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Interfacial thermal transport in atomic junctions
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We study ballistic interfacial thermal transport across atomic junctions. Exact expressions for phonon
transmission coefficients are derived for thermal transport in one-junction and two-junction chains, and verified
by numerical calculation based on a nonequilibrium Green’s function method. For a single-junction case, we find
that the phonon transmission coefficient typically decreases monotonically with increasing freqency. However, in
the range between the point of equal frequency spectrum and that of equal acoustic impedance, it first increases
then decreases, which explains why the Kapitza resistance calculated from the acoustic mismatch model is far
larger than the experimental values at low temperatures. The junction thermal conductance reaches a maximum
when the interfacial coupling equals the harmonic average of the spring constants of the two semi-infinite chains.
For three-dimensional junctions, in the weak coupling limit, we find that the conductance is proportional to the
square of the interfacial coupling, while for a intermediate coupling strength the conductance is approximately
proportional to the interfacial coupling strength. For two-junction chains, the transmission coefficient oscillates
with the frequency due to interference effects. The oscillations between the two envelope lines can be understood
analytically, thus providing guidelines for designing phonon frequency filters.
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I. INTRODUCTION

In the past decade there has been a significant research focus
on thermal transport in the microscale.1 Several conceptual
thermal devices, such as thermal rectifiers/diodes, thermal
transistors, thermal logical gates, and thermal memory,2–5

have been proposed, which, in principle, make it possible
to control heat due to phonons and process information
with phonons. The issue of quantum thermal transport in
nanostructures has also been addressed.6 In this context, the
critical information is in phonon transmission coefficients that
in quasi-one-dimensional atomic models can be calculated by
the transfer matrix method.7–10 However, the evaluation of the
transfer matrix may be numerically unstable, particularly when
the system size becomes large. Alternatively, nonequilibrium
Green’s function (NEGF) method is an efficient way to
calculate the transmission coefficient.11 Unfortunately, both
of these two methods are numerical in nature and do not give
analytical expressions.

For thermal transport and control, the interfacial ther-
mal scattering process is becoming increasingly important,
especially in practical devices. Two theories, acoustic mis-
match model12 and the diffuse mismatch model,13 have been
proposed to study the mechanism of the thermal interfacial
resistance. However, both models offer limited accuracy in
nanoscale interfacial resistance predictions14 because they
neglect atomic details of actual interfaces. A scattering
boundary method within the lattice dynamic approach was
first proposed by Lumpkin and Saslow to study the Kapitza
conductance in a one-dimensional (1D) lattice,15 and was then
applied to calculate the Kapitza resistance in two- and three-
dimensional (3D) lattices.16,17 This method can predict thermal
interfacial conductance between heterogeneous materials with
full consideration of the atomic structures in the interface.
Recently, this method was applied to study the ballistic

thermal transport in nanotube junctions,18 spin chains,19 and
honeycomb lattice ribbons.20

In this paper we give an explicit analytical expression
of transmission coefficient obtained through the scattering
boundary method, and use it to study the interfacial thermal
transport across atomic junctions. First, in Sec. II, we introduce
a model in which two semi-infinite 1D atomic chains are
coupled via either a point junction or an extended junction
region. By using the boundary scattering method we derive
the exact expressions for phonon transmission coefficients
for thermal transport in one-junction and two-junction chains
in Sec. III. The role of various parameters on the junc-
tion conductance is analyzed and discussed in Sec. IV. In
section IV we also estimate the interfacial conductance
between two 3D solids. In Sec. V, we introduce briefly the
NEGF method, and use it to verify the results from analytical
formulas for the thermal transport in our model. A short
summary is presented in Sec. VI.

