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Marginal stability analysis of the phase field crystal model in one spatial dimension
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The problem of wavenumber kf and velocity V selection for a solid front invading an unstable homogeneous
phase is considered. A marginal stability analysis is used to predict kf and V for the parabolic and hyperbolic (or
modified) phase field crystal models in one dimension. It is shown that the marginally selected wave number of the
periodic crystal monotonically increases with increasing undercooling and relaxation times. At high undercooling
and relaxation times it is found that the system can select a kf that is unstable to an Eckhaus instability in the
bulk phase. This may imply a transition to highly defected or glassy states in higher dimensions.
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I. INTRODUCTION

Determining the selection of patterns that emerge under
nonequilibrium conditions is a difficult problem of both
technological and fundamental interest. Generally speaking,
the selection occurs through the growth of fluctuations from
an unstable state or through nucleation from a metastable state
and can often occur as a phase front moves through an excitable
or unstable media. Important and widely examined examples
include the Mullins-Sekerka1 and Asaro-Tiller-Grinfeld2

instabilities, side branching in dendrite growth and viscous
fingering, convective instabilities, various types of unstable
nongradient systems, traveling waves, chemical reactions,
and front propagation into unstable states (see overviews in
Refs. 3 and 4, and references therein). Of particular interest
in this work is the determination of the front velocity and
wavelength that emerge as a phase front sweeps through an
unstable media.5

More specifically, the patterns that emerge behind a front
described by the phase field crystal (PFC) model6 will be
examined. The PFC model has been proposed to incorporate
the physics naturally embedded on atomic length scales
(elasticity, dislocation, etc.) and on diffusive time scales. The
PFC model is based on the free-energy functional of the Swift-
Hohenberg (SH) form used to describe pattern formation7 in
Rayleigh-Bénard convection. The PFC model describes a field
that is related to the local atomic number density, such that
it is spatially periodic in the solid and constant in the liquid.
It can be related to other continuum field theories such as
classical density-functional theory8,9 and the atomic density
function theory.10 The PFC model may also be considered
as a conserved version of the Swift-Hohenberg equation
and provides an efficient method for simulating liquid-solid
transitions,11,12 colloidal solidification,13 dislocation motion
and plasticity,14,15 glass formation,16 epitaxial growth,6,17

grain-boundary premelting,18 surface reconstructions,19 and
grain-boundary energies.20

The purpose of this paper is to formulate a method for
qualitative and quantitative evaluation of the periodic pattern
that emerges as a propagating phase front of a periodic pattern
invades an unstable homogeneous supercooled phase. For such

purposes the marginal stability analysis of Dee and Langer5

will be exploited. This analysis is essentially a linear stability
analysis around the unstable state in the coordinate frame of
the moving front. In this analysis the periodicity and velocity at
the propagative front is selected by the mode that is marginally
stable and can be used to formulate analytical conditions for
dynamic selection rules. Such analysis has been applied to
the dynamics described by the Kolmogorov-Fisher and Swift-
Hohenberg equations.21–23 In the present paper this is applied
to the PFC model in one dimension for the case in which
a stable periodic (“solid”) state invades an unstable uniform
state.

As originally formulated in a parabolic form, the PFC
model allows simulations on diffusive time scales which can
be many orders of magnitude larger than molecular dynamics
simulations.6,14 More recently a hyperbolic24 or modified25

PFC model was introduced that includes faster degrees of
freedom in a form of inertia and as such leads to the description
of both fast and slow dynamics. Fast front dynamics proceeds
when the driving force for the phase transition is large. This oc-
curs when the free-energy difference between the (meta)stable
periodic solid and initially unstable phase is very large, which
in general occurs when a system is quenched far below a transi-
tion point, or in this case far below the equilibrium temperature
of the phase transition.26 These conditions lead to a fast phase
transition when the velocity of the front is comparable to
the speed of atomic diffusion or the speed of local structural
relaxation. The movement of a phase transition front at such
fast velocities can lead to bulk phases that are not in a local
structural or chemical equilibrium. As shown,27 and recently
verified in atomistic simulations,28 the trapping of atoms dur-
ing rapid movement of the phase interface cannot be described
by purely parabolic models. For this reason both parabolic and
hyperbolic models of phase field crystals are examined.

