-J2 chain, the relaxation rate 1/T1 slowly
decreases with an increase of magnetic field (or is almost
independent of the field) in the low-field SDW2 regime and
increases suddenly in the high-field nematic regime near
saturation, whereas it increases monotonically, as a function
of the field, in the usual TL liquid of the spin- 1

2 AF chain.
The nonmonotonic field dependence of 1/T1 is a unique
characteristic of the multipolar TL liquids in spin- 1

2 J1-J2

chains. Furthermore, if we tune the direction of the field H ,
we can eliminate the dominant contribution to 1/T1 in the
multipolar phases and thereby make 1/T1 show exponential
decays at low temperature in both nematic and SDW2 liquids.
This exponential decay is caused by a spin gap in the spin
transverse excitations, which is also a unique property of the
multipolar TL liquids. Our prediction would be applicable in
NMR experiments of quasi-1D edge-sharing cuprate magnets,
such as LiCuVO4 (Refs. 16–19), Rb2Cu2Mo3O12 (Ref. 20),
PbCuSO4(OH)2 (Refs. 21–24), LiCu2O2 (Refs. 25–28), and
NaCu2O2 (Ref. 29), whose magnetic properties are expected
to be described by the spin- 1

2 J1-J2 model with FM J1

and AF J2.
The paper is organized as follows. In Secs. II and III, we

review briefly the theory of the NMR relaxation rate 1/T1

in electron-spin systems and effective theories for multipolar
and usual TL liquids. Particularly, in Sec. III, relying on
an established field-theoretical method, we write down the
formula of 1/T1 in multipolar liquid phases of the J1-J2

chain (1) and also that in TL liquid of the spin- 1
2 AF Heisenberg

chain. Section IV contains the main results of the present paper,
which are quantitative estimates of 1/T1 in both quadrupolar
and usual TL liquids as a function of magnetic field and
temperature. Section V is devoted to a discussion of some
relevant factors in real magnets, which are neglected in the
previous sections. We consider a broad temperature scale
beyond the low-energy effective theory, the relation between
electron-nuclear spin interaction and direction of field H , and
the effects of Dzyaloshinsky-Moriya interaction. Tuning of
the field direction is also discussed. Finally, in Sec. VI, we

summarize our results and their relevance to real quasi-1D
compounds.

II. NMR RELAXATION RATE

Here, we briefly explain the formula of the NMR relaxation
rate 1/T1 in electron-spin systems. Provided that the NMR
relaxation process is mainly caused by interaction between
electron spin Sj and nuclear spin I , the standard perturbation
theory for the interaction evaluates the relaxation rate 1/T1 as
follows:30,31

1/T1 ∝
∑

k

1

2
|Ã⊥(k)|2[S+−(k,ω) + S−+(k,ω)]

+|Ã‖(k)|2Szz(k,ω). (2)

Here, we have assumed that the electron-spin system is in
one dimension. The electron-spin dynamical structure factor
at finite temperature T is defined as

Sμν(k,ω) =
∑

j

e−ikj

∫ ∞

−∞
dt eiωt

〈
S

μ

j (t)Sν
0 (0)

〉
T
, (3)

where 〈· · ·〉T denotes the thermal average. The frequency ω

in Eq. (2) is a given resonant value of applied oscillating
field. Since its magnitude is generally much smaller than
the energy scale of electron systems, we may take a limit
ω/kBT = βω → 0 in Eq. (2). The symbols Ã⊥(k) and Ã‖(k)
denote Fourier components of hyperfine coupling constants
between electron and nuclear spins, which generally stem
from the dipole-dipole interaction and an SU(2)-invariant
exchange interaction Sj · I . The longitudinal component
Ã‖(k) originates only from the dipole-dipole interaction. In
quantum spin systems, Ã‖(k) is usually the same order as
Ã⊥(k).

The spatial range of interactions between electron spins
and a single nuclear spin is local, that is, at most the order of
the lattice spacing a. Therefore, the k dependence of Ã⊥,‖(k)
could be negligible. Under the assumption of such a locality,
the hyperfine coupling term in the Hamiltonian is given by

Hhf = S
μ

j=0AμνI
ν, (4)

where the electron site closest to the nucleus is assumed to be
j = 0 and Aμν is the real-space hyperfine coupling tensor. In
this case, 1/T1 can be approximated as

1/T1 ∝ 1
2A2

⊥(j = 0)[S+−
j=0(ω) + S−+

j=0(ω)]

+A2
‖(j = 0)Szz

j=0(ω). (5)

Here, hyperfine couplings A⊥(0) and A‖(0) are proportional
to Axx + Ayy and (A2

xz + A2
yz)

1/2, respectively. The local
dynamical structure factor Sμν

j=0(ω) at finite temperature is
represented as

Sμν

j=0(ω) =
∫ ∞

−∞
dt eiωt

〈
S

μ

0 (t)Sν
0 (0)

〉
T
. (6)

III. MULTIPOLAR AND USUAL TL LIQUIDS

In this section, we briefly review the effective theory for
multipolar TL-liquid phases in the J1-J2 spin chain (1) and the
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well-established TL-liquid theory in the spin- 1
2 AF Heisenberg

chain. Using these theories, we can derive analytic forms of
dynamical structure factors and 1/T1.

