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Macroscopic quantum tunneling in multigap superconducting Josephson junctions: Enhancement
of escape rate via quantum fluctuations of the Josephson-Leggett mode
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We theoretically study the macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a
conventional single-gap superconductor and a multigap superconductor such as iron-based superconductors
and MgB2. In such a Josephson junction more than one phase difference is defined. We clarify their
phase dynamics and construct a theory for the MQT in the multigap Josephson junctions. The dynamics of
the phase differences are strongly affected by the Josephson-Leggett mode, which is the out-of-phase oscillation
mode of the phase differences. The escape rate is calculated in terms of the effective action renormalized by the
Josephson-Leggett mode at zero-temperature limit. We successfully predict drastic enhancement of the escape
rate when the frequency of the Josephson-Leggett mode is less than the Josephson-plasma frequency.
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Macroscopic quantum tunneling (MQT)1–4 is a counter-
intuitive phenomenon in quantum mechanics appearing at a
macroscopic level, and has been observed in various fields of
physics such as condensed matters, nuclei, cosmology, etc.
This phenomenon has still attracted great interest in physics
communities. In particular, the MQT in Josephson junctions,
which is observed in a switching event at low temperature,3,4

has been intensively studied because it is promising for
applications to a Josephson phase qubit.5–7

In this Rapid Communication we investigate the physics
of MQT in an unexplored type of Josephson junction,
which has multiple tunneling channels. Such a Josephson
junction can be fabricated by using recently discovered
iron-based superconductors8–10 or MgB2,11–13 because these
superconductors are multiband ones having more than one
disconnected Fermi surfaces and the superconducting gap can
be individually well defined on each Fermi surface. In a Joseph-
son junction made of multigap superconductors one may
expect that the superconducting tunneling current has multiple
channels between the two superconducting electrodes.14–17 We
construct a theory for the quantum switching (i.e., MQT) in
Josephson junctions with multiple tunneling channels. We
are unaware of any theory that has been formulated for
MQTs in multigap systems. The theory predicts that the
escape rate, i.e., the rate of quantum tunneling, is drastically
enhanced compared with that in conventional single-channel
systems.

In multigap superconductors a collective mode called the
Leggett’s mode18–20 appears in the low-energy region, which
is an out-of-phase oscillation mode of the superconducting
phases. In Ref. 14 a theory for the Josephson effect in supercon-
ducting hetero junctions made of a single-gap superconductor
and a two-gap superconductor is formulated. In such Joseph-
son junctions, because two kinds of gauge-invariant phase
differences can be defined, there are two phase oscillation

modes, i.e., the in-phase mode and the out-of-phase one, which
correspond, respectively, to the Josephson-plasma and the
Josephson-Leggett (JL) mode. In this Rapid Communication
we construct a theory for the MQT in superconducting hetero-
junctions, incorporating the degree of freedom of the JL mode
into the quantum switching event from nonvoltage to voltage
states. It is shown that the zero-point motion of the JL mode
significantly enhances the MQT escape rate when its frequency
is less than the Josephson-plasma frequency. We also point
out that the ratio EJ/Ein in addition to EJ/EC governs the
boundary between the classical and quantum regimes, where
EC, EJ, and Ein are, respectively, the charging energy, the
Josephson coupling energy between the two superconductors,
and the interband Josephson coupling energy in the two-gap
superconductor.

