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First-principles study of phase stability of Gd-doped EuO and EuS
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Phase diagrams of isoelectronic Eu1−xGdxO and Eu1−xGdxS quasibinary alloy systems are constructed using
first-principles calculations combined with a standard cluster-expansion approach and Monte Carlo simulations.
The oxide system has a wide miscibility gap on the Gd-rich side but forms ordered compounds on the Eu-rich side,
exhibiting a deep asymmetric convex hull in the formation enthalpy diagram. The sulfide system has no stable
compounds. The large difference in the formation enthalpies of the oxide and sulfide compounds is attributed
to the contribution of local lattice relaxation, which is sensitive to the anion size. The solubility of Gd in both
EuO and EuS is in the range of 10%–20% at room temperature and quickly increases at higher temperatures,
indicating that highly doped disordered solid solutions can be produced without the precipitation of secondary
phases. We also predict that rocksalt GdO can be stabilized under appropriate experimental conditions.
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I. INTRODUCTION

The unique properties of gadolinium-doped europium
chalcogenides make them attractive for spintronic and neutron
detection applications. Doped EuO undergoes a spectacular
metal-insulator transition near its Curie temperature Tc, which
is accompanied by huge magnetoresistance. In some samples,
the resistivity changes by up to 13 orders of magnitude upon
changing the temperature,1–3 or by up to 6 orders of magnitude
upon the application of an external magnetic field.2,4 Doped
EuO can be epitaxially grown on Si and GaN substrates, and it
demonstrates a very high spin polarization of the conducting
electrons in the ferromagnetic (FM) state.4 This half-metallic
behavior suggests applications of doped EuO as a spin injector
material in spintronic heterostructures. On the other hand,
Gd-doped semiconductors are appealing as neutron-absorbing
materials for solid-state neutron detection technology due to
a very high neutron absorption cross section of the 157Gd
isotope.5–8

The potential applications of Gd-doped Eu chalcogenides
depend on their phase stability. No phase diagrams are
available for Eu-Gd oxides; the data for Eu-Gd sulfides are
limited to the EuS-Gd2S3 isoplethal section.9 The experimental
studies of pure and Gd-doped EuO and EuS give only indirect
information about the phase stability while focusing on other
properties, which we briefly review here. Pure EuO is a rare FM
insulator with a rocksalt structure, whose optical absorption
gap increases monotonically from 0.95 eV at 0 K to 1.12 eV at
300 K.10 A divalent Eu ion in EuO has the 8S7/2 ground-state
configuration and the magnetic moment of 7μB due to the
half-filled 4f shell. The Curie temperature rises sharply with
Gd doping from Tc = 69 K in pure EuO up to Tc = 170 K at
optimal doping of about 4%.11–14 The miscibility of Gd in EuO
is unknown but is expected to be finite, particularly because
GdO has not been observed in the rocksalt structure. In fact,
the common Gd oxide has Gd2O3 stoichiometry (crystallizing
in three different phases15), but a tentative observation of zinc
blende GdO has also been reported.16 On the other hand, both
EuS and GdS are stable in the rocksalt structure, and they

can form a continuous range of rocksalt solid solutions at
all concentrations.17 EuS is an insulator with the absorption
gap of 1.64 eV, which is FM below Tc = 19 K;10 GdS is an
antiferromagnetic (AFM) metal with a Néel temperature of
58 K.17

Several recent first-principles studies18–22 have focused
on the electronic structure, magnetic interaction, and other
properties of pure Eu monochalcogenides. The interplay
between the magnetic ordering, spectral, and transport
properties of doped EuO was also studied using model
Hamiltonians.23–25 The structural phase stability of the
(Eu,Gd)O and (Eu,Gd)S quasibinary alloys thus remains
unexplored.

The purpose of the present study is to give a theoretical
perspective of the phase identity, stability, miscibility, and
other properties of Gd-doped EuO and EuS along the EuO-
GdO and EuS-GdS isoplethal sections. Based on comparison
with self-consistent quasparticle GW calculations and with
available experimental data, we adopt the generalized gradient
approximation (GGA) with the Hubbard U corrections applied
only to the rare-earth 4f orbitals. We then apply the first-
principles cluster-expansion technique and subsequent Monte
Carlo simulations to construct the phase diagrams of (Eu,Gd)O
and (Eu,Gd)S quasibinary alloys. We find that, despite the iso-
valency of the two alloy systems, the resulting phase diagrams
are quite different. In particular, we predict that the oxide
system has two ordered phases, as yet unobserved, with 1:1
and 1:2 Gd-to-Eu ratios, which become thermodynamically
stable below ∼900 and ∼500 K; moreover, we predict that
rocksalt GdO can be stabilized in a narrow range of oxygen
pressures. On the other hand, such 1:1 and 1:2 phases do
not appear in the (Eu,Gd)S system, and moreover a different
ordered phase with a 2:1 Gd:Eu ratio is very near the tieline
of the end compounds EuS and GdS. We further analyze the
role of the chemical and deformation-mediated interactions
and find that the qualitative difference between the oxide and
sulfide systems is mainly due to the contribution of local anion
relaxations.
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The paper is organized as follows. The methodological
and computational details are described in Sec. II. Section III
presents the calculations of band structure and elastic proper-
ties of end compounds. Comparison with experiment and with
GW calculations serves to justify the GGA + U approach
adopted here to calculate phase stability. Section IV discusses
the magnetic ordering energies and their relevance to phase
stability. The configurational Hamiltonians are described in
Sec. V, followed by the calculations of phase diagrams in
Sec. VI. The anion-mediated deformational interaction mecha-
nism is discussed in Sec. VII, and finally Sec. VIII summarizes
our findings. Some technical details, including the extraction
of paramagnetic formation enthalpies and the structural in-
formation for the predicted compounds, are included in the
Appendixes.

II. COMPUTATIONAL APPROACH

A. Total energy calculations

Total energy calculations for all ordered compounds in this
study were performed using the projected augmented wave
method26,27 and generalized gradient approximation (GGA) of
Perdew-Burke-Ernzerhof,28 with the Hubbard U correction29

for the 4f orbitals, as implemented in the VASP package.30 An
energy cutoff of 500 eV was used for the plane-wave expansion
of wave functions, and the density of the k-point mesh was no
lower than 0.01 Å−3, including the �-point for Brillouin-zone
sampling. This resulted in the convergence of the formation
enthalpies �H of ternary chalcogenides (defined with respect
to the corresponding binary rocksalt chalcogenides) to within
a few meV per atom.

From the energetics of the individual atomic levels, it
is clear that in both oxides and sulfides, the 4f bands are
half filled, whether originating from Eu or Gd, whereas the
binding energy of the Gd 4f states is much larger than
divalent Eu. Electron doping through the addition of Gd
fills the conduction-band states, which are spin split by the
exchange interaction with the 4f shell. The shallow core
5s2 and 5p6 states on both Eu and Gd are included in
the valence basis set. The half-filled and strongly localized
4f orbitals in both Eu and Gd were treated within the
GGA + U approach.29 To calculate the value of J = 0.6 eV,
we used the constrained occupation method31,32 by considering
the 4f states as an open-core shell and finding the total
energy difference between the 4f 7

↑ 4f 0
↓ and 4f 6

↑ 4f 1
↓ states.

