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Itinerant ferromagnetic phase of the Hubbard model
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Using a quantum Monte Carlo technique, we provide strong evidence for the stability of a saturated
ferromagnetic phase in the high-density regime of the two-dimensional infinite-U Hubbard model. By decreasing
the electron density, we observe a discontinuous transition to a paramagnetic phase, accompanied by a
divergence of the susceptibility on the paramagnetic side. This behavior, resulting from a high degeneracy
among different spin sectors, is consistent with an infinite-order phase transition. The remarkable stability of
itinerant ferromagnetism renews the hope of describing this phenomenon within a purely kinetic mechanism and
will facilitate the validation of experimental quantum simulators with cold atoms loaded in optical lattices.
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Ever since classical antiquity, ferromagnetism has attracted
the attention of natural philosophers.1 A proper understanding
of this phenomenon was only made possible by the advent
of quantum mechanics, from the early interpretations2,3 to
its modern realizations in quantum simulators engineered
by means of cold atomic gases.4 In some solids, such as
transition metals, the spin-independent nature of interactions
has led to the conjecture that long-range magnetic order
is due to an itinerant mechanism in which the Coulomb
interaction and the Pauli exclusion principle play fundamental
roles. The single-band Hubbard model, possibly the simplest
and most studied lattice model of correlated electrons, was
first thought to encompass a minimal description of itinerant
ferromagnetism.5 Recent experiments on ultracold atoms
hinted at the formation of ferromagnetic domains in a gas
of repulsively interacting fermions.4 This important result
and subsequent numerical calculations in the continuum6

suggested that this phenomenon has some general features
independent of the details of the repulsive interaction, thus
renewing the interest in the understanding of a minimal
model for itinerant ferromagnetism. In spite of its simplicity,
exact solutions of the Hubbard model are not available in
more than one spatial dimension, leaving the question of
the stability of a ferromagnetic phase unsolved. One of the
very few exact results that is known is due to Nagaoka,7 who
proved a theorem stating that, in the infinite-U limit, a single
hole stabilizes a fully polarized ground state. Following this
pioneering work, much effort has been devoted to studying
the fully polarized state for finite hole densities.8–14 However,
the possible stability of ferromagnetic phases and the nature
of the involved quantum phase transitions are still matters of
debate.15

In this Rapid Communication we present results for
the infinite-U Hubbard model, based on accurate fermionic
quantum Monte Carlo (QMC) simulations, which indicate that
at high electron density the Nagaoka state is stable not only
with respect to the paramagnetic phase, but also with respect
to other previously proposed partially polarized states.12 A
nontrivial transition to a paramagnetic phase is observed upon
decreasing the electron density. Near the transition this phase
is characterized by highly degenerate states with different
values of the total spin, thus indicating a divergence of the

magnetic susceptibility, consistent with an infinite-order phase
transition.16

The QMC simulation of systems of interacting electrons, at
variance with that of bosons, is beset by the antisymmetry of
the ground-state wave function which cannot be treated as the
stationary distribution of a diffusion process. The main attempt
to cope with the ensuing difficulties is the fixed-node (FN)
approximation, which, for lattice models, amounts to defining
an effective Hamiltonian whose ground-state energy is a
variational upper bound to the exact energy.17 If complemented
by an accurate variational ansatz for the wave function, the FN
method provides a method to study the properties of large
fermionic systems, making it possible reliable extrapolations
to the thermodynamic limit. Unfortunately, the nature of the
approximation does not allow for an estimate of the residual
error, which not rarely can lead to biased results. However,
the infinite-U Hubbard model belongs to an interesting class
of Hamiltonians whose eigenstates of fermionic symmetry are
sufficiently close in energy to the bosonic ground state to allow
them to be treated on an equal footing; for this class of Hamil-
tonians we propose a strategy to overcome the sign problem via
the dissection of the excitation spectrum of the corresponding
bosonic auxiliary problem, providing an essentially unbiased
scheme for medium-size fermionic systems.