A. Theory for multipolar liquid phases

Two analytic approaches have been developed for field-
induced multipolar phases in the model (1): One is a weak-
coupling approach8,10 where |J1|/J2 	 1 is assumed and J1

is treated as a perturbation for two decoupled AF-J2 chains.
The other is a phenomenological bosonization in the vicinity
of the saturation field.7,8 The former weak-coupling theory can
lead to only the quadrupolar (nematic) phase, but it enables us
to calculate various physical quantities in principle. The latter
approach can treat all of the multipolar phases (quadrupolar,
octupolar, and hexadecapolar), while the quantities that can be
evaluated are somewhat restricted. Here, we employ the latter
approach, which is sufficient to calculate 1/T1 (the former will
be used in Sec. V).

In the J1-J2 chain with ferromagnetic J1 < 0, the ex-
citation mode which destabilizes the fully polarized state
at the saturation field Hc is a multimagnon bound state
consisting of p(�2) magnons. Below the saturation field,
the soft bound magnons proliferate to form TL liquid with
dominant transverse multipolar correlation. The system is thus
described as a hard-core Bose gas of p-magnon bound states.
From a numerical calculation of the p-magnon excitation
energies, it has been shown that the soft mode to realize
the multipolar TL liquid is two-, three-, and four-magnon
bound states with momentum k = π for −2.669 < J1/J2 < 0,
−3.514 < J1/J2 < −2.720, and −3.764 < J1/J2 < −3.514,
respectively.7,32

From the picture of the hard-core Bose gas, we may map
multipolar operators and the z component of spin operators to
operators of bosons in the following forms:

b
†
j = (−1)j S−

j · · · S−
j+p−1,

(7)

nj ≡ b
†
j bj = 1

p

(
1

2
− Sz

j

)
,

where bj is an annihilation operator of the hard-core boson,
and we have considered the pth-order multipolar liquid states
(p = 2, 3, and 4 correspond to quadrupolar, octupolar, and
hexadecapolar liquids, respectively). The staggered factor
(−1)j in the first line comes from the momentum k = π of
the soft multimagnon bound states. To the 1D hard-core Bose
gas, we can apply the standard Abelian bosonization.33,34 Its
low-energy effective Hamiltonian is represented as

Heff
J1−J2

=
∫

dx
u

2
[κ−1(∂x�)2 + κ(∂x	)2], (8)

where x = ja is a spatial coordinate, � and 	 are a canonical
pair of scalar fields, κ is the TL-liquid parameter, and u

is the elementary excitation velocity. We set κ → 1 here
at the saturation limit H → Hc where the hard-core boson
gas becomes equal to a free fermion gas. It is numerically
shown8,11 that the TL-liquid parameter κ decreases almost
monotonically with lowering magnetic field H in quadrupolar
and octupolar liquid phases. The velocity u is expected to be
of the order of |J1,2|a, except for the saturation limit H → Hc,

where u → 0. We note that the TL-liquid theory is valid only
in the temperature regime of kBT 	 u/a.

The boson operator bj and the density operator nj are
expressed in terms of � and 	:33,34

b
†
j ≈ ei

√
π	[f0 + f1 cos(

√
4π� + 2πρj ) + · · ·],

(9)
nj ≈ ρ + a√

π
∂x� + g0 cos(

√
4π� + 2πρj ) + · · · ,

where ρ = (1/2 − M)/p is the mean value of the boson den-
sity and M = 〈Sz

j 〉 is the magnetization per site. Factors fn and
gn are nonuniversal constants. In the present representation, the
scaling dimensions of eqi

√
4π� and eqi

√
π	 are, respectively,

q2κ and q2/(4κ).
From Eqs. (7)–(9), two-point correlation functions of Sz

j

and the pth multipolar operator M
(p)
j = ∏p

n=1 S−
j+n−1 at zero

temperature are shown to behave asymptotically like

〈
Sz

j (τ )Sz
0(0)

〉
0 ≈ M2 − p2κ

4π2

[(
a

w

)2

+
(

a

w̄

)2]

+ g2
0

2
cos(2πρj )

(
a

|w|
)2κ

+ · · · ,
(10)〈

M
(p)
j (τ )M (p)†

0 (0)
〉
0 ≈ (−1)j f 2

0

(
a

|w|
)1/(2κ)

+ · · ·

in the pth multipolar TL-liquid phase, where 〈· · ·〉0 denotes
the expectation value of observables at zero temperature.
(Incidentally, the p = 1 case corresponds to the usual TL liquid
in the spin- 1

2 AF chain. See the following subsection.) Here,
τ = it is imaginary time, and light-cone coordinates w and w̄

are defined as (w,w̄) = (x + iuτ,x − iuτ ). Equation (10) has
been numerically confirmed,8,10,11 and this asymptotic behav-
ior survives down to the phase boundary between multipolar
and lower-field vector chiral phases. The power-law behavior
also indicates that in the high-field regime (narrowly defined
multipolar regime) with κ > 1/2, the multipolar correlation is
stronger than the longitudinal spin correlation, while the latter
is dominant in the lower-field SDW regime with κ < 1/2.
Namely, κ = 1/2 is the crossover point between multipolar
and SDW regimes.