This calculation was performed using the full-potential linear
augmented plane wave method implemented in the FLEUR

package.33 The value U = 5.3 eV calculated in a similar
way, when used in the GGA + U calculation, leads to the
4f states being too shallow with respect to the conduction
band of EuO. This discrepancy is due to the underestimation
by the GGA of the intrinsic insulating gap between the O 2p

and Eu 5d states. This underestimation (which is not sensitive
to U ) brings the O 2p states too close to the Eu 4f states;
their hybridization-induced repulsion pushes the 4f states up
and reduces the band gap. Therefore, we adjusted the value
of U empirically and found that U = 7.5 eV results in good
agreement with optical absorption34,35 and photoemission36

measurements, as illustrated in Sec. III. The Hubbard U

corrections are not used for the 5d orbitals on Eu and Gd,
as justified below in Secs. II B and III.

The proper treatment of the chemical disorder in many f -
and d-electron systems is notoriously difficult, because of the
dependence of the structural energy on the f (or d) orbital
orientation, and due to the large spurious self-interaction
present in the popular GGA + U versions for f (or non-time-
reversible d) orbitals.37 Fortunately, this is not an issue in
(Eu,Gd)O and (Eu,Gd)S, since the half-filled f shells do not
exhibit such an orientational energy dependence. Indeed, for
all cases considered, we found the lowest-energy electronic
configurations to correspond to exactly seven coaligned
f electrons on each cation, forming a rotationally invari-
ant shell. That being said, it was not unusual for our
early test calculations to lead to electronic states with
different f -electron occupation, with energies higher by
0.15–3.0 eV/cation. Some higher-energy configurations were
clearly identifiable as having a Gd electronic configuration of
4f 85d0 instead of 4f 75d1. We found that the appearance of
such states was either a failure of the residual minimization
method (RMM),38 or an artifact of an insufficient initial
f -electron spin polarization. By using the Davidson mini-
mization algorithm39 and by assigning the initial on-site spin
polarization of 10μB per cation (which is partially assigned
to the d and s electrons, resulting in the desired occupation
of seven coaligned f electrons), we could avoid such high-
energy electronic configurations. The only remaining degree
of freedom for the final electronic state corresponds to the
magnetic ordering of the fully polarized cations, which is well
controlled by the signs of the initial on-site spin polarizations
and is further discussed in Sec. IV.

Spin-orbit corrections are often appreciable for the band
energies of heavy-element compounds at high-symmetry
k points, but are typically minor for the formation energies,
which include contributions averaged over different bands in
the entire Brillouin zone. Indeed, we checked the effects of
spin-orbit coupling on the formation enthalpies �HGGA for
the key ordered structures that we identify below in Sec. VI as
the stable ground-state compounds. We found that �HGGA

change by at most 2 meV/cation (see Table III below).
We therefore performed all our routine calculations in the
scalar-relativistic approximation, without including spin-orbit
coupling.

B. Benchmark GW calculations

It has been suggested by some authors19,20 that the addition
of Hubbard corrections for the empty 5d states may be nec-
essary for the correct description of the conduction band, and
in particular for the determination of the character of the band
gap (direct or indirect) of europium chalcogenides. However,
these corrections are arbitrary unless a reliable benchmark is
used to select the Hubbard parameters. We resolve this issue by
calculating the band structure of EuO using the quasiparticle
self-consistent GW (QSGW) approximation. Here, we discuss
the QSGW methodology, and later in Sec. III we use this
methodology to show that the conduction-band structure
comes out almost exactly right in the GGA + U calculation
with U applied only to the 4f orbitals.

The QSGW approximation has been shown to be a reli-
able predictor of materials properties for a wide range of

064105-2



FIRST-PRINCIPLES STUDY OF PHASE STABILITY OF . . . PHYSICAL REVIEW B 83, 064105 (2011)

compounds composed of elements throughout the periodic
table.40–44 Nevertheless, prior experience has revealed certain
kinds of systematic errors. The correction of these errors makes
minor adjustments to weakly correlated materials systems, and
somewhat stronger adjustments for more correlated materials.
There are two highly systematic errors that affect the band
structure of EuO.

First, band gaps in semiconductors such as GaAs and
insulators such as SrTiO3 are systematically overestimated
a little. The same effect is seen in the spd subsystem of EuO.
Second, shallow corelike levels, such as the highest occupied
d levels in Zn, Cd, Cu, Ag, Au, and so on, are systematically
predicted to be too close to the Fermi level, typically by
�0.5 eV. This error is seen in the f subsystem of EuO, as
we will discuss.

Both types of error are highly systematic in sp and
d systems, and discrepancies with experiment in 4f com-
pounds are consistent with these errors.44 To a large extent, the
first error can be simply explained through the random phase
approximation (RPA) to the screened interaction W , which
can be understood as follows. The RPA bubble diagrams do
not include electron-hole interactions in intermediate states
in the calculation of the irreducible polarizability �(q,ω)
and thus the dielectric function ε(q,ω). Short-range attractive
(electron-hole) interactions induce the redshifts in Im ε(q,ω)
at energies well above the fundamental band gap; see, e.g.,
Fig. 6 in Ref. 40. Ladder diagrams are sufficient to remedy
most of the important errors in �(q,ω), as was demonstrated
rather convincingly in Cu2O.45

Inclusion of these contributions increases the static di-
electric constant ε∞, as can be readily seen through the
Kramers-Kronig formula relating the real and imaginary parts
of ε. Remarkably, ε∞ calculated by the RPA in the QSGW
formalism is underestimated by a nearly universal factor
of 0.8, for many kinds of insulators and semiconductors,42

including transition metal oxides such as Cu2O,40 SrTiO3,46

CeO2, and sp semiconductors.47 Because ε is systematically
underestimated, W = ε−1v (where v is the Coulomb inter-
action), the self-energy � = −iGW , and the quasiparticle
excitation energies are systematically overestimated.

The second kind of error cannot be explained in this
way. QSGW pushes down the semicore d level in Zn (or
f level in Eu) rather strongly relative to the local density
approximation (LDA); however, the shift is slightly too small
to agree with experiment. As we have noted, W calculated
by QSGW is already too large: reducing W reduces this
correction. This implies that the error should be attributed to
the other approximation in GW theory, namely, the omission
of the vertex � in the formally exact self-energy GW�.

Both kinds of correction to the GW approximation are
difficult to carry out in practice. As for the correction to �,
we have noted that simply scaling � by 0.8 largely undoes
this error, in a wide range of systems. We make such a scaling
here, to correct the spd subsystem.

Whether or not � is scaled, the Eu d-f gap is too small:
when � is scaled it comes out approximately zero, in contrast
to the observed gap of about 1 eV. It is expected that the
vertex in GW� will largely just induce a shift in the Eu f

state. Anticipating this, we included an ad hoc addition to the
QSGW potential for EuO, essentially doing a QSGW + U

calculation with U = 0.816 eV. The value of U is adjusted
to make the d-f gap coincide with the experimental number.
With these corrections, we anticipate QSGW to yield highly
accurate band structures, discussed below in Sec. III.

C. Cluster expansion and Monte Carlo simulations

To identify the thermodynamically stable phases and
their range of stability, the standard cluster-expansion (CE)
formalism48,49 coupled with the ground-state search and
Monte Carlo simulations were employed, using the routines
implemented in the alloy-theoretic automated toolkit (ATAT)
package.50,51 We consider quasibinary substitutional alloys,
assuming that the anion sublattice is fully occupied by the
chalcogenide atoms of one kind (either O or S). Throughout
the paper, we use the terms “structure” and “ordering” to refer
specifically to the ordering of Eu and Gd cations within their
own (fcc) sublattices, unless indicated otherwise. Our CEs
cover FM compounds, with other cases considered separately,
as detailed in Sec. IV. The cell size and shape, as well as all the
atomic positions, were fully relaxed for all structures using the
conjugate gradient algorithm, starting from the ideal rocksalt
lattice. In view of prohibitive computational cost, we did not
consider the phonon contribution to the formation enthalpies,
which can somewhat modify the phase diagrams at elevated
temperatures.