Consider a hetero Josephson junction made of a single-
gap superconductor and a two-gap superconductor,14,16,17 as
shown schematically in Fig. 1. Such a junction has been
already fabricated by using multigap superconductors such
as MgB2 (Ref. 21) or iron-based superconductors.22,23 In this
system one can define two gauge-invariant phase differences,
θ (1) and θ (2). Then, the Josephson current density between
the two superconducting electrodes is given by the sum of
the superconducting currents in the two tunneling channels
as j1 sin θ (1) + j2 sin θ (2), where ji is the Josephson critical
current density in the ith tunneling channel. When a voltage
v appears between the two superconducting electrodes, the
gauge-invariant phase differences show a temporal evolution,
satisfying the generalized Josephson relation14

α2

α1 + α2
θ̇ (1) + α1

α1 + α2
θ̇ (2) = 2e�

h̄
v, (1)

with αi = εμi/d and � = 1 + α1α2/(α1 + α2), where ε is the
dielectric constant of the insulator with a thickness d and μi

is the charge screening length owing to the electrons in the ith
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FIG. 1. (Color online) Schematic view of a superconductor-
insulator-superconductor (SIS) hetero Josephson junction. We have
two tunneling channels between the two superconductors with critical
current densities j1 and j2 as indicated in the right-hand panel. In the
upper two-gap electrode the interband Josephson coupling with the
coupling constant Jin exists.

band. The constant αi is related to the charge compressibility
in the two-gap superconducting electrode.16

As shown in Ref. 14, the Lagrangian in the hetero
Josephson junction with an in-plane area W and capacitance
C = εW/4πd is expressed as

L = 1

2

h̄2C

(2e)2

(
θ̇2

�
+ ψ̇2

α1 + α2

)
− V + EJ

Iex

Ic
θ, (2a)

V = −EJ1 cos θ (1) − EJ2 cos θ (2) − κEin cos ψ, (2b)

under a bias current Iex in the absence of an external magnetic
field, where θ and ψ are the center-of-mass phase difference
and the relative phase difference defined as

θ = α2

α1 + α2
θ (1) + α1

α1 + α2
θ (2), ψ = θ (1) − θ (2).

The first two terms in Eq. (2b) are the Josephson coupling
energies with the coefficients EJi = h̄Wji/2e and the third
term represents the interband coupling energy, where the coef-
ficient Ein is expressed as Ein = h̄W |Jin|/2e.14 Because the
“interband current” Jin can take both signs, depending on
the gap symmetry, we introduce the sign factor κ = Jin/|Jin|.
The total critical Josephson current Ic and the coefficient EJ

in the last term in Eq. (2a) are defined as Ic = W |j1 + κj2|
and EJ = h̄Ic/2e. We note that the voltage v appearing in the
junction is related to only θ , as seen in Eq. (1).

From Eq. (2a) one can derive the Euler-Lagrange equation
for the center-of-mass phase difference θ as

�−1θ̈ + ω2
P1 sin θ (1) + ω2

P2 sin θ (2) = ω2
P
Iex

Ic
, (3)

with h̄ωPi = √
2ECEJi and h̄ωP = √

2ECEJ. We note that
ωPi is the Josephson-plasma frequency in the ith tunneling
channel. From Eq. (2a) we also have the Euler-Lagrange
equation for ψ as

ψ̈ + κω2
JL sin ψ = −α1ω

2
J1 sin θ (1) + α2ω

2
J2 sin θ (2), (4)

where ωJL is the frequency of the JL mode14 given as h̄ωJL =√
2(α1 + α2)ECEin. The above two equations are coupled

because θ (1) and θ (2) are functions of θ and ψ . We note that the
bias current is the source for the time evolution of θ but not for
ψ , which is consistent with the generalized Josephson relation

(1). It should be noted also that we have two characteristic
energy scales, the Josephson-plasma frequency ωJi and the JL
one ωJL, in this system.

Let us now study the macroscopic quantum effects in the
Josephson junction with multiple tunneling channels on the
basis of the Lagrangian (2a) and evaluate the MQT escape
rate. In the following we assume κ > 0, because the case of
κ < 0 shows qualitatively no difference.