II. MODEL

The one-dimensional atomic chain consists of three parts:
two semi-infinite leads and an center region (see Fig. 1). The
two leads are in equilibrium at different temperatures TL and
TR . The three parts are coupled by harmonic springs with
constant strength k12 and k23; all of which are harmonic chains
with mass and spring constants m1, k1, m2, k2 and m3,k3,
respectively. So the total Hamiltonian can be written as

H =
∑

α=1,2,3

Hα + 1

2
k12(x1,1 − x2,1)2 + 1

2
k23(x2,Nc

− x3,1)2;

(1)
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here,

Hα =
Nα∑
i=1

1

2
mαẋ2

α,i +
Nα−1∑
i=1

1

2
kα(xα,i − xα,i+1)2. (2)

Where xα,i is the relative displacement of ith atom in αth part.
If there is no center part, that is, the two semi-infinite leads
connected directly by k12, then by setting α = 1,2 and k23 = 0
in Eq. (1), we can obtain the corresponding Hamiltonian. For
the semi-infinite leads, Nα = ∞.

III. ANALYTICAL SOLUTION FROM THE SCATTERING
BOUNDARY METHOD

Heat current flowing from left to right through a junction
connecting two leads kept at different equilibrium heat-bath
temperatures TL and TR is given by the Landauer formula6

I = 1

2π

∫ ∞

0
h̄ω

[
fL(ω) − fR(ω)

]
T [ω] dω, (3)

which allows us to develop the junction conductance formula

σ = 1

2π

∫ ∞

0
dω h̄ω T [ω]

∂f (ω)

∂T
, (4)

here, fL,R = {exp[h̄ω/(kBTL,R)] − 1}−1 is the Bose-Einstein
distribution for phonons, and T [ω] is the frequency dependent
transmission coefficient. Therefore, the key step for the thermal
transport characterization is to calculate the transmission
coefficients.

We first consider a point-junction case, that is, two
semi-infinite harmonic chains connected by a spring with
constant strength k12. We assume a wave solution transmitting
from the left lead to the right lead. We label the atoms as
−∞, · · · , − 1,0,1,2, · · · , + ∞. Atoms 0 and 1 are connected
by the spring k12. An incident wave from the left is assumed
as xI = λ

j

1e
−iωt . When it arrives at the interface, it will

be partially reflected and partially transmitted. The reflected
wave amplitude is xR = r12λ

−j

1 e−iωt and the transmission
wave can be written as xT = t12λ

j−1
2 e−iωt . So at each atom

we have · · · , x−1 = (λ−1
1 + r12λ1)e−iωt , x0 = (1 + r12)e−iωt ,

x1 = t12e
−iωt , x2 = t12λ2e

−iωt , · · ·. Here, λj = eiqj aj , qj is
the wave vector, aj is the interatomic spacing. For the atom in
the j th part, we can have the equation of motion as

mj

d2xj,n

dt2
= kj (xj,n+1 − xj,n) + kj (xj,n − xj,n−1), (5)

each wave transports separately and satisfies this equation.
Thus λj satisfies the dispersion relation of the corresponding
lead as

ω2mj = −kjλ
−1
j + 2kj − kjλj . (6)

The quadratic equation has two roots. Which one should
we choose? Replacing ω with ω + iη, η = 0+, none of the
eigenvalues λ will have modulus exactly 1. We find for the
traveling waves21

|λ| = 1 − η
a

v
; (7)

thus the forward moving waves with group velocity v > 0 have
|λ| < 1. Therefore we should take the one with |λ| < 1 of the
two roots which are given as

λj =
−hj ±

√
h2

j − 4

2
, hj = mj

kj

(ω + iη)2 − 2. (8)

From the scattering boundary method, the coefficients r12,
t12 can be obtained from the continuity condition at the
interface as:

ω2m1x0 = −k1x−1 + (k1 + k12)x0 − k12x1; (9)

ω2m2x1 = −k12x0 + (k12 + k2)x1 − k12x2. (10)

Finally we can get the transmission coefficient as

T [ω] = 1 − |r12|2 = 1 − |r21|2, (11)

here,

rij = ki(λi − 1/λi)(kj − kij − kj/λj )

(ki − kij − ki/λi)(kj − kij − kj/λj ) − k2
ij

− 1. (12)

Of course, we can also use t12 to express T [ω] as m2v2/a2

m1v1/a1
|t12|2;

here the group velocity vi = dω
dqi

= ai

2

√
4ki

mi
− ω2, which is

derived from the dispersion relation given by Eq. (6). Thus,
the transmission coefficient can also be expressed as