The relaxed formation enthalpies are parametrized by a
configurational cluster-expansion Hamiltonian �HCE:

�HCE(σ ) =
∑

f

Jf Df �̄(σ ), (1)

where the occupational degrees of freedom are described by a
configurational vector σ (a particular decoration of the cation
sites of the rocksalt lattice by Gd and Eu atoms), Jf is called
the effective cluster interaction (ECI) for a cluster figure f

with Df as the figure’s symmetry degeneracy per site, and
�̄(σ ) is the configuration-dependent correlation function in
the interaction cluster. In practice, a finite number of terms
nf is kept in the expansion (1), and the expansion becomes
exact48 as nf → ∞.

The ECI values Jf are determined by fitting to a set of Nin

“input” formation enthalpies �HGGA(σ in). Nin was iteratively
increased by performing GGA + U calculations for new
structures σ in based on the CE predictions, until a desired CE
accuracy was reached, in particular establishing an agreement
between the ground-state predictions of the final CE and
GGA + U . (For the oxide system such full consistency was
established only within a target concentration range discussed
in Sec. VI A.) In order to evaluate the predictive power of
the cluster expansion, the “leave-one-out” cross-validation
(CV) score was calculated using the procedure implemented
in ATAT:50 for each σ 0 out of the Nin input structures, a
separate fitting of the Jf values was performed with that
one structure excluded from the fitted set. The actual energy
�HGGA(σ 0) of the excluded structure was then compared
with the prediction �H

no σ0
CE (σ 0) of this “leave-one-out” fitting,

and the difference was averaged over all the Nin choices of
σ 0. Unlike the conventional mean-squares fit error, which
monotonically decreases upon increasing nf , the CV score
is designed to measure the predictive power of the cluster
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expansion and has a minimum for a finite nf value, diverging
if nf becomes too large.

Once the ground states for a range of concentrations
have been identified, the ones that are stable at T = 0 K are
determined by the convexity condition; the given structure
at concentration x is stable if it lies below any straight line
connecting other compounds at concentrations x1 < x and
x2 > x. (The convex hull of the set of points in the �H vs
x plot represents the full range of enthalpies that may be
achieved by the system. Stable compounds are those that form
the vertices on the lower boundary of this convex hull.) For
each stable compound one can define its “energetic depth”52 δ,
i.e., the amount by which its energy would increase if it were
decomposed into two stable compounds that are closest to it
in concentration.

The phase diagrams were computed using semi-grand-
canonical Monte Carlo (MC) simulations (i.e., by varying the
proportion of Eu and Gd cations) and the Metropolis algorithm
implemented in ATAT. For the final phase diagram construction,
we used an 18 × 18 × 18 supercell based on primitive fcc
translations (5832 cations in the simulation box). In the case
of (Eu,Gd)O, we estimated the effects of the finite size and the
commensurability with other ground-state structures by also
using 12 × 12 × 12 and 15 × 15 × 15 simulation boxes. We
found that the 18 × 18 × 18 box was commensurate with all
the ground-state structures that have ordering temperature Tord

above 400 K, although this did not hold for some structures
stable at lower T (either identified by the CE ground-state
search or directly observed in MC simulations). All such
low-Tord structures in the oxides are limited to the Eu-rich
composition range indicated below in the phase diagram.
A series of simulations was performed at fixed chemical
potentials with temperatures varying in 2–5 K increments. The
equilibration and sampling passes were done with 1000–5000
Monte Carlo steps (flip attempts per site); longer runs of
10 000 steps were performed for particularly difficult regions.
The phase boundaries were then found by identifying the
discontinuities (or cusps) in the dependence of the average
concentration and enthalpy on temperature.

III. BINARY CHALCOGENIDES: PROPERTIES AND
ELECTRONIC STRUCTURE

Figure 1 shows the electronic band structures of EuO and
GdO calculated using both GGA + U and QSGW approaches.
The densities of states of all four end compounds calculated
in GGA + U are shown in Fig. 2.

When the Hubbard U is applied only to the rare-earth 4f

states, the conduction-band structure of both EuO and GdO
is in very good agreement between the GGA + U and QSGW
results, the band gap being indirect. On the other hand, the
addition of the Hubbard U correction to the Eu 5d orbitals
proposed in Ref. 19 pushes the bands up at the X point but
not at �, resulting in a direct band gap in disagreement with
QSGW. Therefore, as mentioned above, we use the GGA + U

with U applied only to the rare-earth 4f states. Physically,
this is reasonable because the 5d states of either Gd or Eu are
rather delocalized and have a sizable bandwidth, being thus
amenable to treatment within the GGA.

The main difference between the GGA + U and QSGW
band structures is the position of the oxygen p states in
EuO. In the GGA + U approximation, they lie approximately
2.5 eV too high, resulting in a stronger hybridization of the
majority-spin O states with the occupied 4f states. This
hybridization leads to a repulsion of the p and f states,
and to a large spin splitting of the oxygen p states. The
QSGW results are in very good agreement with photoemission
measurements.36 By contrast, for GdO the oxygen p states
come out only a little too shallow. This is reasonable, because
the gap between the oxygen p and rare-earth 5d states in
GdO is not accompanied by a discontinuity of occupation
numbers; the latter is responsible for the band gap problem
in semiconductors. We also note that QSGW significantly
overestimates the energy of the unoccupied 4f states, which
appears to be its universal feature.44 This error is immaterial
for our purposes.

The choice of U = 7.5 eV and J = 0.6 eV simultaneously
produces the splitting between the occupied and unoccupied
4f states of U + 6J = 11.1 eV, in good agreement with
photoemission and inverse photoemission measurements for
Eu metal,53 the optical band gap at the X point of 0.94 eV
in EuO consistent with the value of 0.95 eV measured at
zero temperature,34,35 and the equilibrium lattice constant
a = 5.182 Å in good agreement with the experimental value
of a = 5.144 Å. The application of the same U and J values to
EuS leads to the optical gap at the X point of 1.52 eV consistent
with the zero-temperature value of 1.51 eV.10 Due to the similar
nature of the half-filled 4f orbitals, these semiempirical U

and J values were applied to both Eu and Gd 4f states in the
oxide and sulfide systems. Both GdO and GdS are metallic, as
expected.

Table I includes the lattice parameters and elastic constants
calculated in the FM state, along with the available exper-
imental data for EuO, EuS, and GdS. The lattice constants
are slightly underestimated by approximately 1%. The bulk
moduli agree within the uncertainty of the experimental data.
The elastic constants obtained by ultrasonic measurements
have only been reported by one group.54 The calculated C11

constant agrees well with this measurement for both EuO and
EuS. C44 is overestimated by approximately 45%. C12 is also
overestimated, but comparison is hindered by a very large
experimental uncertainty. Note, however, that the bulk moduli
obtained from these measured elastic constants are among
the lowest reported in the literature; it is possible that these
measurements are affected by off-stoichiometry. Therefore, it
is unclear whether the disagreement in C44 and C12 is due to
the inaccuracy of the GGA + U method or to experimental
artifacts.