In the multipolar TL liquid phase, the transverse spin corre-
lation decays exponentially, since a finite energy is necessary
to violate p-magnon bound states. Though we cannot compute
the transverse spin correlation function and the multipolar
correlation functions 〈M (p′)

j (τ )M (p′)†
0 (0)〉0 with p′ < p within

the theory of hard-core Bose gas of multimagnon bound
states, we can explicitly derive the form of the transverse spin
correlation function 〈S±

j (τ )S∓
0 (0)〉0, which is short-ranged,15

using the weak-coupling theory in the quadrupolar-liquid
phase (p = 2). Furthermore, the exponential decay of the
p′ (<p) magnon correlations including the transverse spin
correlation has been confirmed numerically for the entire
regime of the quadrupolar and octupolar TL liquid phases.8

The single-magnon gap can be determined by measuring trans-
verse dynamical structure factors15 S±∓(k,ω), for example, in
neutron scattering experiment. It would be at most the order
of |J1| or J2. This fact of the short-ranged transverse spin
correlation in the multipolar TL liquids plays a key role in the
following argument.
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The slowly decaying mode in the longitudinal spin corre-
lator in Eq. (10) contributes to the leading temperature depen-
dence of NMR relaxation rate 1/T1. Through an established
method based on conformal field theory,34–38 we obtain the
local dynamical structure factors at finite temperature from
correlation functions at zero temperature and achieve the
formula for 1/T1,

1/T1 ∝ A2
‖:0(0)

p2κ

π

(a

u

)2
β−1 + A2

‖:1(0)
g2

0

2

2a

u

× cos(κπ )B(κ,1 − 2κ)

(
2πa

βu

)2κ−1

+ · · · , (11)

where B(x,y) is the beta function and A‖:0(j ) = A‖:1(j ) =
A‖(j ). The first and second terms on the right-hand side
are, respectively, contributions from the second and third
terms of 〈Sz

j (τ )Sz
0(0)〉0 in Eq. (10). If we take into account

the spatial dependence of A‖(j ) instead of the formula (5),
A‖:n(j ) generally take different values (but they are expected
to be the same order). The transverse spin correlation also
contributes to 1/T1, but it must be a thermal activation type
∼e−�/(kBT ), in which � is proportional to the binding energy of
p magnons, that is, the single-magnon gap. Therefore, it can
be negligible when temperature is sufficiently smaller than
�/kB . The absence of the contribution from the transverse
spin correlation is a characteristic feature of the multipolar TL
liquids.

The temperature dependence of 1/T1 given in Eq. (11) is
consistent with the previous prediction in Ref. 15. The NMR
relaxation rate 1/T1 diverges with lowering temperature in
the SDW regime (κ < 1/2), whereas it decays algebraically
with lowering T in the high-field multipolar regime (κ > 1/2).
Thus the temperature dependence changes significantly at the
crossover point κ = 1/2. This feature contrasts sharply with
the result of usual TL liquids (see the next subsection). More
detailed properties of 1/T1 will be discussed in Sec. IV.

B. TL-liquid theory for the spin- 1
2 AF chain

Here, we quickly summarize the well-known effective
theory for the spin- 1

2 AF Heisenberg chain in magnetic field to
compare with the previously mentioned theory for multipolar
liquids. The Hamiltonian is given by

HJ =
∑

j

J Sj · Sj+1 − H
∑

j

Sz
j , (12)

where J > 0 is AF exchange coupling. As is well known, the
low-energy physics of this model belongs to the TL-liquid
universality class from zero field to the saturation field Hc =
2J . The low-energy Hamiltonian has the same free-boson form
as Eq. (8):

Heff
J =

∫
dx

v

2
[K−1(∂xφ)2 + K(∂xθ )2], (13)

where φ and θ are the pair of scalar fields. The TL-liquid
parameter K and the velocity v are exactly determined from
the Bethe ansatz.39–42 In this model, K changes monotonically
from 1/2 to 1 when H increases from zero to Hc. Similarly
to the multipolar TL liquids, the value of v is of order of Ja

except for the saturation limit H → Hc, where v → 0. The
TL-liquid theory is valid only for kBT 	 v/a.

Spin operators are bosonized as

Sz
j ≈ M + a√

π
∂xφ + (−1)j a1 cos(

√
4πφ + 2πMj ) + · · · ,

(14)
S+

j ≈ ei
√

πθ [b0(−1)j + b1 cos(
√

4πφ + 2πMj ) + · · ·].
Here a1, b0, and b1 are nonuniversal coefficients, whose values
are numerically determined as a function of H (or M) in
Ref. 43. Equations (13) and (14) enable us to estimate 1/T1.
The result is

1/T1 ∝ A2
‖:0(0)

K

π

(
a

v

)2

β−1

+A2
‖:1(0)

a2
1

2

2a

v
cos(Kπ )B(K,1 −2K)

(
2πa

βv

)2K−1

+A2
⊥:1(0)b2

0
2a

v
cos

(
π

4K

)
B

(
1

4K
,1 − 1

2K

)

×
(

2πa

βv

)1/(2K)−1

+ · · · , (15)

where A‖:0(j ) = A‖:1(j ) = A‖(j ) and A⊥:1(j ) = A⊥(j ). The
first and second terms on the right-hand side originate
from the longitudinal spin correlation, while the third term
originates from the transverse spin correlation. In contrast to
the multipolar liquids, both longitudinal and transverse spin
correlations yield power-law-type functions of temperature.
Equation (15) shows that either A‖:1 or A⊥:1 term diverges
at low temperatures regardless of the value of K , except for
K = 1/2.44 This diverging behavior of 1/T1 with decreasing
temperature is a common property of usual TL liquids in 1D
magnets, and is quite different from the decaying behavior of
1/T1 in the multipolar liquid phases.