The paper is organized as follows. A description of the
marginal stability analysis is given in Sec. II. This analysis is
then applied to the periodic patterns described by the parabolic
and hyperbolic PFC equations in Secs. III and IV, respectively.
In Sec. V, a summary of the necessary equations for the
qualitative and quantitative predictions of the marginally
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selected lattice parameter are given. Interpretations of the
selected lattice parameter at the phase front are then presented
in Sec. VI for parabolic and hyperbolic PFC equations. Finally,
Sec. VII presents a summary of the conclusions.

II. MARGINAL STABILITY ANALYSIS

Consider a front, described by some field φ, invading an
unstable homogeneous state in the asymptotic time limit. Just
ahead of the front φ can be expanded around its value in
the unstable homogenous state since large deviations from
this value only occur behind the front. The marginal stability
analysis examines solutions of the linearized equations just
ahead of the front in a coordinate frame that is moving with
the front, which are of the form δφ ∼ eω(k)t , where ω(k) is the
dispersion relation and k is the wave number. A saddle-point
approximation29 is used to define the complex wave number
k∗ at the propagating front, i.e.,

∂ω

∂k

∣∣∣∣
k∗

= 0. (1)

Together with the dispersion relation ω(k), Eq. (1) defines
the most unstable mode at the front. Assuming the front is
stationary in the moving coordinate frame, it must neither
grow nor decay exponentially at k = k∗, i.e,

Re[ω(k)|k∗] = 0. (2)

The front is oscillating at angular frequency and moving with
the linear velocity V . Consequently, the final wave number kf

at the front must be selected as

kf = Im[ω(k∗)]

V
. (3)

Equations (1)–(3) were proposed by Dee and Langer5 and
have been applied to the analysis of state selection when
fronts propagate into unstable states.22 A wide class of pattern
propagation equations was investigated using the marginal
stability conditions identical to Eqs. (1)–(3) in nonlinear
dissipative systems21 as well as in the asymptotic time regime
of phase front dynamics.23

Marginal stability analysis essentially reduces to assuming
that the equation of motion can be linearized in a moving
coordinate frame just ahead of the front, where perturbations
in the appropriate field (i.e., the atomic number density) are
small. As the front moves by these perturbations increase and
nonlinear corrections to the marginal stability predictions may
be important. Nevertheless, such analysis provides insight into
the selection of states and will be examined for the parabolic
and hyperbolic PFC-type linearized systems.

III. PARABOLIC SYSTEM

A. Governing equations and dispersion relation

The parabolic PFC model can be written as6

∂φ

∂t
= ∇2{[−ε + (1 + ∇2)2]φ + φ3} (4)

in dimensionless units, where the spatial coordinates are
measured in units proportional to the lattice constant and
the parameter ε is proportional to the undercooling, i.e.,

ε ∼ Te − T , where Te is the equilibrium temperature for phase
transition. This equation can also be written in the form of a
continuity equation for a conserved field, i.e.,

∂φ

∂t
+ �∇ · �J = 0, (5)

where �J is the flux given by the steady-state equation �J =
−∇(δF/δφ), and F is a dimensionless free energy given by

F(φ, �∇φ) =
∫

d�r
{
φ[−ε + (1 + ∇2)2]

φ

2
+ φ4

4

}
. (6)

In one dimension, Eq. (6) is minimized by a periodic pattern
with wave vector kb ≈ 1 − ε2/1024 as predicted in Ref. 30
in the small-ε limit. Equation (4) is identical to the Swift-
Hohenberg equation7 except for the outer Laplacian that
ensures that the field φ is a conserved variable.