IV. MAGNETIC ORDERING

The magnetic ordering temperatures of pure EuO, EuS, and
GdS (69, 19, and 58 K, respectively), as well as for the entire
range of solid solutions, are well below room temperature.
Therefore, all structural phase equilibria involve paramagnetic
(PM) phases with randomly oriented local moments on the Eu
and Gd atoms. In principle, the PM enthalpies for the input
structures can be estimated by fitting a number of magnetic
configurations to a Heisenberg Hamiltonian and taking the
constant term as the PM energy. However, doing this for more
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FIG. 1. (Color online) Electronic band structure of EuO calculated by (a) GGA + U and (b) QSGW, and of ferromagnetic phase GdO,
calculated by (c) GGA + U and (d) QSGW. Black (red) curves correspond to the majority (minority) spin bands. Energy is referenced either
from the valence band maximum (VBM) or from the Fermi level (EF ). In GdO, states near EF at � are of Gd d character; the band whose
value is −1.5 eV at � is of s character. If correlations were strong, the d band would become narrow and possibly shift relative to the s band.
As can be seen, the GGA and QSGW results are very similar for these bands: the GGA and QSGW results differ mainly in the positions of the
O 2p bands, at around −6 eV. That O 2p states shift downward relative to results in the GGA (or LDA) seems to be a universal property of
oxide insulators.

than a few simple ordered compounds is computationally
prohibitive. Fortunately, relatively low magnetic ordering
temperatures suggest that the use of ground-state formation
enthalpies to study configurational thermodynamics should not
lead to large errors. Nevertheless, in this section we perform a
few checks and discuss the possible modifications introduced
in the cluster expansion by the replacement of FM formation
enthalpies by the PM ones.

We considered several collinear magnetic configurations in
seven simple (Eu,Gd)O and four (Eu,Gd)S compounds;57 these
results are summarized in Table II. As in the rest of our study,
the scalar-relativistic approximation was used here. Where

a comparison can be made, we found good agreement with
other published data.18,19 For the (Eu,Gd)O system the FM
state always has the lowest energy, except in pure GdO where
the AFM phase with the ordering vector along [111] is slightly
lower (by 0.6 meV/cation) than the FM phase. This indicates
that restricting our CE study to the FM compounds is sufficient
to yield an accurate description of the thermodynamic phase
stability at T = 0 K.

One can argue that FM enthalpies can also be used to
predict the phase stability of oxides at higher temperatures. As
mentioned in the Introduction, the Tc of Gd-doped EuO rises
sharply to about 170 K at x ≈ 0.04 and then slowly decreases

064105-5



J. M. AN et al. PHYSICAL REVIEW B 83, 064105 (2011)

0

4

0

4

0

10

-4 -2 0 2 4 6 8 10 12

0

10

0

4

Gd 

0

4

0

4

-10 -8 -6 -4 -2 0 2 4 6
E-E

F
 (eV)

0

4

D
O

S
 (

st
at

es
/e

V
/f

.u
.)

EuO FM

EuS FM

GdO AFM II

GdS AFM II

FIG. 2. Density of states (DOS) of FM EuO and EuS, AFM type
II GdO, and AFM type II GdS calculated in the GGA + U . For the
AFM II phases, the solid line shows the total DOS including both the
cation and the anion contributions, whereas the dashed lines show
the partial majority- and minority-spin DOSs from the Gd cations.
Energy is referenced from the Fermi level EF .

(see, e.g., Ref. 12). However, the magnetization curves for
these higher-Tc alloys have a distinctive double-dome shape.
Specifically, the magnetization drops to a fairly small value
at temperatures close to Tc of pure Eu (“main dome”), and
extends a relatively weak tail up to the actual elevated Tc.
While the mechanisms of this behavior are not completely
understood, it is fair to assume that the dominant part of
the PM-FM enthalpy difference is released in the temperature
range of the main dome. Since the characteristic temperature
of this feature does not strongly depend on the doping level,
we expect that the PM-FM enthalpy difference is a featureless
function of the concentration, and that it likely does not exceed
10 meV.58 This conclusion is generally consistent with the
data in Table II. Such a correction is not likely to lead to

significant changes in the phase diagram, and we therefore use
FM enthalpies for oxides in the following.

In the sulfide system the situation is different for two
reasons. First, as we discuss in Sec. VI B, the FM CE
predicts an ordered EuGd2S3 structure with a high ordering
temperature, which is only marginally stable with respect
to the pure FM EuS and GdS. Second, the magnetic or-
der changes from FM in EuO to AFM in GdS, and the
latter has a relatively high FM-AFM energy difference of
13.5 meV/cation (see Table II). Therefore, for EuS, EuGd2S3,
and GdS we have estimated the PM-FM enthalpy differences,
which are −5.3, +1.3, and −0.6 meV/cation, respectively
(see Appendix A). These differences are sufficient to make
the EuGd2S3 structure marginally unstable. The effect on the
phase diagram is considered in Sec. VI B.

V. CLUSTER EXPANSIONS

In this section, we characterize the CEs obtained at the end
of the iterative CE construction procedure. These CEs are used
in Sec. VI to evaluate the phase stability of Eu1−xGdxO and
Eu1−xGdxS rocksalt alloys.

A. Eu1−xGdxO

The initial input set for the self-consistent CE construction
included N0

in = 26 structures including all the atoms up to
four cations per cell, except two such structures at EuGd3O4

composition. The final CE for Eu1−xGdxO has an input
set of Nin = 148 structures (identified throughout the CE
iterations as potential ground states or otherwise as structures
important for the CE accuracy), and uses an ECI set of 8 pairs,
12 triplets, and 16 quadruplets. The predictive power of this
CE is estimated by the CV score as 5.8 meV/cation, whereas
the root-mean-square fit error for the input structures is only
2.8 meV/cation. The ground-state search was performed
among all the structures up to 30 atoms per cell
(∼215 configurations).

The ECI values Jf for Eu1−xGdxO as a function of the
effective radius (the longest intersite distance in the cluster
f ) are shown in Fig. 3 as the crosses connected by the red
line. The leftmost panel in Fig. 3 displays the pairwise ECIs
up to the eighth-nearest neighbor in the cation sublattice,
and the right two panels correspond to triplet and quadruplet

TABLE I. Calculated (this work, marked “theory”) and experimental (when available, marked “expt.”) lattice parameters, elastic constants,
and the bulk modulus B of the binary rocksalt compounds. All elastic constants are given in Mbar.

Compound a (Å) C11 C12 C44 B

EuO Theory 5.18 1.89 0.62 0.78 1.04
Expt. 5.14 1.9a 0.42(8)a 0.54a 0.92(6)a; 1.10b

GdO Theory 4.92 3.54 0.63 0.72 1.60
EuS Theory 6.02 1.47 0.24 0.39 0.65

Expt. 5.97 1.3a 0.11(8)a 0.27a 0.51a; 0.61b; 0.72c

GdS Theory 5.62 3.06 0.33 0.36 1.24
Expt. 5.56 1.20

aReference 54.
bReference 55.
cReference 56.

064105-6



FIRST-PRINCIPLES STUDY OF PHASE STABILITY OF . . . PHYSICAL REVIEW B 83, 064105 (2011)

TABLE II. Formation energies (in meV/cation) of select ordered (Eu,Gd)O rocksalt compounds with different magnetic orderings including
FM, AFM with two different orientations of the layers of coaligned spins, and ferrimagnetic [where applicable, with different arrangement of
(111) layers of up and down spins relative to the majority (A) and minority (B) cation species]. Magnetic orderings requiring large cells were
not considered, as indicated by dashes.