T [ω] =
√

4k2m2 − ω2m2
2√

4k1m1 − ω2m2
1

|t12|2, (13)

here

tij = −kij ki(λi − 1/λi)

(ki − kij − ki/λi)(kj − kij − kj/λj ) − k2
ij

. (14)

For the long-wave limit, that is, ω = 0+, we get rij =√
kimi−

√
kj mj√

kimi+
√

kj mj

; and the transmission is

T [0+] = 4
√

k1m1k2m2

(
√

k1m1 + √
k2m2)2

. (15)

This result is consistent with the one obtained for the
acoustic mismatch model, i.e., T = 4Z1Z2

(Z1+Z2)2 ,12 where the
acoustic impedance is Zi = ρivi = (mi/ai)vi , and Zi(ω =
0+) = √

kimi . We note that in the acoustic mismatch model
the transmission coefficient is frequency independent, and
in reality it only applies in the limit of low frequency/long
wavelengths. In this case the phonon sees the interface only
as a discontinuity between two semi-infinite media and the
transmission does not depend on the coupling spring strength
kij . If the two leads have the same acoustic impedance for long
wave limit, then T [0+] = 1; otherwise T [0+] < 1.

For the two-junction case, shown in Fig. 1, the
transmission wave will be reflected and transmitted
by the second boundary, leading to multiple reflections.
Finally the total transmitted wave function is obtained as
a superposition of multiple reflections and transmissions,
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FIG. 1. (Color online) Schematic of the 1D atomic chain model.
The size of the center part is NC = 8. The left and right regions are
two semi-infinite harmonic atomic chains at different temperatures,
TL and TR . The three parts are coupled by harmonic springs with
constant strength k12 and k23, all of which are harmonic chains with
mass and spring constant as m1, and k1, m2, and k2, and m3 and k3,
respectively.

resulting in the transmission coefficient through the center
part

T [ω] = (1 − |r12|2)(1 − |r23|2)∣∣1 − r23r21λ
2(NC−1)
2

∣∣2 , (16)

here rij and λi are determined by Eqs. (12) and (8), re-
spectively; NC is the number of atoms in the center atomic
chain. From this expression, we can find that the transmission
coefficient oscillates with frequency, and is between the
envelope lines of maximum and minimum transmission,
which are Tmax[ω] = (1 − |r12|2)(1 − |r23|2)/(1 − |r23r21|)2

for constructive interference and Tmin[ω] = /(1 − |r12|2)(1 −
|r23|2)/(1 + |r23r21|)2 for destructive interference.

IV. RESULTS AND DISCUSSIONS

A. Thermal transport in 1D one-junction chains

In Sec. III, we have derived the analytical expressions for
the phonon transmission coefficient for the point-junction and
extended-junction (two-point-junction) cases Eqs. (11), (12),
and (16) by using the scattering boundary method. Using
these analytical expressions, we analyze the role of various
parameters on the thermal transport in one- and two- point
junctions.

Figure 2 shows the transmission coefficient as a function of
frequency for a different interface spring constant k12 for the
point-junction model. The maximum frequency at which the
transmission coefficient is above zero is equal to the minimum
of 2

√
k1/m1 and 2

√
k2/m2. In Fig. 2(a), the two semi-infinite

atomic chains have the same mass and spring constant. When
the interface coupling k12 equals to that of the chains, the
transmission is equal to one in the whole frequency domain,
because of the homogeneity of the chain structure. If k12

increases or decreases, the transmission coefficient decreases.
If we set k1/m1 = k2/m2, the transmission coefficient exhibits
similar behavior, the only difference is that the transmission
coefficient changes to the value obtained by Eq. (15). In
Fig. 2(b), the two semi-infinite atomic chains have different
masses and spring constants. The transmission decreases with
increased frequency for all the coupling values k12. Also,
it appears that for a given frequency the transmission is
maximized for a k12 value residing between k1 and k2. From
Eq. (11) and Eq. (12), T [ω] = 0, if k12 = 0; and T [ω] has

definite value 1 − | k1(λ1−1)−k2(1−λ−1
2 )

k1(1−λ−1
1 )+k2(1−λ−1

2 )
|2, if k12 = ∞.