IV. FIELD AND TEMPERATURE DEPENDENCE OF 1/T 1

Utilizing the formulas (11) and (15), we examine the
magnetic-field and temperature dependence of 1/T1 in both
multipolar and usual TL liquid phases. Among the three
multipolar phases, we concentrate on the quadrupolar TL
liquid, which is most widely expanded in the J1/J2-H space
and is believed to be realized in several real magnets. We show
that 1/T1 in the quadrupolar TL liquid exhibits characteristic
features distinct from that in the usual TL liquid. In Eqs. (11)
and (15), the values of hyperfine constants A‖,⊥:n(j ) depend
on crystal structure, the spatial relationship between electron
and nuclear spins, and the direction of applied field H . For
simplicity, we assume that all the constants A‖,⊥:n(j ) are equal
throughout this section.

Let us first consider 1/T1 of the quadrupolar liquid phase.
We can evaluate the expression of 1/T1 given in Eq. (11), once
the parameters κ , u, and g0 are numerically estimated. To this
end, we perform numerical calculations of spin- 1

2 J1-J2 chains
using the DMRG method. For κ and g0, we compute the equal-
time longitudinal spin correlation function 〈Sz

j (0)Sz
j ′ (0)〉0 and

the spin polarization 〈Sz
j (0)〉0 in the ground state. We then

fit the data to an analytic form obtained by the bosonization
method to estimate κ and g0. (The details of the method have
been presented in Refs. 8,43, and 45.) For the velocity u, we

064405-4



FIELD AND TEMPERATURE DEPENDENCE OF NMR . . . PHYSICAL REVIEW B 83, 064405 (2011)

use uniform magnetic susceptibility. From the bosonization
formula (9), the susceptibility is given by

χu = ∂
〈
Sz

j

〉
/∂H = p2κa/(πu) (16)

in the pth order multipolar phase. We can thus obtain the
value of u from the magnetization curve (i.e., susceptibility)
determined by the DMRG calculation. We determine the
values of κ , u, and g0 at M = 0.05, 0.1, 0.15, . . . , 0.45 for
several values of J1/J2. We have found that the TL-liquid
parameter κ is basically an increasing function of the field H

(see Figs. 14 and 18 of Ref. 8), while g0 has a fairly small
field dependence. As expected, u/a is shown to be of order of
the 1D couplings J1 and J2 for intermediate magnetization and
approaches zero near the saturation. For example, in the case of
J1/J2 = −1 (−2), u/a � 1.04J2 (0.49J2) at M = 0.25, while
u/a � 0.25J2 (0.1J2) at M = 0.4.

Figure 1 shows the magnetic-field dependence of 1/T1

in the J1-J2 spin chain for J1/J2 = −1 and −2 at several
values of temperature. Except for the vicinity of the saturation,
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FIG. 1. (Color online) Field dependence of NMR relaxation rate
1/T1 in the magnetic quadrupolar TL-liquid phase in the J1-J2 spin
chain (1) for (a) J1/J2 = −1.0 and (b) J1/J2 = −2.0. Left panels
show the results for the whole range of field 0 < H < Hc, while
right panels show the same data in the vicinity of the saturation field
in an enlarged scale. Solid symbols represent the data obtained from
Eq. (11) with numerical values of κ , u, and g0. Lines connecting
them are guide for the eyes. The vertical dashed lines represent the
saturation field and the crossover line between the SDW (κ < 1/2)
and nematic (κ > 1/2) regimes. In (b), the boundary to the low-field
vector-chiral phase is shown by a vertical solid line.

1/T1 decreases with increasing H (or M) for sufficiently low
temperatures kBT 	 u/a ∼ |J1,2|. This is mainly due to the
monotonic field dependence of the TL-liquid parameter κ , and
is a distinct feature of the multipolar TL liquids, in contrast
with that of the spin- 1

2 AF chain (see the next paragraph). This
feature becomes less significant as temperature increases, and
it becomes almost independent of the field at relatively high
temperatures kBT ∼ 0.1J2. On the other hand, in a narrow
region near the saturation field, 1/T1 increases rapidly with
H since the velocity u approaches zero. We also confirm
the previous prediction15 on the temperature dependence
of 1/T1: 1/T1 increases divergently with lowering T in
the low-field SDW regime (κ < 1/2), whereas it decreases
algebraically in the high-field quadrupolar regime (κ > 1/2).
Explicit temperature dependence is presented in Fig. 2. The
characteristic behavior in the low-temperature regime kBT �
0.1J2 is consistent with the previous statement.

Next, we compare these features of the relaxation rate in
the nematic liquid with those in a usual TL liquid of the
spin- 1

2 AF Heisenberg chain (12). Similarly to the nematic
case, we can evaluate 1/T1 from the formula (15) if values for
the parameters K , v, a1, and b0 are prepared. As mentioned
in Sec. III B, K and v are exactly determined by the Bethe
ansatz39–42 and the coefficients a1 and b0 have been evaluated
numerically.43 Using these accurate values, we numerically
determine 1/T1 of the model (12). The result is shown in
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FIG. 2. (Color online) Temperature dependence of NMR relax-
ation rate 1/T1 in the magnetic quadrupolar TL-liquid phase in J1-J2

spin chain (1) for (a) J1/J2 = −1.0 and (b) J1/J2 = −2.0 and several
fixed values of magnetization M .
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FIG. 3. (Color online) NMR relaxation rate 1/T1 for the standard
TL-liquid phase in the spin- 1

2 Heisenberg chain (12). (a) Field
dependences for fixed temperatures and (b) temperature dependences
for fixed magnetization.