To obtain the selected lattice parameter of the periodic
pattern at the front, we first expand the order parameter φ

around the unstable homogeneous state φ0 = 0, i.e.,

δφ = φ − φ0 with |δφ|/A � 1 (7)

at the front of periodic pattern invading the unstable phase
with the velocity V and the undercooling ε > 0, where A is
the amplitude of the fluctuations in the bulk periodic phase.
This situation is schematically shown in Fig. 1 in which λ

represents the characteristic wavelength (or lattice parameter
of the crystalline solid) of the periodic pattern. In general
the marginally selected wave number kf at the front will
be different from the wave number kb formed in the bulk
crystalline solid, as the selection criteria are different. It is also
possible that the selected wave number kf at the front becomes
unstable (or highly metastable) in the bulk phase and will relax
to the equilibrium value through an Eckhaus instability.

Linearizing Eq. (4) in coordinate frame moving at velocity
V gives

∂δφ

∂t
− V

∂δφ

∂x
= α(∇2)δφ, (8)

where

α(∇2) = ∇2[−ε + (1 + ∇2)2]. (9)

FIG. 1. Crystalline phase invading an unstable phase. Propagating
oscillatory pattern with the front velocity V reproduces the periodic
structure of solid-crystal lattice (left) by the front invading the
unstable phase (right).
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Assuming a one-dimensional solution of Eq. (8) in the form

δφ = A exp(ωt + ikx) + c.c. (10)

gives

ω(k) = ikV + α(k), (11)

where c.c. is the complex conjugate. Using the dispersion
relation (11), Eq. (9) transforms into

α(k) = k2[ε − (1 − k2)2]. (12)

B. Marginal stability of the phase front

The most unstable mode, with critical wave number k∗, is
defined by the saddle-point condition (1), which applied to
Eq. (11) gives

iV + dα(k)

dk

∣∣∣∣
k∗

= 0. (13)

If the front is to be stationary in the reference coordinate
frame moving with the constant velocity V , then the marginal
stability condition (2) applied to Eq. (11) gives

Re[ik∗V + α(k∗)] = 0. (14)

Equation (14) defines the condition at which the perturbation
δφ neither grows or decays at wave number k∗ near the front.
Since Eq. (13) is complex it represents two equations and
combined with Eq. (14) allows for solution of the velocity V

and the wave number k∗ which is complex:

k∗ = k∗
Re + ik∗

Im, (15)

where k∗
Re and k∗

Im are the real and imaginary parts, respectively.
Selection of the wave number kf at the front oscillating at

angular frequency Im[ω(k∗)] is defined by Eq. (3). Therefore,
using the dispersion relation (11), one obtains

kf = V −1Im[ik∗V + α(k∗)]. (16)

Solution of Eqs. (13)–(16) is not possible analytically so a
numerical solution is required.31

IV. HYPERBOLIC SYSTEM

A. Governing equation

To take large deviations from thermodynamic equilibrium
into account a model for fast phase transitions32 has been
proposed by modifying the phase field crystal model.24 By
incorporating fast degrees of freedom it is possible to make
predictions at large undercoolings and for the earliest stages
of evolution. Choosing the flux �J as the fast variable, the
nonequilibrium part of the free energy becomes

Fne( �J ) = τ

2

∫
�J · �J d�r, (17)

where τ is the dimensionless time for relaxation of the flux
�J to the steady state. The relaxation time τ is assumed to be

positive, because pure nonequilibrium contribution should lead
to an increase of the free energy in comparison with Eq. (6).
In general, the nonequilibrium contribution (17) is related to

the kinetic energy as has been shown in the example of phase
separation by the mechanism of spinodal decomposition.33

The condition that the total free energy must decrease in
time, dF/dt + dFne/dt < 0, for Eqs. (6) and (17), leads to
the following evolution equation:

τ
∂ �J
∂t

+ �J = −�∇
(

δF
δφ

)
. (18)

Substituting Eq. (18) into balance law (5) gives the hyperbolic
(modified) PFC equation:

τ
∂2φ

∂t2
+ ∂φ

∂t
= ∇2{[−ε + (1 + ∇2)2]φ + φ3}. (19)

Equation (19) shows that, in addition to the dissipation
described by the parabolic PFC equation (4), inertia ∝ ∂2φ/∂t2

is also taken into account due to kinetic contribution (17).
Alternatively, Eq. (19) was proposed by Stefanovic et al.25

to incorporate both fast elastic relaxation and slower mass
diffusion.

Linearizing Eq. (19) in δφ gives

τ
∂2δφ

∂t2
+ ∂δφ

∂t
= α(∇2)δφ, (20)

where the operator α(∇2) is defined by Eq. (9). Before
conducting a marginal stability analysis of this equation near
the front, some basic features of this equation will be discussed
in the next section.

B. Dispersion relation and particular solution

Substituting Eq. (10) into Eq. (20) gives

τω2 + ω − α(k) = 0, (21)

or

ω± = 1

2τ
[±

√
1 + 4τα(k) − 1], (22)

where α(k) is the same as given by Eq. (12). As expected,
when τ → 0 this equation reduces to the parabolic solution
ω± ≡ ω = α(k), at V = 0, consistent with Eq. (11).

The solution of interest is ω+ since it describes the fastest
growing modes and is maximized when dω+/dk = 0, or in
this instance when dα/dk = 0. Solving dα/dk = 0 gives

km = 0, and km =
√

3

3

√
2 +

√
4 + 3(ε − 1), (23)

with the condition α �= −1/(4τ ). Note that the values of
ω+(km) and km do not depend on the relaxation time τ that
characterizes local nonequilibrium phenomena. This is quite
logical because the final state of the φ-field evolution should
be in local thermodynamic equilibrium.

The linear solution for the ω+ can be written

δφ(x,t) = Ae
√

1+4τα(k) t/2τ e−t/2τ eikx + c.c. (24)

When 1 + 4τα(k) < 0 this solution describes underdamped
time oscillations that decay exponentially on time scales of
the order 2τ . This damped oscillatory mode is a feature of fast
phase transitions in the hyperbolic Swift-Hohenberg system24

and a spinodally decomposed system,34 and does not occur in
parabolic equations. Using Eq. (12), the range of k at which
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FIG. 2. Amplification rate ω+(k) for the hyperbolic PFC equation
computed by Eq. (22) with ε = 0.25 and τ = 0.85. (a) Real part of
amplification rate, Re[ω+]. Here, values for kc are given by solution
for α+(k) = 0, one of maxima at km ≈ 1.05 is given by Eq. (23),
and region k > kuc is given by inequality (25). (b) Imaginary part of
amplification rate, Im[ω+], existing at k > kuc.

solution (24) becomes oscillatory (or ω+ becomes complex)
is given by the following inequality:

k6 − 2k4 + (1 − ε)k2 − (4τ )−1 > 0. (25)

Obviously, the range of imaginary values of ω+ and δφ(x,t)
exists at k > kuc, where kuc is the ultraviolet cutoff. The latter
gives a boundary for modes having oscillations, i.e., a bound-
ary between real and complex values for the amplification rate.

Figure 2 shows the behavior for ω+(k) for sample values of
the undercooling ε and relaxation time τ . The real part Re[ω+]
shown in Fig. 2(a) is positive in the range kc1 < k < kc2 that
leads to instability and growth of fluctuations in the φ field.
The negative real part Re[ω+] < 0 in the ranges 0 < k < kc1

and k > kc2 presents a stable mode for φ. Re[ω+] becomes a
negative constant behind the ultraviolet cutoff, i.e., at k > kuc.
The latter range characterizes the increase in the imaginary
part Im[ω+] as the wave number increases, Fig. 2(b).