AFM Ferrimagnetic (111)

Compound FM (111) (001) A↑ A↑ B↓ A↑ A↓ B↑
EuO 0 12.2 15.8 8.2
GdO 0 −0.6 15.1 1.6
EuS 0 0.1 3.4 –
GdS 0 −13.5 3.8 –
L10 EuGdO2 60.6 – 78.1 –
L11 EuGdO2 −59.3 −47.9 – –
L11 EuGdS2 8.9 7.5 – –
C6 Eu2GdO3 −41.5 – – −36.6 −33.5
C6 EuGd2O3 −32.9 – – −21.4 −17.0
C6 EuGd2S3 −0.4 – – −3.6 −4.6

Ferrimagnetic (001)
FM A↑A↓A↑B↓ A↑A↓A↓B↑ A↑A↓A↓B↓

Z1 Eu3GdO4 5.8 17.1 29.9 22.4

ECIs, respectively. By far the largest ECI is due to the
second-nearest-neighbor pair. It is positive, and its magnitude
(17.6 meV) is more than three times greater than that of
the negative first-nearest-neighbor ECI (−5.4 meV). Overall,
the pair interactions are stronger than all other cluster ECIs.
As explained in Sec. VII below, the large positive ECI for
second-nearest neighbors is due to the significant energy
gain from displacing O atoms toward Gd in the Eu-O-Gd
double-bond patterns along any of the [001] directions. This
ECI is the main driving force for the stabilization of the L11

cation ordering that we find below in Sec. VI A, as indeed
could be expected59 from a simple CE involving only pair
interactions J NN

pair and J 2NN
pair between nearest-neighbor and

second-nearest-neighbor atoms of the same magnitude as in
our actual CE.
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FIG. 3. (Color online) Three different types of ECI parameters as
functions of effective radius in units of the nearest-cation-neighbor
distance rNN in the cluster expansions for EuxGd1−xO, denoted by
red crosses and EuxGd1−xS, denoted by blue circles.

B. Eu1−xGdxS

The cluster expansion has been constructed with a CV score
of 4.0 meV/cation using Nin = 49 input structures and an ECI
set of eight pairs, seven triplets, and three quadruplets. The
set of structures used for ground-state search contained ∼210

configurations, and the root-mean-square fit error for the input
structures is only 2.2 meV/cation.

The pair and many-body ECIs for the oxide and sulfide
systems are qualitatively similar (see Fig. 3). However, we
shall see in Sec. VI that there is a striking difference in
the ground-state energetics, convex hull structures, and phase
diagrams of the oxides and the sulfides. This difference stems
from the quantitative change in the ECIs: while the positive
second-nearest-neighbor pair ECI is still the strongest one in
the sulfide system, it is reduced by about 40% compared to the
oxides. This reduction results in the destabilization of the L11

cation ordering, as we discuss in Sec. VII.

VI. PHASE STABILITY

A. Eu1−xGdxO

Figure 4(a) shows the calculated formation enthalpy dia-
gram for the entire range of x in Eu1−xGdxO. Each green
dot represents the composition and the CE formation enthalpy
�HCE(σ ) of one of the 215 structures σ used in the ground-state
search. The fitted �HCE(σ in) values for the 148 input structures
are shown by the red crosses, and the input �HGGA(σ in) are
shown by open black circles. The input set contains eight stable
compounds, serving as the breaking points on the GGA + U

convex hull. (This convex hull is shown by the black solid line
in Fig. 4.) These compounds represent tentative ground-state
predictions, in the sense that they all were predicted as
ground states throughout the CE iterations and confirmed
by direct GGA + U calculations. Most of them have small
energetic depths (see Table III) the phase diagram calculations
show that only two of these, with x = 0.5 and x = 1/3, can
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FIG. 4. (Color online) Formation enthalpy per cation vs compo-
sition x for all distinct cation orderings within rocksalt structure for
(a) EuxGd1−xO with up to 30 atoms per unit cell and (b) EuxGd1−xS
with up to 20 atoms per unit cell. The black open circles are the
first-principles inputs, the red crosses are the fitted CE values for the
input structures, and the gray dots are the predicted �HCE for all
other structures.

appear at reasonably high temperatures. Therefore, it is not
necessary to insist on the precise prediction of the ground-state
sequence at x < 1/3. Indeed, we found that the convex hull
corresponding to our final CE-fitted Hamiltonian was not the
same as that for the input set (i.e., it changes even throughout
the final CE iterations). However, full self-consistency was
achieved for x � 0.3, allowing us to identify the compounds

with x = 1/3 and 0.5 as unambiguously established ground
states. The structural information for these two compounds
is given in Appendix B. Despite the slight disagreement
regarding the identity of the low-temperature ground states
at x < 0.3, the overall convex hull shape and the �HCE

values agreed well between the input (GGA + U ) and the
final predicted (CE) convex hulls, and the identity, formation
enthalpies, and energetic depths of the x = 1/3 and 0.5 ground
states are accurately reproduced. Note also that the resulting
CE fitting does not have the exact meaning of a formation
enthalpy, because the vanishing of the fitted quantity for the
end members is not enforced. In particular, pure EuO has a
spurious “formation enthalpy” of −10.6 meV/cation in the
CE fitting. However, the shape of the ground-state convex hull
suggests that the fit error for pure EuO should not affect the
phase diagram significantly at x � 0.1 where the fitting is quite
accurate.

The calculated formation enthalpies for both the un-
ambiguously established and tentatively predicted ground-
state Eu1−xGdxO compounds identified throughout the CE
iterations and confirmed by direct GGA + U calculations are
listed in Table III along with their CE-fitted values, as well as
the energetic depths δ found from both calculated and fitted
formation enthalpies. The fit error for all these compounds is
less than 4 meV/cation. The ground state with the largest δ

has L11 structure, which is an A1B1 (111) superlattice, i.e., it is
formed by alternating (111) layers of pure Eu and Gd. Among
the six compounds with x < 1/3 there are three other pure
Eu/Gd superlattices: A14B (134), A12B (124), and A8B2 (123),
where the numbers in parentheses denote the orientation of
the pure cation layers, and A stands for Eu, and B for Gd. It is
clear that no particular superlattice direction is preferred.

TABLE III. Formation energies and energetic depths of the unambiguously established (roman font) and tentatively predicted (italic)
ground-state structures for Eu1−xGdxO and Eu1−xGdxS systems. A space group notation or a Strukturbericht designation of the cation ordering
(if available) is given in parentheses after the unit cell formula of each compound. �HGGA, �Hfixc, and �HCE are the formation enthalpies
obtained, respectively, from scalar-relativistic GGA + U with full relaxation, from GGA + U with a restricted relaxation in which the cations
are fixed at the undistorted fcc lattice with the Vegard-law lattice parameter (while the anions are allowed to relax), and from the CE fit. δGGA

and δCE are the energetic depths from the full relaxation and from the CE fit, respectively. �H SO
GGA are similar to �HGGA except the spin-orbit

coupling was included. All energetic quantities are given in meV/cation.