Fig. 3. It indicates that 1/T1 is a monotonically increasing
(decreasing) function of H (T ) in the TL-liquid phase of
the model (12) for sufficiently low temperatures. These two
properties are completely different from those of the nematic
TL-liquid phase shown in Figs. 1 and 2. The relaxation rate
of real quasi-1D spin- 1

2 AF magnets has been observed in
the somewhat restricted regime of T and H , for example, in
Refs. 46–49. Their results seem to agree nicely with our results
in Fig. 3.

Finally, let us separately estimate each term in the ex-
pressions of 1/T1, Eqs. (11) and (15). They are depicted
in Fig. 4. We find that in the Heisenberg chain (12), the
relaxation rate 1/T1 is clearly governed by the contribution
from the transverse spin correlation, that is, the A⊥:1 term. In
the nematic case, in which the transverse spin fluctuation is
gapped, the A‖:1 term becomes dominant in a wide magnetic-
field range and is responsible for the behavior of 1/T1

decreasing with field H . This figure definitely demonstrates
that characteristic features of 1/T1 in the J1-J2 spin chain
originate from the absence of gapless modes in the transverse
spin excitations.

From these results, we conclude that the NMR relaxation
rates 1/T1 in the nematic and standard TL-liquid phases
exhibit quite different behavior in T -H space, and hence
we propose that its T and H dependence can be used to
distinguish the nematic liquid phase from the standard TL
liquid. Similar characteristic behavior of 1/T1 is also expected
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FIG. 4. (Color online) Field dependence of NMR relaxation rate
1/T1 for (a) the magnetic quadrupolar TL-liquid phase in the J1-J2

spin chain (1) with J1/J2 = −1.0 and (b) the standard TL-liquid
phase in the spin- 1

2 Heisenberg chain (12). Left (right) panels show
the data for kBT /J2 = 0.01 and kBT /J = 0.01 (kBT /J2 = 0.2 and
kBT /J = 0.2). In addition to the total value of 1/T1, each term in
Eqs. (11) and (15) is shown separately.

in the higher-order multipolar liquid phases in the J1-J2

spin chain, since these phases share essentially the same
properties of spin correlations and the field H dependence
of the TL-liquid parameter. Furthermore, a nematic TL-liquid
phase in the SDW regime (κ > 1/2) is also shown to appear
in a wide parameter region of the J1-J2 chain with AF
J1.45,50 This AF-J1 SDW2 phase, where the transverse spin
correlation is short-ranged, is also expected to show a peculiar
H dependence of 1/T1, which is distinct from that in the usual
TL liquid.

V. WIDE TEMPERATURE RANGE, HYPERFINE
COUPLINGS, AND DM INTERACTIONS

So far we have discussed low-temperature behavior in spin
isotropic pure 1D systems. In this section, we consider the
temperature dependence of 1/T1 in a wide temperature range,
taking interchain couplings into account. We also discuss the
relation between the form of hyperfine coupling tensorAμν and
the direction of field H , as well as the effects of Dzyaloshinsky-
Moriya (DM) interactions.

A. Temperature dependence of 1/T1 in a wide
temperature range

First we consider a wide temperature window including
higher and lower temperatures in which simple effective
Hamiltonians (8) and (13) are no longer valid for describing
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the physics of real quasi-1D magnets. At sufficiently low
temperature, which is lower than the energy scale of weak 3D
interchain couplings J3D, long-range-ordered phases usually
emerge due to 3D couplings and hence 1D effective theories
cannot be applicable. In the case of the SDW regime, 1/T1

exhibits a divergence with a critical exponent near the critical
temperature ∼1/(T − Tc)ξ , if 3D ordering occurs through a
continuous (second-order) transition. In the case of the nematic
regime, the nematic ordering at finite temperature may induce
singularity in 1/T1. On the other hand, at high temperature, the
effective TL-liquid theory becomes unreliable when the energy
scale kBT is increased up to the order of u/a, which is of the
order of the 1D couplings J1 and J2, except for the saturation
limit H → Hc, where u → 0. Deviation from the TL-liquid
theory also comes from breaking of magnon bound states
at high temperatures. The binding energy51 is numerically
estimated, at most, as Ebind � 0.39J2, 0.28J2, and 0.14J2 for
J1/J2 = −2.0, − 1.0, and −0.6, respectively, which gradually
decreases with lowering magnetization and vanishes at the
border to the lower-field vector chiral phase. Thus, our predic-
tion is valid in the temperature range J3D 	 kBT 	 J1D =
min(u/a,Ebind). In the higher-temperature regime kBT �
J1D, the relaxation rate converges to a constant value.52

We draw schematic patterns of the temperature depen-
dence of 1/T1 in the nematic TL liquid in Figs. 5(a)
and 5(b).