Further analysis of ω+ can be made with respect to
parameters ε and τ . First, at a fixed and finite value of τ ,
this calculation shows that an increase in undercooling ε

leads to a wider range kc1 < k < kc2 for instability of φ.

With ε > 1, one has kc1 = 0 and positive function ω+(k)
within the range 0 < k < kc2. Therefore the φ field becomes
unstable in a whole range of 0 < k < kc2 at ε > 1. On the other
hand, with near zero undercooling, i.e., at the thermodynamic
equilibrium state with ε = 0, the real part of amplification
rate is negative, Re[ω+] < 0 excluding roots ω+ = 0 at k = 0
and k = 1. In this case, the solution for φ becomes stable for
ε = 0 at any k with k �= 0 and k �= 1. Second, at a fixed and
finite value of ε, the decrease of relaxation time τ shifts the
imaginary part Im[ω+] to the region of larger wave numbers.
In the local equilibrium limit, τ → 0, the imaginary part
Im[ω+] completely disappears. In this case, (i) the oscillatory
behavior for δφ does not exist according to solution (24),
(ii) the order parameter φ monotonically evolves in time
by the parabolic PFC equation (4) characterizing the local
equilibrium dynamics.

C. Propagative speeds

The parabolic PFC equation (4) describes relax-
ation of the “slow” thermodynamic variable φ and
predicts low-frequency regimes with long-wave inter-
action in the periodic pattern. The hyperbolic PFC
equation (19) describes relaxation of the slow thermodynamic
variable φ as well as of the fast variable �J (in a sense of
the model of fast transformations32 consistent with a general
thermodynamics of transport processes35). Equation (19)
extends the analysis to describe both high-frequency mode and
low-frequency mode, i.e., it predicts short-wave and long-wave
interaction, respectively. Propagation of the interaction in the
evolving periodic pattern can be characterized by the phase
speed and group speed. Therefore we consider these speeds to
characterize the high- and low-frequency modes assumed by
the hyperbolic PFC equation.

The phase speed characterizes propagation of a sin-
gle monochromatic harmonic and is obtained as Vp(k) =
ω+(k)/k. Using Eqs. (12) and (22), it is given by

Vp(k) =
√

1 + 4τα(k) − 1

2τk
. (26)

Additionally, propagating disturbances of the order parameter
φ can be characterized by an undistorted wave packet with
the group speed dω+(k)/dk = ±W (k), where the upper and
lower signs correspond to the propagation of wave packets
in the positive and negative x directions, respectively. Using
Eq. (22), the group speed which is moving only in the positive
direction of origin, is given by

W (k) = dα/dk√
1 + 4τα(k)

= 2k{ε + (1 − k2)(3k2 − 1)}√
1 + 4τα(k)

.

(27)

Both speeds (26) and (27) become complex with the
inequality α(k) < −1/(4τ ), which holds in the region k > kuc,
i.e., behind the ultraviolet cutoff given by the wave number
k = kuc (25). Also, the group speed (27) diverges at α(k) =
−1/(4τ ) and k = kuc. These features are shown in Fig. 3,
where the real and imaginary parts of the phase and group
speeds are presented as a function of the wave number k

for fixed values of undercooling ε = 0.5 and relaxation time
τ = 2.0. The appearance of imaginary components of Vp(k)

064113-4



MARGINAL STABILITY ANALYSIS OF THE PHASE . . . PHYSICAL REVIEW B 83, 064113 (2011)

FIG. 3. Phase and group speeds for hyperbolic PFC equation
computed by Eqs. (26) and (27), respectively, with ε = 0.5 and
τ = 2.0. (a) Real part Re[Vp(k)] of phase speed (solid line) and
real part Re[W (k)] of group speed (dashed line). (b) Imaginary part
Im[Vp(k)] phase speed (solid line) and imaginary part Im[W (k)] of
group speed (dashed line), existing at k > kuc.