(a) (b)

FIG. 2. (Color online) Transmission coefficient vs frequency
ω for different interface coupling k12 in one-junction chains.
(a) Transmission in one junction connected by the same semi-infinite
atomic chains with k1 = k2 = 1.0, m1 = m2 = 1.0; solid, dashed,
dotted and dash-dotted lines correspond to k12 = 0.1, 0.5, 1.0
and 2.0, respectively. (b) Transmission in one junction connected
by two different semi-infinite atomic chains with k1 = 1.0, m1 =
1.0, k2 = 3.0 and m2 = 4.0; solid, long-dashed, dotted, dash-dotted
and shot-dashed lines correspond to k12 = 0.5, 1.0, 1.5, 3.0 and 8.0,
respectively.

The maximum transmission concept results in the
maximum junction conductance as shown in Fig. 3. With
the increasing of k12, we find that the conductance will first
increase, then arrive at a maximum value, and then slightly
decrease and at last it will tend to a constant. We find that the
maximum transmission or conductance occurs at k12 given by

k12 = k12m = 2k1k2

k1 + k2
, (17)

That is, when the coupling spring stiffness is equal to the
harmonic average of spring connecting atoms in the two semi-
infinite chains. In Fig. 4, we show the thermal conductance
vs the ratio of k12 and k12m. For the two semi-infinite chains
with the same mass m1 = m2, the maximum conductance

FIG. 3. (Color online) Thermal conductance vs interface coupling
k12 in the point-junction model. Here k1 = 1.0, m1 = 1.0.
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(a) (b)

FIG. 4. (Color online) Thermal conductance vs k12/k12m in a one-
junction atomic chain. Here k12m is the harmonic average of the spring
constants of the two semi-infinite leads. (a) k1 = 1.0, m1 = m2 = 1.0;
solid, dashed, and dotted lines correspond to k2 = 0.1, 1.0, and 40.0,
respectively. (b) k1 = 1.0, m1 = 1.0, k2 = 10.0; solid, dashed, and
dotted lines correspond to m2 = 0.01, 1.0, and 100.0, respectively.

occurs exactly at k12m. If the two leads have different masses
m1 �= m2, the maximum conductance is almost exactly at the
k12m point, for mass ratios ranging from 0.01 to 100.

In Fig. 5, we show the curves of the transmission as a
function of frequency for interface coupling equal to k12m.
If k1/m1 = k2/m2, that is, when both chains have the same
frequency spectrum of [0,2

√
k1/m1], the transmission equals

a constant T [ω] = T [0+], which can be seen from the solid
line in Fig. 5, and which is consistent with Fig. 2(a). Thus
for chains with matched spectra the transmission is frequency
independent. Let us now fix k1,k2 and k2, and decrease m2.
In the range between the point of equal-spectrum (ωm =
k1/m1 = k2/m2) and the one of equal-impedance (Z(ω =

FIG. 5. (Color online) Transmission coefficient vs frequency for
different mass ratios m2/m1 at the interface coupling k12m. Here,
k1 = 1.0, k2 = 3.0, k12 = k12m = 1.5 and m1 = 1.0.

FIG. 6. (Color online) Transmission coefficient vs frequency for
different interface coupling k12m. Here, k1 = 1.0, m1 = 1.0, k2 =
0.7, m2 = 0.3.

0+) = k1m1 = k2m2), the transmission will first increase with
frequency and then decrease. Otherwise, there is a monotonic
decrease. The former behavior is quite interesting, as one
expects that the transmission should be the largest in the
long wavelength limit. For highly dissimilar materials, the
transmission coefficient in the whole frequency range is much
larger than that in the long wave limit T [ω = 0+] = 4Z1Z2

(Z1+Z2)2 ,
thus the real conductance is far larger than that calculated from
the acoustic mismatch model. This result explain why the
interfacial resistance calculated from the acoustic mismatch
model is far lager than the experimental value measured at low
temperatures, where the phonon transport can be regarded as
ballistic transport.