Suppose that the switching to the voltage state is induced
by the quantum tunneling of the phase differences θ (1) and
θ (2) that are confined inside a potential well. When both θ (1)

and θ (2) show the tunneling at the switching, its transition
probability is given by the expectation value of the time
evolution operator with respect to the state |θ (1) = 0,θ (2) =
0〉(= |θ = 0,ψ = 0〉),3 which yields the formula for the MQT
escape rate as


 = 2

h̄β
Im K({0},{0}; β). (5)

Here, the symbol {0} means (θ,ψ) = (0,0), and β is the
inverse temperature, β = 1/kBT . The propagator K(X,X′; β)
in Eq. (5) is expressed in terms of the imaginary time path
integral

K(X,X′; β) =
∫ X(h̄β)=X

X(0)=X′
Dθ Dψ e− ∫ h̄β

0 dτ LE/h̄,

where X = (θ,ψ) and LE is the Euclidean version of the
Lagrangian (2a). Let us assume that ψ is confined in a small
region around ψ = 0 at the tunneling, which is justified when
the interband coupling is not so strong. In this case one can
utilize the expansion with respect to ψ . Then, up to the
order of ψ2, the Euclidean Lagrangian LE is approximated
as LE = LE

cm + LE
rlt + LE

int, where

LE
cm = h̄2

4EC

(
dθ

dτ

)2

− EJ

(
cos θ + Iex

Ic
θ

)
, (6a)

LE
rlt = h̄2

4(α1 + α2)EC

(
dψ

dτ

)2

+ 1

2
Einψ

2, (6b)

LE
int = g+EJψ

2 cos θ − g−EJψ sin θ. (6c)

Here, EJ = EJ1 + EJ2 and � ≈ 1 is assumed. The coupling
constants g+ and g− in Eq. (6c) are defined as g+ =
(EJ1/2EJ)[α1/(α1 + α2)]2 + (EJ2/2EJ)[α2/(α1 + α2)]2 and
g− = (EJ1/EJ)[α1/(α1 + α2)] − (EJ2/EJ)[α2/(α1 + α2)]. We
note that in the fully quantum case we have the discrete
energy levels as schematically illustrated in Fig. 2. To calculate
the escape rate 
 in Eq. (5) we employ the mean field
approximation for ψ , that is, ψ2 and ψ in Eq. (6c) are
approximated with their expectation values. Then, at zero
temperature we find 〈ψ〉th = 0 and

〈ψ2〉th(T = 0) = h̄

2mrltωJL
, mrlt = h̄2

2(α1 + α2)EC
.

The finite value of 〈ψ2〉 originates from the zero-point motion
of the “quantized” JL mode. Under this approximation we
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FIG. 2. (Color online) Schematic energy diagram for the fully
“quantized” system with two quantum variables θ and ψ . In the case
where ψ is weakly oscillating within a potential well, the energy levels
of ψ coincide with those of a harmonic oscillator with frequency ωJL.
The energy levels of θ are corrected by the quantum oscillations
of ψ .

find the effective Lagrangian of single degree of freedom as
follows:

LE
cm,eff = h̄2

4EC

(
dθ

dτ

)2

+ Vcm,eff, (7a)

where Vcm,eff is the renormalized potential

Vcm,eff = −EJ

[
(1 − ε) cos θ + Iex

Ic
θ

]
, (7b)

ε = g+〈ψ2〉th ≈ g+√
2

(α1 + α2)
ωP

ωJL

√
EC

EJ
. (7c)

Then, in this approximation the expectation value
K({0},{0}; β) in Eq. (5) is reduced to K({0},{0}; β = ∞) ≈∫ θ(h̄β=∞)=0
θ(0)=0 Dθ exp(−h̄−1

∫ h̄β=∞
0 LE

cm,eff dτ ), which can be

evaluated in the standard instanton approximation.3 Hence,
the MQT escape rate corrected by the zero-point motion of ψ

is


 = 12ωP(I )

√
3V0

2πh̄ωP(I )
exp

(
− 36V0

5h̄ωP(I )

)
, (8)

where ωP(I ) = ωP[(1 − ε)2 − I 2]1/4, V0 = h̄2[ωP(I )]2

cot2 θ0/3EC, (1 − ε) sin θ0 = I , and I = Iex/Ic.
Figure 3 shows a contour map of the ratio 
/
0 in

the (Iex/Ic vs ωP/ωJL) plane with 
0 being the escape rate
without correction, i.e., ε = 0. It is seen that the escape rate is

FIG. 3. (Color online) Ratio 
/
0 in the case of EJ/EC = 102.
We assume that α1 = α2 = 0.1 and j1 = j2 for simplicity.