and W (k) means that the propagation of interaction by the
dispersion law (22) proceeds with changing amplitude for both
single harmonics and wave packet at high k values consistent
with the high-frequency mode. This mode is also consistent
with the oscillatory solution (24) at the high frequency,
α(k) < −1/(4τ ) and k > kuc. Such a regime is absent for
the parabolic PFC equation in which these speeds are always
real:

Vp(k)|τ→0 = α(k)

k
, W (k)|τ→0 = dα

dk
, (28)

as predicted by Eqs. (26) and (27) for the local equilibrium
limit τ → 0. Thus one can characterize the behavior of φ in
the hyperbolic PFC equation (19) as an oscillatory relaxation
in the high-frequency (short-wave) regime and monotonic
relaxation to equilibrium in the low-frequency (long-wave)
regime.

V. SELECTION OF THE LATTICE PARAMETER

The lattice parameter λ of the periodic pattern de-
scribed by the PFC model can be obtained by the specific
wave number k as λ = 2π/k. Now the marginal stabil-
ity analysis from Sec. II will be used to predict lattice
parameter selection in the hyperbolic system. Consider
Eq. (20) in the moving reference frame with the origin
at the front invading unstable phase. Then, in Eq. (20),
both transformations for time derivatives being consid-
ered ∂(δφ)/∂t = ∂(δφ)/∂t − V ∂(δφ)/∂x and ∂2(δφ)/∂t2 =
∂2(δφ)/∂t2 − 2V ∂2(δφ)/∂t∂x + V 2∂2(δφ)/∂x2. In this case,

the one-dimensional linearized hyperbolic PFC equation is
given by

τ
∂2δφ

∂t2
− 2τV

∂2δφ

∂t∂x
+ ∂δφ

∂t

= ∂2

∂x2

[
− (τV 2 + ε) +

(
1 + ∂2

∂x2

)2]
δφ + V

∂δφ

∂x
.

(29)

Assuming a solution of the form given in Eq. (10), the
dispersion relation obtained from Eq. (29) is then

τω2 + (1 − 2iτV k)ω = τV 2k2 + iV k + α(k) (30)

with α(k) given by Eq. (12). Equation (30) shows that, in
the high-frequency limit (high ω and high V at large ε), the
term 2iτV k may have significance in comparison with unity.36

Solution of Eq. (30) gives the following amplification rate:

ω+ = 1

2τ
[
√

1 + 4τα(k) − 1] + iV k. (31)

Two limits for Eq. (31) can be outlined: (i) the equation
transforms into amplification rate ω+ from Eq. (22) in the
fixed laboratory system of coordinates, V = 0, and (ii) the
equation transforms into dispersion relation (11) in the local
equilibrium limit τ → 0.

The marginal stability criterion (2) together with the
amplification rate (31) gives the front velocity as

V = 1

k∗
im

Re

{
1

2τ
[
√

1 + 4τα(k∗) − 1]

}
, (32)

where k∗ is the selected wave number assumed to be complex
valued, Eq. (15). The critical wave number given by the saddle
point (1) is obtained by Eq. (31) as

dω+
dk

∣∣∣∣
k∗

= 0 = iV + 2k∗[ε − 1 + 4(k∗)2 − 3(k∗)4]√
1 + 4τα(k∗)

. (33)

Finally, the angular frequency selects the wave number at the
front by Eq. (3). As in the case of parabolic PFC dynamics,
the system of equations (32), (33), and (3) should be solved
numerically.

VI. DISCUSSION

In this section numerical results for the wave number and
front velocity for the parabolic and hyperbolic equations are
presented and discussed. Figure 4 show solutions for the front
velocity V and the selected wave number kf as functions of
the undercooling ε given by the parabolic PFC model (with
τ = 0) and the hyperbolic PFC model (with the finite value of
τ ). As shown in Fig. 4(a), the front velocity V predicted by
the parabolic PFC model is always higher than that predicted
by the hyperbolic PFC model for positive ε.