Formula unit x �HGGA (�H SO
GGA) �Hfixc �HCE δGGA δCE

Eu1−xGdxO
EuO (B1) 0 0.0 0.0 −10.6
Eu14GdO15(C2/m) 1/15 −33.0 −32.8 −31.2 1.1 0.5
Eu12GdO13 (P1) 1/13 −36.8 −36.5 −33.9 0.7 0.0
Eu8GdO9 (P31m) 1/9 −46.5 −46.4 −42.6 3.2 0.4
Eu10Gd2O12(C2/c) 1/6 −54.0 −53.8 −55.7 0.5 2.7
Eu8Gd2O10 (P1) 1/5 −57.8 −56.8 −59.2 1.0 1.3
Eu6Gd2O8 (C2/c) 1/4 −60.7 −58.3 −61.3 0.4 0.4
Eu8Gd4O12(C2m) 1/3 −64.7 (−62.8) −61.3 −63.7 3.8 2.9
EuGdO2 (L11) 1/2 −61.5 (−59.9) −60.6 −60.1 12.9 11.6
GdO (B1) 1 0.0 0.0 −2.6

Eu1−xGdxS
EuS (B1) 0 0.0 0.0 3.4
EuGd2S3(C6) 2/3 −0.4 (−2.0) 26.8 −0.3 0.4 3.8
GdS (B1) 0 0.0 0.0 3.6
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For the region above x = 0.5, our phase diagram predicts
phase separation into the L11 phase and pure GdO. Since
GdO, as has been mentioned above, has not been observed
in the rocksalt structure considered here, we have further
investigated its stability. In the zinc blende structure its energy
is found to be 56 meV/cation higher compared to rocksalt,
but the equilibrium lattice parameter 5.31 Å is close to
that (5.24 ± 0.05 Å) reported16 for zinc blende GdO. The
fact that experimental data suggest the zinc blende structure,
while our calculation predicts it to be significantly less stable
than rocksalt, may be due to the likely off-stoichiometry in
experiment. Further, we considered the stability of GdO with
respect to decomposition into Gd2O3 and metallic Gd. Gd2O3

occurs in three different structures,15 cubic (80-atom unit cell)
under 777 K, monoclinic (30-atom unit cell) from 777 to 1727
K, and hexagonal above 1727 K. We used fully relaxed lattice
constants of Gd2O3, Gd, and GdO. Among the three phases
of Gd2O3, the cubic phase is the most stable, its energy per
formula unit being lower by approximately 90 meV/cation
compared to that of the monoclinic phase. The rocksalt GdO
energy was found to be 21 meV/cation (per Gd atom) lower
compared to the mixture of Gd2O3 and Gd. From this we can
deduce that if the system is in equilibrium with an oxygen
reservoir, GdO can only form in a narrow range of the oxygen
chemical potential μO. Indeed, using the following relations:

EGdO − EGd < μO < EGd2O3 − 2EGdO,
(2)

EGd + EGd2O3 = 3EGdO + 63 meV,

where the inequalities follow from the stability of GdO with
respect to both reduction to Gd and oxidation to Gd2O3, we find
that the double inequality is satisfied only in the 63-meV-wide
range of μO. In reality this range depends on temperature and
is subject to the uncertainty in the calculated reaction enthalpy,
but nevertheless this feature is consistent with the difficulty in
stabilizing GdO experimentally.

The calculated phase diagram for the oxide system is
shown in Fig. 5(a). It is seen from Table III that most of
the ground states with x < 0.3 have rather small energetic
depths δ, suggesting that these orderings would occur only
at very low temperatures. Indeed, our simulations show
that many of these phases appear only well below room
temperature, so that the corresponding phase transformations
are kinetically inaccessible. In fact, phase transformations
occurring above T ∼ 400 K involve only the phases with
x = 1/3 and x = 1/2. Therefore, for x < 0.3 we have only
determined the approximate boundary (i.e., the solubility limit)
of the disordered (Gd,Eu)O phase, which is shown by a
dot-dashed line in Fig. 5(a).

There are several interesting features in this phase diagram.
(1) A broad miscibility gap exists in the Gd-rich region with
the critical point close to 1200 K and x ≈ 0.7. (2) A continuous
order-disorder transition occurs for the L11 phase, whose line
terminates at a tricritical point (T ≈ 600 K, x ≈ 0.33) on the
Eu-rich end and at a critical end point at the Gd-rich end
(T ≈ 850 K, x ≈ 0.51). Thermodynamics mandates that the
slope of the solubility line at the tricritical point should be
different from the slope of the ordering line, but this difference
is too small to be revealed in Monte Carlo simulations. On
the other hand, the slopes of the binodals do not change at
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FIG. 5. Calculated phase diagrams obtained using Monte Carlo
simulations from the cluster expansions for (a) EuxGd1−xO and
(b) EuxGd1−xS alloys. The phase labels indicate the ordering within
the cation sublattice. In (a), the phases in the region bounded by
the dot-dashed line have not been identified. In (b), the solid lines
correspond to the paramagnetic high-temperature phases, while the
dotted lines show the prediction of the T = 0 ferromagnetic cluster
expansion.

the critical end point, but their curvatures do. (3) There is a
eutectoid triple point at T ≈ 420 K at which the disordered
phase decomposes in a mixture of C2/m and L11 phases. (4)
A point of equal concentrations caps the single-phase C2/m
region; this point is close to the eutectoid point.

Apart from the variations due to different phase transitions,
the solubility of GdO in EuO grows approximately linearly
with temperature up to the critical point near 1200 K, with a
slope of about 0.06%/K.

As discussed in Appendix C, the ordering transition for
the prominent L11 ground state occurs at Tord = 840 K and is
second order around the stoichiometric EuGdO2 composition.
The physics behind this ordering transition can be further
illustrated by considering the CE Hamiltonian [Eq. (1)] as
a generalized Ising model, in which Eu atoms are repre-
sented by pseudospin S = 1/2 and Gd’s by S = −1/2, and
the pseudospins form an fcc lattice. In the L11 structure,
the nearest-neighbor interaction is fully frustrated, while
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the second-nearest-neighbor interaction is not frustrated (the
second-nearest cation neighbors are always of unlike type).
Thus, we can regard this structure as being formed by four
interpenetrating simple cubic lattices, all of which have AFM
ordered pseudospins, and which are coupled only through
longer-range interactions and through the order-from-disorder
mechanism. Indeed, the transition temperature in our MC
simulations (about Tord = 840 K) is close to that of the
simple cubic lattice under the assumption that its first-nearest-
neighbor interaction is equal to the second-nearest-neighbor
interaction of the original fcc lattice (920 K using the
best-known estimate of Tc in the AFM Ising model from
Ref. 60).

B. Eu1−xGdxS

The formation enthalpy diagram for the sulfide system
(all compounds including GdS are assumed to be FM) is
shown in Fig. 4(b). This sulfide system has a very different
ground-state convex hull, compared to the oxide system. There
is only one marginally stable compound at x = 2/3 with the
formation enthalpy of only −0.4 meV/cation (see Table III);
this number is, in fact, smaller than the accuracy of our
GGA + U calculations. This compound has the hexagonal C6
structure (sometimes referenced as “α2” in CE investigations);
its structural parameters are given in Appendix B. This
structure is a superlattice composed of pure GdO and EuO
(111) layers alternating in a 2:1 pattern (similar in this respect
to the L11 structure which has a 1:1 pattern).

The computed phase diagram is depicted in Fig. 5(b).
Dotted lines correspond to the FM CE, and solid lines to the
corrected CE, designed to represent the PM phase equilibrium.
This corrected CE was obtained by changing the nearest-
neighbor pair ECI in our FM CE from −6.46 to −7.37 meV,
which results in the correct paramagnetic formation enthalpy
of C6 EuGd2S3 (see Sec. IV and Appendix A).