In many real interfaces, interface coupling is very weak,
that is, the k12 is less than k12m. So it is desirable to study
the thermal transport in atomic chains in the weak coupling
limit. Figure 6 shows the transmission coefficient as function
of interface coupling. In the weak coupling limit, with the
frequency increasing, the transmission decreases rapidly to
zero, so the frequency region where phonons are effectively
transmitted is very narrow. With interface strength increasing,
more and more modes contribute to the transmission and the
phonon transmission window widens. If the interface coupling
increases further, that is k12/k12m > 0.1, out of the weak
interface coupling limit, all the phonons contribute to the
transmission. The only further change with increasing k12 is
the actual values of the transmission coefficients increase. In
Fig. 7(a), we show the transmission cutoff frequency as
function of the interface coupling. Here, we define the
cutoff frequency ωcutoff at which the transmission T (ωcutoff) =
0.1T (0+). We find that the cutoff frequency shows linear
dependance on interface coupling in the weak coupling limit
k12 < 0.1k12m. If the interface strength increase further, the
cutoff frequency is saturated. In Fig. 7(b), we show the
transmission as function of interface coupling for several
different phonons. We find that in the weak interface coupling
region, the transmission is proportional to the square of the
interface coupling, which is consistent with the formulas
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FIG. 7. (Color online) (a) Cutoff frequency vs interface coupling
for 1D one-junction atomic chains. The parameters are: k1 = 1.0,
m1 = 1.0. (b) Transmission as function of interface coupling for 1D
one-junction atomic chains. Parameters are k1 = 1.0, m1 = 1.0 and
k2 = 0.7, m2 = 0.3.

Eqs. (13) and (14). In the weak interface coupling region,
for the 1D atomic one-junction chains, it is shown that the
thermal conductance is linear with the interface coupling (see
Fig. 8). If we strengthen the interface coupling between the two
chains, the conductance will be linearly enhanced. For different
mismatched chains, the absolute values of the conductance are
different, but dependence on the coupling strength is the same.

B. Thermal transport in 3D single-interface structures

The thermal conductance Eq. (4) can also be written as 22

σ =
∫ ∞

0
dω h̄ω T [ω]

∂f (ω)

∂T
v(ω)D(ω), (18)

because of v(ω) = ∂ω/∂k and phonon density of states in 1D
structure, D(ω) = 1/(2πv), we can obtain Eq. (4). In order to
estimate the behavior of the interfacial thermal transport across
interfaces in 3D structures, we need only change the phonon
density of states in the above equation. Because the density
of states for 3D structure within the Debye approximation
is D(ω) ∼ ω2, we can replace ω with ω3 in Eq. (4); the

FIG. 8. (Color online) Thermal conductance vs interface coupling
for 1D point-junction atomic chains. Parameters are k1 = 1.0,
m1 = 1.0.

(a) (b)

FIG. 9. (Color online) Thermal conductance vs interface coupling
for 3D one-junction atomic chains. Parameters are the same as in
Fig. 8. (a) The interface coupling is far less than the k12m coupling,
k12m/k12 = 0.001 − 0.1; (b) the Interface coupling is in the region of
0.1k12m − 0.9k12m.

thermal conductance as a function of the coupling strength
is shown in Fig. 9. From Fig. 9(a), we find that in the weak
interface limit, conductance is proportional to the square of
interface coupling, which is consistent with the results from
other models 23–25, while it is linearly dependent on the
interface coupling in 1D junctions. This is due to the fact
that in 3D low frequency region contributes relatively little
to the conductance as the density of states is low there. If the
interface coupling increases further, that is k12/k12m > 0.1, out
of the weak interface coupling limit, all the modes contribute to
the transmittance, the conductance is no longer proportional to
the square of the interface coupling, and the slope continuously
decreases. In some intermediate ranges the conductance is
approximately proportional to the interfacial coupling (see
Fig. 9(b)), which is consistent with the results from molecular
simulation approach.26 For stronger coupling the conductances
of the 1D and 3D cases one have similar behaviors, the slope
of both cases will decrease continuously to zero at point k12m,
where the conductance will be maximized and then decrease
slightly to a limiting value.