The parabolic PFC model predicts lower values for the
selected wave number k

(p)
f in comparison with the wave

number k
(h)
f predicted by the hyperbolic PFC model as is

shown in Fig. 4(b) for finite ε. In this case, the lattice parameter
λ

(p)
f , marginally selected by the parabolic PFC model, should
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FIG. 4. (Color online) Quantitative predictions of the PFC model:
(a) the front velocity V and (b) the wave number kf at the front of
periodic pattern (qualitative scheme for these parameters is shown in
Fig. 1). Marginal stability predictions are made for parabolic system
with τ = 0, and the hyperbolic model with τ = 2 and τ = 5. The
dashed region in (b) corresponds to a region of Eckhaus instability.

be greater than the lattice parameter λ
(h)
f predicted by the

hyperbolic PFC model:

λ
(p)
f = 2π/k

(p)
f > λ

(h)
f = 2π/k

(h)
f . (34)

The tendency given by Eq. (34) might be tested in molecular-
dynamic simulations or in experimental findings for the
freezed metastable phases undergoing a fast phase transition.
Thus atomistic modeling or experimental data on the front
velocity and lattice parameter may give independent tests of the
predictions of the parabolic and hyperbolic models, especially
in a high-velocity regime of phase transition.

At the smallest values of undercooling 0 � ε < 0.05 both
PFC models predict the same values for V and kf as is shown
in Fig. 4. Therefore the inertial as well as local nonequilibrium
phenomena are negligible in the front dynamics of the phase
field crystals at small values of undercooling.

In Fig. 4(b), regions of stable, metastable, and unstable
periodic patterns are also plotted. These are obtained using a

linear analysis of stability around a periodic state as developed
in Refs. 24 and 37. Indeed, it is straightforward to show
that the stability analysis of the present hyperbolic PFC
model, described by Eq. (19), gives the same boundaries for
stable-metastable-unstable regions in the “ε-k” phase diagram
as it is treated for periodic patterns in the parabolic PFC
equation37 and the hyperbolic Swift-Hohenberg equation.24 As
a result of such analysis, the equilibrium38 value of k ≈ 1, is
obviously always linearly stable. As k deviates from this value
(getting larger or smaller) eventually an Eckhaus instability
occurs (for details, see Ref. 39). The shaded region in Fig. 4(b)
corresponds to a region where this instability occurs, for which
the lower bound is

ε(k) = 1 − 9k2 + 15k4 − 7k6

1 − 3k2
. (35)

The upper bound of the shaded region shown in Fig. 4(b) is
given by the curve24,37

ε(k) = (1 − k2)2. (36)

This curve (36) gives the cut (demarcation line) between the
region of Eckhaus instability and the region of absence of real
periodic solutions in a one-mode approximation.

As is clearly seen in Fig. 4(b), for parabolic dynamics (with
τ = 0) the marginally selected wave number kf completely
lies in a region of metastability. In contrast, for large enough
undercooling the wave number selected for hyperbolic dynam-
ics can be in an unstable region, i.e., above the Eckhaus bound.
Defining εc as the critical undercooling below which kf is
metastable and beyond which kf falls into the unstable region,
we find that εc decreases as τ increases. This implies that for
large enough τ the critical undercooling becomes small.