Fermionic-correlation method. The spectrum of a Hamil-
tonian of identical particles, H, can be classified according
to the irreducible representations of the symmetric (permu-
tation) group. The Pauli principle asserts that only totally
antisymmetric states are physically allowed for fermions, but
mathematical states of any symmetry can also be considered.
In particular, the (unphysical) state of lowest energy is in
general totally symmetric, so that the fermionic ground state
can be formally considered as an excited state of a bosonic
system. As such, it can be studied via excited-state techniques,
provided the Bose-Fermi gap is not too large with respect
to the physical gap in the fermionic sector of the spectrum.
Let |�0

b 〉 be the bosonic ground state of the system and A
an arbitrary observable. A recent extension of the reptation
QMC method18 to lattice models19 allows for an efficient
and unbiased evaluation of imaginary-time τ = it correlation
functions CA(τ ) = 〈�0

b |A†(τ )A|�0
b 〉/〈�0

b |�0
b 〉, whereA(τ ) =

eHτAe−Hτ is the Heisenberg representation of A.
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The connection of such correlation functions with the
excited states |�k〉 ofH is obtained by considering the Lehman
spectral representation,

CA(τ ) =
∑

k

∣∣〈�0
b

∣∣A|�k〉∣∣2
e−�kτ

〈
�0

b

∣∣�0
b

〉 , (1)

where �k = Ek − E0
b are excitation energies with respect

to the bosonic ground state. Selection rules act in such
a way as to exclude from Eq. (1) those excited states
whose symmetry is different from that of the state A|�0

b 〉.
In particular, if A is chosen to be totally antisymmetric
with respect to permutations, only fermionic (ground and
excited) states will contribute to CA(τ ). For example, if A
is the local operator whose coordinate representation is the
ratio between the fermionic and bosonic ground-state wave
functions [Af (n) = 〈n|�0

f 〉/〈n|�0
b〉, where |n〉 denotes the

many-body lattice configuration], the correlation function
CA(τ ) will be proportional to the single exponential e−�0τ .

In practice, neither the bosonic nor the fermionic ground
state is known exactly and only variational approxima-
tions to them are available, which we denote here by
|�b〉 and |�f 〉, respectively. Correspondingly, the antisym-
metric observable is defined as Af (n) = 〈n|�f 〉/〈n|�b〉.
In this way, the leading coefficient of the expansion is
given by 〈�0

b |Af |�0
f 〉 � 〈�f |�0

f 〉 and can be systemati-
cally maximized by improving the quality of the variational
states. The energy of the fermionic ground state can be
then extracted either directly by noticing that E0

f = E0
b −

limτ→∞[∂τ log CA(τ )] or, indirectly, by fitting the exponential
decay of the correlation function of Eq. (1) and extracting the
smallest energy gap. In order for this procedure to make any
sense, it is necessary that the (unphysical) Bose-Fermi gap is
not too large with respect to the physical excitation energies
in the fermionic sector of the spectrum. If this condition is not
met, the antisymmetric correlation function gets effectively
extinguished before the selection of the fermionic ground state
from its excitation background is attained by imaginary-time
evolution. This condition is actually verified for infinite-U
fermionic Hubbard models of moderate size, whose properties
are not too dissimilar from those of a system of hard-core
bosons. The condition of a small fermion-boson gap is
also met in other interesting systems, where the effects of
statistics on the total energy are overwhelmed by the effects
of correlations, such as the low-density electron gas, liquid
3He, quasiunidimensional systems, and mixtures of bosons and
fermions. It should nonetheless be noticed that the Fermi-Bose
gap is, in general, an extensive property, thus providing
restrictions on the affordable system size.

We further notice that this fermionic-correlation method is
related to the transient estimate (TE) method for the fermionic
ground state,20 or its generalization for a few excitations.21

However, the TE method works with ratios of decaying
correlation functions, thereby reducing the signal-to-noise
ratio, and typically uses suboptimal bosonic guiding functions,
with increased fluctuations in the weights of the random walks.
A crucial point for our method to succeed is instead the
calculation of spectra directly from imaginary-time correlation
functions. Although, in general, this is an ill-posed problem,
in practice sharp peaks with strong spectral weight can be

reliably extracted if the correlation function is known with
good statistical precision for sufficiently long times.18,22 In the
present work this condition is met even for systems of several
tens of particles, due to the relatively small Bose-Fermi gap,
as well as to the good quality of the variational states.

