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Connecting distant ends of one-dimensional critical systems by a sine-square deformation
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We study one-dimensional quantum critical spin systems with sine-square deformation, in which the energy
scale in the Hamiltonian at position x is modified by the function fx = sin2[ π

L
(x − 1

2 )], where L is the length of
the system. By investigating the entanglement entropy, spin correlation functions, and wave-function overlap, we
show that the sine-square deformation changes the topology of the geometrical connection of the ground state
drastically: Although the system apparently has open edges, the sine-square deformation links those ends and
realizes the periodic ground state at the level of the wave function. Our results propose a method to control the
topology of quantum states by energy-scale deformation.
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Introduction. Topology is one of the most fundamental
concepts in physics. It rules the connectivity of local elements
of the system and governs how physical objects—particles,
excitations, and information—propagate. Normally, the topol-
ogy of a system is fixed once the spatial geometry of elements
is given. The search for other paths to control of topology of
the system is a challenging problem.

In a finite system, a boundary condition determines the
topology of the geometrical connection of quantum state and
crucially affects the properties of the system. If the system has
open edges, they usually induce boundary oscillations such
as Friedel oscillations. While the boundary oscillation contains
important information such as the Fermi momentum, it is
often regarded as an obstacle to mask the bulk properties. One
simple way to remove it is to employ the periodic boundary
condition, however, there has also been another attempt, called
the smooth boundary condition, to suppress the boundary
effects by turning off the energy scale of local Hamiltonians
smoothly around the open edges.1,2 The latter has proven to
be useful when the open system is favored, for instance, for
efficiency of numerical methods such as the density-matrix
renormalization-group (DMRG) method.

Recently, a scheme of the smooth boundary condition,
which we call the sine-square deformation (SSD), has been
proposed as an efficient way to suppress finite-size and
open-boundary effects.3 In a system with SSD, the energy
scale in the Hamiltonian is modified according to the function

fx = sin2

[
π

L

(
x − 1

2

)]
, (1)

where x is the position of the local term and L is the length of
the system. In Ref. 3, Gendiar et al. applied the SSD to a one-
dimensional (1D) free fermion system with open boundaries.
They then showed that the SSD removed boundary effects
successfully and resulted in position-independent one-point
functions such as the bond strength and particle density in
the ground state. Since the spatial profiles of these quantities
were almost completely flat, the observation raised a natural
question of what happened in the ground state of the system
with SSD. This is indeed the motivation of the present study.

In this paper, we study the SSD in several 1D quantum
spin systems. Using the DMRG and exact diagonalization

methods, we study numerically the entanglement entropy (EE),
correlation functions, and wave-function overlap in systems
with SSD. We then show that the ground state of a critical
system with SSD is equivalent to that of a uniform periodic
system; the SSD drastically changes the topology of the critical
ground state, from an open chain to a periodic ring. The result
opens the possibility of controlling the topology of quantum
states by the energy-scale deformation even in the case where
the geometrical shape of the system is fixed.

Sine-square deformation. The SSD introduces a spatial
modulation of energy scale by applying the rescaling factor fx

[Eq. (1)] to the local Hamiltonian at position x. For example,
the model Hamiltonian of the spin-1/2 antiferromagnetic
XXZ chain with SSD is given by

HXXZ = J

L−1∑
j=1

fj+ 1
2

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)

− h

L∑
j=1

fjS
z
j , (2)

where we have introduced the magnetic field h, which induces
magnetization M per spin.4 Hereafter, we consider the case
of even L unless otherwise specified. The energy scale of
the local Hamiltonians thus decreases smoothly closer to the
boundaries and eventually vanishes at the open ends, as shown
in Fig. 1(a).5

Figure 1(b) shows the DMRG data for the bond strength
〈Sx

j Sx
j+1〉 in the ground state of the XXZ chain, Eq. (2),

with and without SSD. The data clearly show that the SSD
almost completely eliminates the Friedel oscillation seen in
the uniform open chain.3 We will demonstrate below that the
SSD is not only an efficient measure to suppress the boundary
effects but also a device to drastically change the topology of
the ground-state wave function.

Entanglement entropy. We first investigate EE in the ground
state of 1D systems with SSD. We consider EE for a subsystem
� of the left l spins,

S(l) = −Tr�[ρ(l) ln ρ(l)], (3)

where ρ(l) is the reduced density matrix for �. For 1D
critical uniform systems, EE is known to take a universal
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FIG. 1. (Color online) (a) Rescaling function fx of the SSD.
(b) Bond strength 〈Sx

j Sx
j+1〉 for the XXZ chain, Eq. (2), with L = 80

and (�,M) = (0.5,0). Squares and circles represent the data for the
chain with SSD and the uniform open chain, respectively.

form,6–8

S(l) = s ln[g(l)] + const., (4)

where g(l) = L
π

sin( πl
L

). The slope s is determined by the
boundary condition; s = c/3 for the periodic system, while
s = c/6 for the system with open boundaries, where c is the
central charge. Namely, the slope s divided by c/6 gives
the number of “cuts” of the 1D critical state between the
subsystem � and the environment �̄.