While the analysis provided in the manuscript is a linear
analysis around a one-dimensional moving front, it is inter-
esting to speculate about the consequences of wave-number
selection for the bulk when kf is in the unstable region. To
continue the discussion it is useful to note that the Eckhaus
instability analysis considers the stability of an infinitely
long periodic pattern to a perturbation of wavelength Q, i.e.,
δφ ∼ ∑

n bne
i(nk+Q)x , where k is the wave number of the

infinitely long periodic pattern. In this analysis it is found
that bn ∼ eωEck(Q)t , where ωEck is positive for some range
of Q’s in the unstable region in Fig. 4(b) and negative for
all values of values of Q in the metastable region. In the
unstable region the maximum positive value of ωEck occurs at
some value of Q = Qmax that is zero at the boundary between
metastable and unstable regions and increases as the system
goes deeper into the unstable zone (i.e., as kf increases).
In addition, ωEck(Qmax) also increases further into unstable
zone. With these considerations several possible scenarios or
limiting cases can be outlined.

If the selected wave number kf is just above the metastable
zone, then Qmax is small and thus it is possible that the bulk
will form at kf since the instability to change wavelengths
can only occur when many wavelengths appear (i.e., so that
fluctuations on wavelengths of order ∼2π/Qmax are possible).
In this limit ωEck(Qmax) is relatively small so it may take some
time before a phase slip occurs in the bulk region and the
system returns to a k value closer to the equilibrium one.
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In contrast, when kf is well into the unstable region, Qmax

is larger and the magnitude of ωEck(Qmax) increases. This
implies a much larger likelihood of an Eckhaus instability
occurring near the front. If such an instability occurs near
to the front then the bulk may form at a wave number
closer to the equilibrium value. It should, however, be
emphasized that the marginal stability analysis just ahead of
the front and the Eckhaus analysis in the bulk are both linear
and thus not applicable in the transition zone between the
bulk and just ahead of the front. It is possible that nonlinear
instabilities can occur and correct the conclusion drawn in this
paragraph.

Finally, we stress that the above analysis has been given for
the linearized systems described by the parabolic (8) and hy-
perbolic (29) equations in the limit in which the average value
of φ is zero. In this instance the transition is second order and
the periodic state invades a state that is linearly unstable. This
situation occurs in many other systems with long-range inter-
actions, such as in block copolymer melts40 where structural
transitions of the Landau-Brazovskii type may proceed.41 For
first-order phase transitions, e.g., in solidification phenomena,
the average value of φ is not zero, and the crystalline state typ-
ically invades a metastable phase. In this instance a solvability
condition (see, e.g., Ref. 42) is required to determine velocity
and wavelength selection. It would be interesting in the future
to compare the predictions of this selection criterion for phase
field crystal models with the present calculations.

VII. CONCLUSIONS

The present work is devoted to a marginal stability analysis
of the parabolic and hyperbolic phase field crystal model in
one spatial dimension. Predictions for the front velocity V

and selected wave number kf were presented as a function
of undercooling ε and relaxation rate τ . It was found that in

both parabolic and hyperbolic cases, kf can differ significantly
from the equilibrium value and this difference increases with
both undercooling and relaxation rate.

The central result of this work is that for large τ it is possible
for the front to select a wave number that is unstable in the bulk
phase. This should lead to phase slips occurring at the front or
in the bulk depending on how far kf is above the Eckhaus
boundary. The analysis shows that if kf is just above the
Eckhaus boundary then the instability of the perfect periodic
state occurs for very long wavelengths at very slow rates. In
contrast, when kf is well above the Eckhaus boundary, then
the instability occurs at shorter wavelengths and at a faster
rate. It is interesting to speculate on the consequences of this
instability for the periodic pattern described by the conserved
order parameter (crystal structure) in higher dimensions. In
higher dimensions the phase slips correspond to the nucleation
of dislocations, thus it is possible that this instability could lead
to solids containing many defects or perhaps glassy states.
Of course in higher dimensions other interesting phenomena
are possible since the front may prefer to select not only
a different lattice constant, but could also select a different
crystal symmetry than preferred by the bulk phase. These
speculations provide motivation for extending this study to
higher dimensions. Finally it would also be interesting to apply
the analysis to rapid phase transformations in solids both far
above and below the transition point.
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