FIG. 4. (Color online) Renormalized potential Vcm,eff . The poten-
tial for θ is modified by the zero-point fluctuation of the JL mode.

drastically enhanced in a wide parameter region. In particular,
the enhancement is pronounced in the region of large ωP/ωJL.
As seen in Eqs. (7a) and (7b), the Josephson coupling energy
is renormalized by the zero-point motion of ψ and the renor-
malized one is decreased from the bare one because ε > 0. As
a result, the tunneling barrier for θ is lowered as schematically
shown in Fig. 4, which causes the strong enhancement of
the escape rate. In fact, R(ε) ≡ V0/h̄ωP(I ) is smaller than
R(ε = 0) for fixed I when 0 < ε < 1, that is, the exponent
in Eq. (8) is decreased. Thus, the renormalization increases 
.
Also, it should be noted that the zero-point fluctuation becomes
larger as the frequency of the JL mode decreases. Thus, the
considerable enhancement of 
 occurs for the system with a
lower value of ωJL. The MQT in the conventional systems is
subject to the ratio EJ/EC, which is an important parameter for
designing a superconducting Josephson qubit.5 In the system
with multiple tunneling channels the ratio ωP/ωJL(∝ EJ /Ein)
also affects the characteristics of the MQT.

In this Rapid Communication we have focused on the
tunneling process, |θ = 0,ψ = 0〉 → |0,0〉, and clarified the
effect of the JL mode on the MQT. We mention that such
a process is not the unique one that contributes to the MQT
rate in this system, because a system with two degrees of
freedom generally has many tunneling routes. For example,
the tunneling process in which the quantum switching in the
θ (1) channel takes place successively after the switching in the
θ (2) channel will be also possible in the present system.24

In this case the escape rate can be calculated from the
transition process |θ (1) = 0〉 → |0〉 with θ (2) = f (t), where
f (t) is a time-dependent c-number function. This tunneling
process is analogous to the MQT under a periodically time-
dependent perturbation.25 It is also noted that the relative
phase difference ψ might play the role of an environmental
variable for θ through a term that is linear in ψ in Eq. (6c).
The MQT rate in this process can be evaluated by using
the influential functional integral method.1,26 The competition
between the zero-point fluctuation and the “dissipation” occurs
in this case. The enhancement via the JL mode may be
superior to the reduction from such a dissipation when
g+ > |g−|.

We also mention that our theory for the MQT in the
hetero Josephson junctions can be extended to the case of
intrinsic Josephson junctions (IJJs) with multiple tunneling
channels.15 The MQT in such systems will be observed in
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several recently discovered highly anisotropic layered iron-
based superconductors.27–29 In the IJJs, correction owing to
the JL mode for the corporative MQT among the junctions30,31

will be expected.
Finally, we remark that the present theoretical prediction

relies on the coexistence of the Josephson-plasma and JL
modes. Because the observation of Leggett’s mode in a bulk
MgB2 sample has been reported32 and in junctions with
MgB2,33,34 we expect that such a collective mode can be
detected in a junction system and the theory will be verified
experimentally.

In summary, we have constructed a theory of the MQT in
hetero Josephson junctions with multiple tunneling channels.
We have clarified that the zero-point fluctuation of the relative
phase differences brings about a drastic enhancement of the
MQT escape rate. The enhancement is large when the JL mode
has a lighter mass than that of the Josephson plasma.
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