In the FM phase diagram, there are two major features:
a wide miscibility gap with a critical point at T ≈ 810 K
and x ≈ 0.5, and a peritectoid triple point at T ≈ 560 K, at
which the two disordered phases are in equilibrium with a
new (predicted) C6 phase. The C6 phase forms a very narrow
single-phase region with concentration slightly decreasing at
elevated temperatures. The very small energetic depth δ of
the C6 phase is significantly overestimated by the CE fit
(see Table III); we therefore expect that the temperature of
the peritectoid point is also overestimated. In fact, in the
paramagnetic phase diagram (solid lines) the C6 phase is
unstable (δ < 0). Note, however, that the GGA + U value of δ

(positive in the FM case and negative in the paramagnetic case)
is comparable to the precision of our GGA + U calculations;
we thus conclude that our accuracy is not sufficient to
confidently select among the two scenarios, shown in Fig. 5(b)
by the solid and dotted lines.

We have also calculated the enthalpy of the reaction similar
to the second line of Eq. (2) with the α phase of Gd2S3 and
rocksalt GdS, which comes out at 2.8 eV. Thus, in equilibrium
with a sulfur reservoir the rocksalt GdS is stable against both
reduction and oxidation in the 2.8-eV-wide range of the S
chemical potential. This is consistent with the fact that this
phase is readily obtained experimentally.

The overall shape of the sulfide phase diagram is much more
symmetric compared to the oxide system, which is consistent
with weaker triplet ECIs (see Fig. 3). However, the solubility
limit of GdS in EuS is still greater than that of EuS in GdS,
as for the oxide system. The solubility limit of GdS in EuS is
about 7% at 300 K and increases almost linearly at a rate of
about 0.07%/K.

VII. ANION-MEDIATED DEFORMATIONAL
INTERACTION

The ground states with L11 or a closely related D4 cation
ordering (the latter having the same number of like and
unlike neighbors as the L11 for any given neighbor distance)
appear quite common for rocksalt chalcogenides: in addition
to EuGdO2, such ground states were recently predicted for a
number of rocksalt tellurides.61,62 In the case of tellurides, D4
appears a more typical ground state, although L11 typically
differs by only a few meV/cation in energy. Conversely, in
EuGdO2, D4 is only 2.6 meV/cation higher in energy than
L11 (which is sufficient for L11 to prevail up to Tord = 840
K, due to the near identity of the entropic contributions to
the free energy of both structures.) The appearance of L11

and D4 ground states has been related to the elastic softness
to a deformation along the [111] direction,63 which is indeed
typical for rocksalt compounds, generally hardest along the
[100] cation-anion bond direction. Further, it appears that the
other high-Tord phase that we have discussed, namely, the
tentatively predicted C6 EuGd2S3 phase, follows the same
elastic trend, since it is a (111) superlattice just like L11.

It may not be immediately clear, however, why L11

EuGdS2 is not stable. More generally, while similar electronic
structures for both oxides and sulfides are expected from the
isovalent electronic configurations (and confirmed by first-
principles calculations), their ground-state formation enthalpy
diagrams are very different: the oxides exhibit a convex hull
with large and negative formation enthalpies, but the sulfides
have positive formation enthalpies for all ordered compounds
except one at x = 2/3, which is close to zero (Fig. 4 and
Table III). We shall now demonstrate that it is possible to
understand the origin of this difference, as well as to get a
deeper understanding of the elastic mechanism leading to the
predominance of L11 and D4 in rocksalt chalcogenide alloys,
by examining the mechanism of atomic relaxation in these
alloys.

Let us decompose the formation enthalpy into two parts:
the “unrelaxed chemical” part �Hchem which is calculated
for the undistorted (cubic) lattice at the lattice parameter aVL

given by Vegard’s law, and �Hrel due to the additional full
relaxation from these ideal Vegard positions (thus, �H =
�Hchem + �Hrel). This decomposition is shown in Table IV
for the L10 and L11 structures, which straddle almost the entire
range of formation enthalpies at x = 0.5 for both oxide and
sulfide systems. The difference �Hord between the enthalpies
of the L10 and L11 structures gives the characteristic ordering
enthalpy; its decomposition into the unrelaxed chemical and
relaxation parts is also included in Table IV.

First, we see that the “chemical” part of the ordering
energy �H chem

ord is almost identical for both oxide and sulfide
compounds, reflecting the fact that they are isoelectronic and
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TABLE IV. Decomposition of the formation enthalpy for L10

and L11 structures in the unrelaxed chemical (�Hchem) and relax-
ation (�Hrel) contributions (see text). �H chem

ord and �H rel
ord are the

corresponding differences between the L10 and L11 structures. All
enthalpies are given in meV/cation.

Composition Structure �Hchem �Hrel �H chem
ord �H rel

ord

EuGdO2 L10 63.1 −2.4 26.0 94.1
L11 37.1 −96.5

EuGdS2 L10 88.1 −8.0 25.5 45.0
L11 62.6 −53.0

their bonding properties are therefore very similar. Second,
the values of �Hchem are significantly larger for both sulfide
compounds compared to the oxide ones. This feature can be
explained by a notably larger lattice mismatch in the sulfide
system (see Table I), which forces the Gd-S and Eu-S bonds
to deviate further away from their equilibrium lengths.

For the tetragonal L10 cation ordering, symmetry forbids
the relaxation of all internal coordinates; only the lattice
parameters are allowed to relax. It is seen from Table IV
that this relaxation yields only a relatively small energy gain.
However, in the rhombohedral L11 structure, the coordinates
of the oxygen atoms are not fixed by symmetry. The relaxation
of these coordinates is the dominant contribution to �Hrel, the
latter being almost twice as large in the oxide system as it is
in the sulfide system. Moreover, for L11 GdEuO2 this internal
relaxation overcomes the positive �Hchem contribution and
makes the formation enthalpy large and negative. In the sulfide
system �Hrel is about two times smaller and does not fully
overcome the �Hchem term.

Thus, we conclude that the L11 structure is strongly favored
with respect to L10 because it allows the anions to relax.
Specifically, consider the octahedral cage occupied by an
anion. In the L10 structure the Gd and Eu layers are stacked
along the [001] direction; both inequivalent anion sites (in
the Gd and Eu layers) are located at inversion centers. Thus,
the opposite vertices of the octahedral cage are occupied by
like cations (either both Eu or both Gd). On the other hand,
in the L11 phase (or in the closely competing D4 phase) this
inversion symmetry is fully broken in the sense that all the
opposing vertices of all octahedral cages are occupied by
unlike cations. Since Gd and Eu ions have notably different
radii, the anion atoms shift toward Gd. The structure with
the largest possible degree of inversion symmetry breaking
maximizes the ability of the system to gain energy from anion
relaxations. The opposite vertices of the octahedral cage are
separated by the next-nearest-neighbor distance in the cation
sublattice. Thus, the relaxation of the anion atom connecting
the next-nearest-neighbor pair is the mechanism generating the
dominant positive ECI for this pair (see Fig. 3). The fact that
this ECI is smaller for sulfides is fully consistent with the data
in Table IV, and is not surprising because this anion-mediated
interaction mechanism is sensitive to the anion size. Indeed the
problem of finding the ground state with such an interaction
largely reduces to finding the packing of atoms that minimizes
deviations from the optimal bond lengths.