C. Thermal transport in extended junctions

Now we focus on a case where the junction is extended
and involves a center part. The overall behavior of the
transmission is the combination of the transmission behavior
in single point-junction case and the oscillatory behavior due
to phonon interferences arising form multiple scattering. We
show the transmission coefficient as a function of frequency
of an arbitrary case in Fig. 10(a). Here, the three chain parts
have different masses and spring constants, and the interface
coupling is not special. From the analytical expression of
Eq. (16), we plot curves of the maximum transmission
and minimum transmission, Nc = 4 and Nc = 9. The trans-
mission oscillates between the envelope lines of maximum
and minimum transmission. The maximum transmission line
will increase first, and the minimum transmission line will
monotonically decrease with frequency. However for interface
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(a) (b)

FIG. 10. (Color online) Transmission coefficient of the two-
junction atomic chains. Parameters: k1 = 1.0, m1 = 1.0, k2 =
0.9, m2 = 1.6; and k3 = 4.5, m3 = 2.0. Solid, dotted, long-dashed
and shot dashed lines correspond to maximum transmission, mini-
mum transmission, Nc = 4 and Nc = 9, respectively. The interface
couplings are different: (a) k12 = 0.3, k23 = 0.7; (b) k12 = 1.0,

k23 = 4.5.

coupling that is the same with the leads, the two envelop lines
will monotonically decrease, which can be seen in Fig. 10(b).

For some special cases, the transmission coefficient in
the frequency domain has interesting phenomena, which are
shown in Fig. 11. In Fig. 11(a), the transmission for the case
of two identical leads is shown. In this case, the maximum
transmission is equal to one, the infinite-long-wavelength
phonon and the resonance mode can transmit fully through the
center part. The minimum transmission is very low, indicating
efficient destructive interference. Figure 11(b) shows the
transmission when all three parts are different and connected
by interface couplings k12m and k23m. We find that overall
trend for the maximum and minimum transmission lines is
increasing first, then decreasing. If, in addition, the ratios of
ki/mi are the same for three parts, then the maximum and
minimum transmission are constants in the whole frequency
range, and the transmission coefficient through finite-size
center part oscillate between the two constants, which can be
clearly seen in Fig. 11(c). Therefore, we can use the above
properties of transmission to design the frequency filters.
Figure 12 shows the maximum and minimum transmission
coefficient for the filter. If the spring constant of the center
part is very different from the ones of the the two leads, the
oscillatory peak is sharp, and transmission for most of the
frequency will tend to zero, only a few resonant frequencies
can be transmitted. This finding provides guidelines for the
design of selective frequency filters.

V. VERIFICATION BY THE NONEQUILIBRIUM GREEN’S
FUNCTION METHOD

The NEGF method is an exact approach to study the ballistic
thermal transport through junctions. Following the discussion
in Sec. II, if we use a transformation for the coordinates, uj =

(a)

(b)

(c)

FIG. 11. (Color online) Transmission coefficient of two-junction
atomic chains; k1 = 1.0, m1 = 1.0. Solid, dotted, long-dashed
and shot-dashed lines correspond to maximum transmission,
minimum transmission, Nc = 4 and Nc = 9, respectively. (a)
k2 = 3.0, m2 = 5.0, k3 = 1.0, m3 = 1.0, k12 = k23 = 1.0; (b) k2 =
3.0, m2 = 1.0, k3 = 5.0, m3 = 1.0, k12 = k12m = 1.5, k23 = k23m =
3.75; (c) k2 = 3.0, m2 = 3.0, k3 = 5.0, m3 = 5.0, k12 = k12m =
1.5, k23 = k23m = 3.75.