kBT

1/T1

~  J1DJ3D

~T2κκκκ-1
(a) Low-field SDW with A|| ~ A⊥

kBT

1/T1

J3D

(b) High-field nematic with A|| ~ A⊥

1/T1 (c) Low-field SDW with A|| << A⊥

~T2κκκκ-1

κ < 1/2

κ > 1/2

~  J1D

~ constant

~ constant

kBT

1

J3D

(c) Low field SDW with A|| <<  A⊥

~e-ΔΔΔΔ/(k T)

~T2κκκκ-1 κ < 1/2

~  J1D

kBT

1/T1

J3D

(d) High-field nematic with A|| << A⊥

~e-ΔΔΔΔ/(k T)

~T2κκκκ-1

κ > 1/2

~  J1D

~ constant

~ constant

FIG. 5. (Color online) Schematic behavior of 1/T1 of the nematic
TL liquid in a wide temperature region for several parameter settings.
In the regime J3D 	 kBT 	 J1D, our prediction based on low-energy
effective theories can be applicable.

B. Hyperfine coupling tensor and field direction

Next we discuss the anisotropic case A⊥ �= A‖ (we have
assumed A⊥:n = A‖:n so far for simplicity). In the extreme case
A⊥ � A‖, we can no longer neglect the contribution from the
exponentially decaying transverse spin correlation in 1/T1. In
this extreme case, power-law behavior in 1/T1 of multipolar
TL liquids is negligible down to extremely low temperature,
hence we observe a thermal activation form ∼ e−�/(kBT ) in
1/T1 in a low-temperature regime kBT 	 J1D. Thus it is easy
to detect a characteristic feature of multipolar TL liquids.
If target magnets have sufficiently high crystallographic
symmetry, the principal axes for hyperfine coupling tensor
Aμν can be defined and the tensor is diagonalized. In this
case, tuning the field direction parallel to a principal axis,
we can eliminate off-diagonal elements Axz and Ayz, and
equivalently set A‖ = 0. Therefore, the setup of H parallel to
the axis offers an easy way of measuring the transverse spin
gap and distinguishing multipolar liquids from ordinary TL
liquid. Figures 5(c) and 5(d) present the schematic temperature
dependence of 1/T1 in the nematic and SDW2 TL liquids
for the anisotropic case A⊥ � A‖. In the opposite limit
A⊥ 	 A‖, our predictions in Figs. 1 and 2 are highly reliable
in J3D 	 kBT 	 J1D. However, we should note that in this
limit A⊥ 	 A‖, 1/T1 becomes insensitive to the disappearance
of the algebraically decaying transverse spin correlation,
the hallmark of the nematic liquid, and is not efficient in
distinguishing the usual and nematic TL liquids.

C. Effects of the DM interaction

In the rest of this section, we consider the effects of
magnetic anisotropies which generally exist in real magnets.
In spin- 1

2 systems, one of the most realistic anisotropies is the
DM interaction defined by

HDM(Q,ϕ,m) =
∑

j

cos(Qj + ϕ)D · (Sj × Sj+m) (17)

for m = 1,2. Possible values of Q, ϕ, and the DM vector D
depend strongly on the crystal structure of each compound.
Since the DM interaction can sometimes induce an excitation
gap accompanied with local spin polarization, it may violate
the multipolar TL liquids. We discuss the effects of the DM
interaction on the nematic TL liquid in the low-energy theory.

In the weak-coupling theory8,10,53 for the spin- 1
2 J1-J2 chain

with |J1| 	 J2, the nematic phase is expressed by the effective
Hamiltonian

H̃eff
J1−J2

=
∫

dy
∑
γ=±

vγ

2

[
K−1

γ (∂yφγ )2 + Kγ (∂yθγ )
]

+ c1(2a)−1 sin(
√

8πφ− + πM)

+ c2(∂yθ+) sin(
√

2πθ−) + · · · (18)

under the condition that only the c1 term is relevant to the
Gaussian model, where y = 2ja, (φ±,θ±) = (φ1 ± φ2,θ1 ±
θ2)/

√
2, and (φ1(2),θ1(2)) is a boson-field pair defined in each

of the decoupled AF-J2 chains (see Sec. III B). The coupling
constants c1,2 are proportional to J1. The c1 term makes φ−
pinned. As a result, the transverse spin correlation decays
in an exponential fashion. The remaining (φ+,θ+) sector
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induces the gapless behavior of longitudinal-spin and nematic
correlation functions. On the other hand, the c2 term is known
to induce a vector chiral phase53–55 with 〈(Sj × Sj+1)z〉 ∼
〈sin(

√
2πθ−)〉 �= 0 in a lower-field regime.8,53 Let us concen-

trate on the former nematic TL liquid in the following.
Using the effective theory (18), we investigate five typ-

ical situations: Hi
DM = HDM(0,0,1), Hii

DM = HDM(π,0,1),
Hiii

DM = HDM(0,0,2), Hiv
DM = HDM(π,0,2), and Hv

DM =
HDM(π/2,π/4,2). Let us first consider the case of D =
(0,0,Dz), that is, the DM vector is parallel to the applied
field H . In this case, we find that the bosonized DM couplings
Hi−iv

DM contain slowly moving bosonic terms without oscillating
factors (−1)j or eiqπMj (q is an integer). They are represented
as

Hi
DM ∼ Dz sin(

√
2πθ−) + · · · , (19a)