The model. The Hamiltonian of the infinite-U Hubbard
model reads

Hf = −t
∑

〈i,j〉,σ
PGc

†
i,σ cj,σPG + H.c., (2)

where c
†
i,σ (ci,σ ) creates (destroys) an electron on site i with

spin σ , 〈i,j 〉 denotes nearest-neighbor site pairs, and the
Gutzwiller projector PG forbids double occupancy. In the
following, we will consider a square lattice and take t = 1
as the energy scale. The total number of sites will be denoted
by L, the number of electrons by N and we will present the
results for different magnetizations m = (n↑ − n↓)/(n↑ + n↓)
and densities n = n↑ + n↓.

Relatively simple variational wave functions have been
constructed,9,10 by flipping one (say up) spin with respect to
the saturated ferromagnetic state. The flip of the spin leads to
a gain of kinetic energy for the down spin, but also a loss in the
spin-up kinetic energy (since the motion of spin-up electrons
is restricted by the necessity of avoiding double occupancy).
Here, we consider

〈n|�f 〉 = J f (n)Det{φk(R↑
j )}Det{φk(R↓

j )}, (3)

where the Jastrow factor J f (n) = exp[
∑

i,j V
f

ij ninj ] multi-
plies two Slater determinants that are constructed by applying
backflow correlations to single-particle orbitals for up and
down spins.23 The correlated orbitals are defined by φk(Rσ

j ) =
φ0

k (Rσ
j ) + bk

∑
Rl,σ ′ φ

0
k (Rσ ′

l ), where bk are orbital-dependent
backflow parameters, φ0

i (Rσ
j ) are plane waves, and the sum

includes all nearest neighbors of the j th particle, thus
preserving the spin rotational invariance. The proposed back-
flow wave function (3) encodes the effect of correlation on the
deformation of the free-orbital nodal structure and consistently
catches much of the physics of previous treatments,9–11 while
leaving room for a systematic improvement with the QMC
methods.

The bosonic counterpart of the model studied is a purely
kinetic hard-core-boson Hamiltonian, where the fermionic
operators are substituted by bosonic ones. Our QMC method is
particularly suitable to study the high-density region, namely,
few holes and close to full filling (N = L), where the boson-
fermion gap is very small and increases upon decreasing the
density.24 The bosonic trial state is given by a Jastrow wave
function 〈n|�b〉 = J b(n), which is similar to the fermionic
one (but with different parameters V b

i,j ) and represents an
excellent ansatz for the bosonic ground state.25 In all cases,
the variational parameters are fully optimized, by minimizing
the variational energy with the method of Ref. 26.

Results. The fermionic correlation technique remains effi-
cient up to relatively large system sizes (i.e., L = 50–100) and
allows us to reach numerical results, which are exact within sta-
tistical accuracy. In Fig. 1, we report our results for L = 50 and
N = 42 electrons, for different values of the magnetization m.
In addition, we also report the results based upon the FN
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FIG. 1. (Color online) Energy E0
f (τ ) = E0

b − ∂τ log CA(τ ) as a
function of the imaginary time τ for L = 50 and N = 42 electrons
and different magnetizations. The dashed horizontal lines are FN
energies, while the solid lines are the energies as obtained by fitting
the imaginary-time correlations.

approach. The possibility of obtaining numerically exact
results on rather large systems allows us to assess the accuracy
of the FN method, which can be extended to much larger sizes
(i.e., L � 1000), without any numerical instability. Thanks
to backflow correlations, we get a considerable improvement
upon the standard plane waves that were used in Ref. 12. There
is a small difference between the FN results and the energies
obtained by the imaginary-time correlations, indicating a very
small residual FN error, namely, �E/t � 0.01.

In Fig. 2, we report the overall phase diagram obtained by
considering large-scale FN calculations. A saturated ferromag-
netic phase is stable for n � 0.75, while for smaller densities a
paramagnetic ground state is found. The narrow shaded region
denotes the incertitude due to the residual numerical error,
which can be estimated by comparing the FN energies with
the exact ones (obtained from the fermionic correlations) on
smaller clusters (see Fig. 1). This direct comparison puts us on
secure grounds as concerns the robustness of the dependence
of the ground-state magnetization on the electron density.