√
mjxj , which is called the mass-normalized displacement,

then the Hamiltonian can be written as

H =
∑

α=1,2,3

Hα +
∑

β=1,3

UT
β Vβ,2U2, (19)

where Hα = 1
2 (P T

α Pα + UT
α KαUα). Kα is the mass-

normalized spring constant matrix, and V12 = (V21)T is the
coupling matrix of the left lead to the central region and
similarly for V23 is the coupling matrix of the right lead to the
central region. As stated in Ref. 6, the element of the coupling
matrix V

ij

α,β is equal to −kij /
√

mimj which corresponds to the
coupling between the ith atom in region α and the jth atom in
region β.
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FIG. 12. (Color online) Maximum and minimum transmission
coefficient of two-junction atomic chains; k1 = 1.0, m1 = 1.0. Solid
and dashed lines correspond to maximum transmission and minimum
transmission k3 = 1.0, and m3 = 1.0, respectively; dotted and dash-
dotted lines correspond to maximum transmission and minimum
transmission k3 = 5.0, and m3 = 5.0, respectively. Inset: transmis-
sion coefficient with frequency for different k2 values; k1 = k3 =
1.0, m1 = m3 = 1.0. Dotted, dashed, and solid lines correspond to
k2 = 0.5, 0.1, and 0.02 respectively. For all the curves, m2 = k2 and
k12 = k12m, k23 = k23m.

We can use the nonequilibrium Green’s function method6

to study the thermal transport in the atomic chain. We define
the contour-ordered Green’s function as

Gαβ(τ,τ ′) ≡ − i

h̄
〈T Uα(τ )Uβ(τ ′)T 〉, (20)

where α and β refer to the region that the coordinates belong to
and T is the contour-ordering operator. Then the equations of
motion of the Green’s function can be derived. In particular, the
retarded Green’s function for the central region in frequency
domain is

Gr [ω] = [(ω + iη)2 − K2 − �r [ω]]−1. (21)

Here, �r = ∑
α=1,3 �r

α , and �α = V2,αgαVα,2 is the self-
energy due to interaction with the heat bath, gr

α = [(ω + iη)2 −
Kα]−1. And with the advanced Green’s function Ga = (Gr )†,
the transmission coefficient can be calculated by the so-called
Caroli formula as

Tβα[ω] = Tr(Gr
βGa
α), (22)

where 
α = i(�r
α[ω] − �a

α[ω]).
For single-junction atomic chains, if we regard the two

atoms in the interface (atom 0 and atom 1) as the center
part, then we can still use the formulas above to study the
phonon transmission leading to the exact formula yielding the
same result with the one obtained from the scattering boundary
method. In Appendix, We give the analytical proof of this fact.

For two-junction atomic chains, according to the NEGF
formulas, we do the numerical calculation and plot the curves
of the transmission coefficient as a function of frequency and
compare them to the results obtained the scattering boundary
method (see Fig. 13). We find that for any arbitrary case, the

FIG. 13. (Color online) Comparison of results obtained with the
scattering boundary method vs the nonequilibrium Green’s function
(NEFG) method for the transmission coefficient in two-junction
atomic chains. The square curve and solid line correspond the
parameters: Nc = 6, k1 = 1.0, m1 = 1.0, k2 = 1.5, m2 = 1.3, k3 =
2.0, m3 = 1.7, k12 = 1.3, k23 = 0.8; the circle curve and dashed
line correspond the parameters: Nc = 13, k1 = 1.0, m1 = 1.0, k2 =
1.5, m2 = 1.3, k3 = 4.0, m3 = 2.7, k12 = 1.3, k23 = 0.8. Square and
circle curves are the results obtained with the NGEF method; solid and
dotted lines, results obtained with the scattering boundary method.

results from the NEGF method and the scattering boundary
method are exactly the same. If there is no many-body
interaction, that is, for the ballistic thermal transport the
scattering matrix approach and the Green’s function method
give the same results. These two methods are equivalent, which
has been proved from other points of view in Refs. 27 and 28.

VI. CONCLUSION

In this paper, we study the ballistic interfacial thermal
transport in atomic junctions. We give the analytical simple
formulas Eqs. (11), (12), and (16) for the transmission of
one-junction and two-junction cases, which are consistent with
the results from the NEGF method.

For the one-junction case, we find that the transmission
and conductance are maximized when the interface spring
constant equals to the harmonic average of the two spring
constants of the leads. At the point near k12 = k12m, the
transmission T [ω] is a constant if k2/m2 = k1/m1; if they
are not equal, in the range between k1/m1 = k2/m2 and
k1m1 = k2m2, the transmission coefficient first increases
then decreases with increasing frequency, otherwise the
transmission monotonically decreases as the frequency
increases. For weak interface coupling, the cutoff frequency
and the interface conductance for 1D chain are linearly
dependent with the interface coupling strength.