Hii
DM ∼ Dz

{
cos(

√
2πθ−)[2a

√
2π∂yθ− + · · ·]

− sin(
√

2πθ−)

[
(2a)2 π

2
((∂yθ+)2

+(∂yθ−)2) + · · ·
]}

, (19b)

Hiii
DM ∼ Dz

√
π (2a)∂yθ+ + · · · , (19c)

Hiv
DM ∼ Dz

√
π (2a)∂yθ− + · · · . (19d)

In general, DM terms with D = (0,0,Dz) are invariant under a
global U(1) spin rotation S+

j → S+
j eiϕ , which corresponds to

a shift of the phase field θ+ → θ+ + √
2/πϕ. Therefore, the

bosonized DM terms with Dz do not involve any vertex opera-
tor with θ+. In addition, all the translationally symmetric DM
terms do not contain any vertex term with φ+ at least for the
case of incommensurate values of M , since the 2n-site trans-
lation induces φ1,2(y) → φ1,2(y + 2na) + n

√
π (1/2 + M)

and equivalently φ+(y) → φ+(y + 2na) + n
√

π/2(1 + 2M).
Equation (19) is consistent with these symmetry arguments.
Two DM interactions Hi,ii

DM tend to lock θ− together with the c2

term in Eq. (18), both of which compete with the c1 term. In the
nematic phase, we know that the c1 term is most relevant and
hence the DM interactions Hi,ii

DM with sufficiently small Dz are
negligible. In the strong DM coupling regime, these DM terms
compete with the c1 term and could change the nematic liquid
into a chiral phase with 〈(Sj × Sj+1)z〉 �= 0. On the other hand,
the leading terms of Hiii,iv

DM can be absorbed into the free-boson
part by shifting the field θ±. The shift brings about a finite
expectation value 〈(Sj × Sj+2)z〉 ∼ 〈∂yθ1,2〉, but we note that
these chiralities do not accompany any spontaneous symmetry
breaking. The shift also affects the form of spin dynamical
structure factors, that is, the gapless points of S±∓(k,ω) are
slightly changed and a small asymmetry of k dependence
emerges. In contrast to Hi,ii

DM, Hiii,iv
DM do not compete with

the c1 term. Therefore, chirality and nematic quasi-long-range
order can coexist in the latter case of Hiii,iv

DM . This symmetry
argument indicates that the DM terms with Dz do not introduce
any vertex operator in the (φ+,θ+) sector, and this statement
would be true in the wide nematic-liquid region regardless of
the value of J1. The gapless nature of the (φ+,θ+) sector hence
survives even after introducing these DM terms. From these

discussions, we conclude that the nematic TL liquid survives
even in the presence of DM terms with D = (0,0,Dz) at least
when Dz 	 |J1,2|. Thus, the nematic liquid is relatively stable
against DM interactions with D = (0,0,Dz).

For the case of D = (Dx,0,0), the U(1) rotational symmetry
is broken and the emergence of vertex operators eiq

√
πθ+ is

generally allowed. In fact, Hv
DM is bosonized as

Hv
DM ∼ DxM sin(

√
π/2θ+) cos(

√
π/2θ−) + · · · . (20)

This leading term has scaling dimension 1/(8K+) + 1/(8K−)
and can generate a staggered magnetization along the Sy axis
in each AF-J2 chain. In the weak J1 limit, Hv

DM is more
relevant than the c1 term with scaling dimension 2K− ≈ 2K

and it can violate the nematic liquid phase. [In this limit,
K± approaches the value of original TL-liquid parameter K

(1/2 < K < 1) of the AF-J2 chain in magnetic field.] When
J1 is sufficiently strong, the c1 term defeats the perturbation
Hv

DM and protects the nematic liquid phase, pinning φ−. In
this case, sin(

√
π/2θ+) cos(

√
π/2θ−) generates new operators

cos(
√

2πθ+) and cos(
√

2πθ−) via the renormalization-group
process. The first term with scaling dimension 1/(2K+) can
open a gap in the (φ+,θ+) sector and induce a transverse
staggered magnetization, since the U(1) spin symmetry is
broken by the DM term. In the weak DM coupling regime,
thus, this DM term perturbatively deforms nematic spin liquid,
opening a small gap in longitudinal spin modes and inducing
a small expectation value of transverse spins. The other
DM interactions Hi−iv

DM with D parallel to the x axis do not
possess any slowly moving operator within a naive calculation
based on the bosonization, but they generally have the ability
to generate eiq

√
πθ+ , which is allowed from the symmetry

argument. Thus, the gapless nature of the (φ+,θ+) sector is
expected to be fragile and unstable against DM terms with
D �= (0,0,Dz).

These discussions on DM terms indicate that if we apply
magnetic field parallel to the DM vector D, the nematic TL
liquid is stably realized and our prediction of 1/T1 is reliable
in wider H -T space. Even when D is not parallel to H , the
nematic phase will also survive if the DM coupling is small,
|J1,2| � |D|, and if the system is in the temperature regime
kBT � |D|.