In Fig. 3 we display the dependence of the ground-state
energy upon magnetization, for different values of the electron
density. The remarkable feature emerging from this figure
is the strong flattening of the energy as a function of the
magnetization (i.e., the spin) close to the transition between
the fully polarized ferromagnet and the paramagnetic state.
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FIG. 2. Ground-state magnetization of the infinite-U Hubbard
model on the square lattice. The shaded area represents a small region
of uncertain attribution due to the effect of the residual Monte Carlo
error.
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FIG. 3. (Color online) Difference between the energy per site of
different magnetizations and that of the saturated ferromagnet as a
function of the density n. The cases with L = 200 (squares) and 400
(circles) are reported; lines connecting points are a guide for the eye.

Indeed, at low and high densities the energy has a monotonic
behavior as a function of the magnetization m. At low density
a clear minimum exists at m = 0, typical of a paramagnetic
phase, where the curvature of the energy-versus-magnetization
curve indicates a finite spin susceptibility. On the other
hand, in the high-density ferromagnetic phase, E(m) displays
a well-defined minimum for m = 1. On approaching the
transition, E(m) becomes flatter and flatter, suggesting that
the susceptibility may diverge at the critical point. Although
we cannot exclude a tiny region with a finite but nonsat-
urated magnetization, these results would suggest that the
paramagnetic-to-ferromagnetic transition is not due to a simple
level crossing, namely, to the creation of a local minimum in
E(m) at m = 1 that eventually prevails over the paramagnetic
one, but rather to the progressive flattening of the whole E(m)
curve.

Our scenario is compatible with an infinite-order phase
transition, which, in general, is described by E(m) = (g −
gc)m2 + bm2r , where r → ∞; a phase transition is obtained by
varying the order parameter g (in our case the electron density)
across its critical value gc. The critical exponent of the order
parameter is β = 1/(2r − 2), generating a jump from zero to
the saturation value for r → ∞. Moreover, the susceptibility
χ ∼ A±/|g − gc|γ has an exponent γ = 1 independent of r ,
with an amplitude ratio A−/A+ that vanishes for r → ∞.16

Even though the order parameter shows a finite jump, as in
ordinary first-order phase transitions, there is no hysteresis.
We have indeed verified that the ground-state energy is a
convex function of the electron density, implying a finite
compressibility in the neighborhood of the ferromagnetic-
paramagnetic transition. This picture implies that spin-flip
excitations over the fully polarized state are noninteracting
at the transition point. In fact, we find that, at small distances,
the minority spins repel each other, whereas at large distances
they do not interact. In the variational wave function, this fact
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generates a sizable repulsive short-range Jastrow factor, while
at long range the V

f

i,j pseudopotential vanishes.
Conclusions. In this Rapid Communication we have an-

alyzed with high accuracy the magnetic phase diagram of
the fermionic Hubbard model on the square lattice in the
limit of infinite on-site repulsion U . By the combination of
different QMC methods, we are able to give a very precise
determination of the transition between the ferromagnetic
and the paramagnetic states. Interestingly, all spin excitations
become essentially gapless at the transition, possibly indicat-
ing that the transition is of infinite order. Such a behavior
emerges from the study of intermediate polarizations, not
considered in previous calculations. Indeed, given the extreme
difficulty of treating this highly correlated system, most of
the theoretical efforts have been limited to the study of very
high densities or a single spin flip.8–11 Our results pave

the way to a better understanding of itinerant ferromagnetic
phenomena in both traditional condensed matter systems
and recent and forthcoming realizations of such phases in
cold atomic gases. Indeed, the recent achievements in the
realization of interacting fermionic systems trapped in optical
lattices27 will most likely lead to experimental probes of the
strongly correlated regime of the Hubbard model at sufficiently
low temperatures. Lastly, the generality of the numerical
methods used in this paper will also offer insights into
other strongly correlated fermionic systems where currently
available analytical and numerical treatments may fail to offer a
quantitative or even qualitative account of the relevant physical
properties.
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