In order to understand the relative importance of the anion
and cation relaxations, we have recalculated the formation

enthalpies of all compounds by restricting the atomic relax-
ations to anions only and fixing the cations to the sites of
an ideal fcc lattice with the volume given by Vegard’s law.
These values are listed in Table III as �Hfixc. For all oxide
compounds the formation enthalpies obtained in this way
agree very well with the fully relaxed formation enthalpies
(�H ), indicating that anion relaxation in these structures is
unrestricted by symmetry whereas the cation relaxations are
insignificant. For the EuGd2S3 compound in the sulfide system,
however, the corresponding error is large. The reason is that
this compound is a 2:1 layered superlattice, which makes it
possible to adjust the interlayer Gd-S and Eu-S bond lengths
by changing the cation layer separations. This is not possible in
the L11 structure, which is a 1:1 layered superlattice, because
all the cation layer separations are equal there.

VIII. SUMMARY

We have computed the temperature-phase diagram of
two isovalent alloy systems Eu1−xGdxO and Eu1−xGdxS by
using first-principles calculations combined with the standard
cluster expansion and Monte Carlo simulations. Very different
ground-state convex hulls are obtained for the two systems:
the oxides form ordered compounds with large and negative
formation enthalpies, but sulfides have only one marginally
stable compound. The dominant configurational cation inter-
action comes from the second-nearest-neighbor pair and is
mediated by the relaxation of the O atom lying in between.
The difference between oxides and sulfides is attributed to
the difference in the anion size. Gd has a high equilibrium
solubility in EuO and EuS even at room temperature, which
indicates that rather heavy doping is possible without the
precipitation of secondary phases.
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APPENDIX A: PARAMAGNETIC ENERGIES
OF SULFIDE COMPOUNDS

For pure EuS, GdS, and C6 EuGd2S3 structures predicted
to be stable by the FM CE, we investigated the paramagnetic
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phase regime by fitting magnetic configurational energies to
the classical Heisenberg model. For the pure GdS, up to the
third-nearest-neighbor exchange interactions were fitted using
four magnetic configurations: (i) FM, (ii) AFM type I (AFMI)
along the [001] direction with alternating spins, (iii) AFM type
II (AFMII) along [111] with alternating spins, and (iv) AFM
type III (AFMIII) along [001] with two layers of alternating
spins. As expected, we found that AFMII is the ground state for
GdS with the mean-field transition temperature of 63 K slightly
above the experimental value 58 K. The fitting produces the
paramagnetic formation enthalpy of −5.3 meV relative to the
FM configuration.

The paramagnetic formation enthalpy of the pure EuS was
also obtained using the same magnetic configurations as for
the pure GdS. The paramagnetic formation enthalpy turns out
to be 1.3 meV above the FM phase with the mean-field value
of the FM ordering temperature 10.2 K, somewhat less than
the experimental value of 19 K.

For the C6 EuGd2S3 structure, only the nearest-neighbor
interactions were considered but decomposed into four distinct
types of Heisenberg exchange parameters due to the layered
structure and two cation species. In the [111] direction, the
C6 structure establishes an A2B1 type superlattice, where
each plane normal to the direction is composed of only
one cation species. This superlattice structure allows two
types of intralayer exchange interactions, Gd-Gd and Eu-
Eu, and two types of interlayer interactions, Gd-Gd and
Gd-Eu. A total of nine magnetic configurations were con-
structed in the six-cation (1×1×2) supercell doubled along
the [111] direction of the three-cation unit cell, and also
in the six-cation (2×1×1) supercell doubled in the normal
direction to [111]. The magnetic configurations included, in
the 1×1×2 supercell, A↑A↑B↑A↑A↑B↑, A↑A↓B↑A↓A↑B↓,
A↓A↑B↓A↓A↑B↑, A↓A↓B↑A↑A↑B↓, A↑A↓B↓A↓A↑B↑,
A↑A↑B↑A↓A↑B↓, A↑A↑B↓A↑A↑B↓, and in the 2×1×1
supercell, one of the two cations in either A or B layer has
its spin flipped, while all other cation spins are kept opposite
in direction. Its paramagnetic energy determined by the fitting
with the four exchange interaction parameters is slightly lower
by 0.6 meV than that of the FM configuration.

APPENDIX B: PREDICTED STABLE COMPOUNDS

The predicted ground-state structures with reasonably high
ordering temperature are described below with their atomic
positions fully relaxed using VASP. Additionally, for each
structure, its crystallographic space group is identified for
clarification.

1. Eu8Gd4O12

Space group no. 12: C2/m, base-centered monoclinic
Primitive unit cell: a = 12.507 Å, b = 7.187 Å, c =

8.766 Å, α = 90.00◦, β = 90.24◦, γ = 90.00◦
Wyckoff positions: Eu(2i) = (0.084,1/2,0.339), Eu(2i) =

(0.7503,1/2,0.995), Eu(4j) = (0.832,0.750,0.330),
Gd(2g) = (0,0.251,0), Gd(2i) = (0.417,1/2,0.667), O(2i) =
(0.075,1/2,0.851), O(4j) = (0.153,0.237.0.168), O(2h) =
(0,0.224,1/2), O(2i) = (0.260,1/2,0.512), O(2i) = (0.432,

1/2,0.159)

2. EuGdO2

Space group no. 166: R3̄m, trigonal (rhombohedral)
Strukturbericht designation of cation order: L11

Primitive unit cell: a = 3.536 Å, b = 3.536 Å, c =
17.741 Å, α = 90.00◦, β = 90.00◦, γ = 120.00◦

Wyckoff positions: Eu(1b) = (0,0,1/2), Gd(1a) = (0,0,0),
O(2c) = (0,0,0.260).

3. EuGd2S3

Space group no. 164: P3̄m1, hexagonal
Strukturbericht designation of cation order: C6
Primitive unit cell: a = 4.041 Å, b = 4.041 Å, c =

9.959 Å, α = 90.00◦, β = 90.00◦, γ = 120.00◦
Wyckoff positions: Eu(1b) = (0,0,1/2), Gd(2d) =

(1/3,2/3,0.155), S(1a) = (0,0,0), S(2d) = (1/3,2/3,0.681).

APPENDIX C: ORDER-DISORDER TRANSITION IN L11

In finite-size MC simulations there is no formal distinction
between a first- and a second-order transition, and the nature
of the transition can be unambiguously determined only from
a finite-size scaling analysis. Although we did not perform
such an analysis, strong evidence in favor of the second-
order character of the ordering transition in L11 EuGdO2

is revealed by the behavior of the enthalpy and the heat
capacity. A MC heating simulation was performed starting
with the L11 structure at T = 0 K. Figure 6 shows the
temperature dependence of the heat capacity, as well as the
total enthalpy, along the composition line corresponding to a
constant chemical potential μ = 50 meV (the concentration
is shown in the inset). The L11 phase persists up to 840 K,
where a continuous order-disorder transition is indicated by
the characteristic peak of the heat capacity, as well as the
continuous change of the enthalpy. Away from the Eu0.5Gd0.5O
composition, the L11 ordered and the disordered phases
maintain the same features, although the heat capacity peak is
reduced.
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FIG. 6. (Color online) Monte Carlo heating simulation of the L11-
to-disordered phase transition for Eu0.5Gd0.5O. Formation enthalpy
and heat capacity are shown by black and red lines, respectively. The
inset shows the temperature dependence of the composition x.
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26P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
27G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
28J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).

29A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52,
R5467 (1995).

30G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993); G. Kresse
and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B
54, 11169 (1996).
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