VI. CONCLUSIONS

We have evaluated accurately the field and temperature
dependence of the NMR relaxation rate 1/T1 in magnetic
quadrupolar (spin nematic) TL liquid of the spin- 1

2 J1-J2 chain,
combining field-theoretical techniques with DMRG results
(see Figs. 1 and 2). As a comparison, we have also calculated
1/T1 of the spin- 1

2 AF Heisenberg chain, using field theories,
the Bethe ansatz, and the DMRG method (see Fig. 3).

In the nematic and SDW2 TL-liquid phase at a low tem-
perature kBT 	 |J1,2|, the relaxation rate 1/T1 first decreases
with increasing magnetic field and then rapidly increases near
saturation. In the higher-temperature regime kBT ∼ 0.1J2,
the field dependence of 1/T1 becomes quite small except
in the vicinity of saturation. This nonmonotonic behavior
clearly differs from the monotonically increasing behavior
in the usual TL liquid in spin- 1

2 AF chains. The decreasing
behavior of 1/T1 with increasing H comes from the monotonic
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increase in the TL-liquid parameter κ , while the rapid increase
in 1/T1 near saturation is attributed to the decrease of
velocity u → 0. The monotonic property of κ is also essential
for the characteristic temperature dependence15 of 1/T1:
with lowering temperature, 1/T1 increases in an algebraic
form in the lower-field SDW regime (κ < 1/2), whereas it
decreases in the higher-field nematic regime (κ > 1/2). These
characteristic H and T dependences could be a signature
of the nematic and SDW2 TL-liquid phase. Similar features
are also expected to appear in higher-order multipolar TL
liquids, for example, octupolar and hexadecapolar TL liquids.
Probing the H dependence would be easier than doing the T

dependence since the former does not necessarily require the
accession to the high-field regime, where NMR measurements
are difficult. A combination of the H and T dependences of
1/T1 and the gapless behavior observed from bulk quantities
(such as specific heat and magnetic susceptibilities) would
present indirect but strong evidence for multipolar TL-liquid
phases.

In Sec. V, we also considered the effects of spin anisotropies
and interchain couplings, which are neglected in the ideal
J1-J2 spin-chain model. In particular, we point out that if
the direction of the external field H can be parallel to the
principal axis of the hyperfine-coupling tensor, all the algebraic
contributions in the temperature dependence of 1/T1, that is,
A‖:n terms, disappear. As a result, 1/T1 of multipolar phases in
the J1-J2 chain becomes a thermal activation form ∼e−�/(kBT ).
In addition, we predict that the nematic TL liquid is stable for
small DM terms with the DM vector parallel to the applied
field, while it can be easily deformed by the DM terms, thereby
accompanied with small transverse staggered magnetization,
when the DM vector is perpendicular to the field. This indicates
that we should apply magnetic field parallel to the DM vector
to obtain a stable nematic liquid phase in real quasi-1D J1-J2

magnets.
Finally, we comment on some real compounds. Re-

cently, quasi-1D edge-sharing cuprate magnets, for example,
LiCu2O2, LiCuVO4, Rb2Cu2Mo3O12, and PbCuSO4(OH)2,
have been studied extensively as low-dimensional frustrated
or multiferroic systems. Their magnetic properties are be-
lieved to be described by spin- 1

2 J1-J2 chains in a certain
temperature regime. Except for Rb2Cu2Mo3O12, a 3D ordering
has been observed below a very low critical temperature Tc

at least in zero magnetic field. Furthermore, the values of

J1 and J2 have been semiquantitatively estimated in several
ways. The estimated coupling constants and the critical
temperatures in LiCu2O2 (Refs. 25–28), PbCuSO4(OH)2

(Refs. 21–24), and Rb2Cu2Mo3O12 (Ref. 20) are, respectively,
(J1/kB,J2/kB,Tc) ∼ (−138 K, 86 K, 24 K), ∼ (−13 K, 21 K,
2.8 K), and (J1/kB,J2/kB) ∼ (−138 K, 51 K), while two
different results have been reported for LiCuVO4 (Refs. 16–19
and 56): (J1/kB,J2/kB,Tc) ∼ (−19 K, 45 K, 2 K) and
∼(−182 K, 91 K, 2 K). The critical temperatures Tc are
thus small compared to the magnitude of J1,2 except for
LiCu2O2. This means that three dimensionality is small in
these compounds. We note that our prediction for 1/T1 could
be applied to the temperature condition kBTc 	 kBT 	 |J1,2|.

Among these compounds, the magnetization process of
LiCuVO4 has been intensively studied in some experimental
groups. In the low-field regime including zero field, spiral
phases exist at low temperatures. Above H ≈ 7.5 T, the spiral
phase turns into another phase, which was concluded by
NMR measurements19 to be a modulated collinear phase. The
appearance of both the spiral and modulated collinear phases
was well understood8 as a consequence of the vector chiral
phase and the incommensurate SDW2 phase in the 1D J1-J2

spin chain. In addition, quite recently, a new phase transition
has been observed17 at H ≈ 40 T, where the saturation field
is Hs ≈ 47 T. Comparing the result with the phase diagram
in the 1D J1-J2 spin chain,8,11 we expect the new high-field
phase for 40 < H < 47 T to be a nematic long-range-ordered
phase. So far, the magnetic structure of this new phase has
not been experimentally identified at all. We expect that
NMR measurements above the critical temperatures of this
new high-field phase and of the intermediate-field modulated
collinear phase would be useful to verify whether the new
phase is a nematic phase. We also note that PbCuSO4(OH)2

has a rather small saturation field Hs ≈ 10 T.24 This might be
an ideal material for measuring the H dependence of 1/T1 up
to the saturation field.
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