Because of different density of states, we change the
formula of conductance to mimic the thermal transport in
3D junctions. In weak interface coupling limit, we find
that the conductance is proportional to the square of the
interface coupling, which is consistent with the results of other
models. The slope of the conductance as function of interfacial
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coupling strength decreases continuously from two to zero, in
certain range of which, the conductance is linear proportional
to the interface coupling, which is consistent with the results
of other molecular simulations.

For the two-junction case, the transmission oscillates with
frequency in the envelope lines of maximum and minimum
transmission which are determined by the one-junction picture.
Transmission sometimes oscillates between two decreasing
envelope lines, sometimes between two increasing envelop
curves, or between two constants, etc.
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APPENDIX: ANALYTICAL PROOF OF THE EQUALITY OF
THE TWO METHODS FOR ONE JUNCTION

In this appendix we give the analytical proof for the equality
of the scattering boundary method and the non-equilibrium

Green’s function approach for the one-junction atomic
chains.

From the scattering boundary method, we obtain the
transmission Eqs. (13) and (14), that is

T [ω] =
√

4k2m2 − ω2m2
2√

4k1m1 − ω2m2
1

×
∣∣∣∣ −k12k1(λ1 − 1/λ1)

(k1 − k12 − k1/λ1)(k2 − k12 − k2/λ2) − k2
12

∣∣∣∣
2

,

(A1)

From the dispersion relation Eq. (6), we can obtain

kj − kj/λj = ω2mj − kj (1 − λj ) (A2)

; and

k2
j |λj − 1/λj |2 = ω2

(
4kjmj − ω2m2

j

)
. (A3)

So we can get

T [ω] =
k2

12ω
2
√

4k1m1 − ω2m2
1

√
4k2m2 − ω2m2

2∣∣[ω2m1 − k1(1 − λ1) − k12][ω2m2 − k2(1 − λ2) − k12] − k2
12

∣∣2 . (A4)

Using the NEGF formulas, we regard the two atoms in the
interface (atom 0 and atom 1) as the center part 0, then the
dynamic matrix of the center as

K0 =
(

k1+k12
m1

−k12√
m1m2

−k12√
m1m2

k12+k2
m1

)
. (A5)

And the coupling matrices between the leads (parts 1 and
2) and the center (part 0) are V01 = (k1/m1 , 0)T and V02 =
(0 , k2/m2)T , and according to Ref. 29, we can obtain the
surface Green’s function as

gr
i = −miλi

ki

, (A6)

here, i = 1,2 corresponds to the left and right lead. Then we
can get the self energy (�r = V01g

r
1V10 + V02g

r
2V20) as

�r =
(

− k1λ1
m1

0

0 − k2λ2
m2

)
. (A7)

Thus we can calculate the retarded Green’s function of the
center Gr = (ω2I − K0 − �r )−1, which reads as

Gr =
(

A1 B

B A2

)−1

= 1

�

(
A2 −B

−B A1

)
, (A8)

where, I is the 2D identity matrix and

Ai = ω2 − ki

mi

(1 − λi) − k12

mi

, (A9)

B = k12√
m1m2

, � = A1A2 − B2. (A10)

The advanced Green’s function Ga equals to (Gr )†. And from
the self energy we can get


1 =
(

C1 0

0 0

)
; 
2 =

(
0 0

0 C2

)
, (A11)

here, Ci = ω
mi

√
4kimi − ω2m2

i . Therefore, we can calculate
the transmission coefficient from the Caroli formula Eq. (22),
at last we obtain

T [ω] = Tr(Gr
1G
a
2) = B2C1C2

��∗ = B2C1C2

|A1A2 − B2|2
(A12)

Inserting the values of Ai,B and Ci , we get exactly the
same result as Eq. (A4). Therefore, the results from the
scattering boundary method and non-equilibrium Green’s
function approach are equivalent.
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