Figures 2(a) and 2(b) show DMRG data for EE in an
XXZ chain with SSD [Eq. (2)]. EE in uniform open chains
is also shown for comparison. Remarkably, EE in systems
with SSD has slope s = c/3, which is twice as large as that

in uniform open systems. This means that the ground state
of the system with SSD has two cuts between the left and
the right subsystems, � and �̄, although the lattice seemingly
has only one cut. In addition, the boundary oscillation, which
is pronounced in the uniform systems, is removed by the
SSD. The results suggest that, although the system apparently
possesses open edges, the SSD connects the open ends of the
ground state effectively and the state becomes periodic, having
two cuts between � and �̄.

We have also examined EE in the other models, the
antiferromagnetic J1-J2 chain and two-leg ladder systems
under a magnetic field. The Hamiltonians are given by

HJ1−J2 =
L−1∑
j=1

∑
n=1,2

Jnfj+ n
2
Sj · Sj+n − h

L∑
j=1

fjS
z
j , (5)

Hlad = J‖
L−1∑
j=1

∑
n=1,2

fj+ 1
2
Sn,j · Sn,j+1

+ J⊥
L∑

j=1

fj S1,j · S2,j − h

L∑
j=1

fj

(
Sz

1,j + Sz
2,j

)
. (6)

In Figs. 2(c)–2(e), we present DMRG results for EE of left
l sites/rungs for subsystem � [see Fig. 2(f)]. The models in
Figs. 2(c) and 2(e) are in critical phases with c = 1, while
the model in Fig. 2(d) has c = 2.9–13 It is again found that
the slope of EE is doubled by the SSD. We note that, for the
J1-J2 chain with large J2/J1, sizable boundary oscillations
are observed in EE and one-point functions (not shown), even
in the system with SSD. This is presumably attributed to an
effective boundary field that cannot be eliminated completely
by the SSD in Eq. (5).14 However, we emphasize that, even in
that case, the doubled slope of EE is observed, which suggests
that the SSD also works for those models to lead to a topology
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FIG. 2. (Color online) Entanglement entropy S(l) as a function of g(l) = (L/π ) sin(πl/L) for L = 80 and (a) an XXZ chain with
(�,M) = (0.5,0), (b) an XXZ chain with (�,M) = (1.0,0.25), (c) a J1-J2 chain with (J2/J1,M) = (0.5,0.125), (d) a J1-J2 chain with
(J2/J1,M) = (0.6,0.4), and (e) a two-leg ladder with (J⊥/J‖,M) = (1.0,0.25). (a–c, e) Central charge c = 1; (d) c = 2. Squares and circles
represent data for the open system with SSD and the uniform open system, respectively. Solid and dotted lines show the slopes of c/3 and c/6,
respectively. (f) Shape of subsystem � for which S(l) is calculated.
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
j Sα

j ′ 〉
(α = x,z) in an XXZ chain for L = 80 and (�,M) = (0.5,0) as
a function of the distance |j − j ′|, where sites (j,j ′) are selected
as j = L/2 − [r/2] and j ′ = L/2 + [(r + 1)/2]. Squares and circles
represent DMRG data for an open chain with SSD and a uniform open
chain, respectively, while lines show the analytic result for a uniform
periodic chain. (b) Schematic showing the relation between pairs
(j,j ′) in the open chain with SSD and those in the periodic chain.

change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be

〈
Sx

0 Sx
r

〉 = Ax
0

(−1)r

rη
− Ax

1
cos(Qr)

rη+1/η
+ · · · , (7)

〈
Sz

0S
z
r

〉 − M2 = − 1

4π2ηr2
+ Az

1

(−1)r cos(Qr)

r1/η
+ · · · , (8)

where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of � and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|

L
). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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FIG. 4. (Color online) (a) Spin correlation function (−1)r〈Sj ·
Sj ′ 〉, with j ′ = j + r (mod L), in an XXZ chain for L = 24 and
(�,M) = (1.0,0) as a function of j and r . Symbols show data for an
open chain with SSD: crosses represent correlations between sites j

and j ′ = j + r (pairs “within” the chain), while squares represent
those between j and j ′ = j + r − L (pairs “across” the edges).
Lines show values of correlations in the uniform periodic chain.
(b) Schematic showing the two sites (j,j ′) at a “distance” r .

that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (�,M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L � 24 and several sets of
(�,M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| �
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (� = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with � = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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are distinct from plane waves. Nevertheless, when and only
when the fermions are filled up to the Fermi level, the Slater
determinants of the two ground states become equivalent. This
means that the excitation spectrum and dynamics of the system
with SSD are in general different from those of the periodic
system.

Concluding remarks. In summary, we have studied the SSD
applied to 1D critical spin systems. From numerical analyses
of the EE, correlation functions, and wave-function overlap,
we have shown that the ground state of an open system with
SSD is equivalent to that of a uniform periodic system.

We note that our finding that the SSD realizes the periodic
ground state is not restricted to a specific model but is a
generic feature of the SSD. We have found a change in the
slope of the EE for several spin systems, and suppression
of boundary effects by the SSD has also been observed in
free and interacting fermion systems.3,19 The only condition
required is that the system is critical. This may suggest
that the result can be understood in a theory applicable

to general critical systems, such as the conformal-field
theory. Investigating the effects of the SSD on low-energy
excited states would reveal clues about the mechanism of
the SSD.

The results of the present study offer a scheme to modify and
further control the topology of quantum states by energy-scale
deformation, even under the condition that the spatial shape
of the system is fixed. The approach might be applicable to
real systems such as ultracold atoms, for which spatial mod-
ulation of interatomic interactions has been demonstrated.20

The search for an energy-scale deformation to yield other
topological changes in the ground state is another interesting
problem.
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