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Ginzburg-Landau theory of two-band superconductors: Absence of type-1.5 superconductivity
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It is shown that within the Ginzburg-Landau (GL) approximation the order parameters �1(r,T ) and �2(r,T )
in two-band superconductors vary on the same length scale, the difference in zero-T coherence lengths ξ0ν ∼
h̄vFν/�ν(0), ν = 1,2 notwithstanding. This amounts to a single physical GL parameter κ and the classic GL
dichotomy: κ < 1/

√
2 for type I and κ > 1/

√
2 for type II.
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I. INTRODUCTION

The physics of superconductors near their critical tem-
perature, Tc, is based on the Ginzburg-Landau (GL) theory.1

The smallness of critical fluctuations in most superconductors
justifies the usage of this mean-field theory except in a tiny
regime close to the transition temperature. This includes
multiband superconductors with distinct sheets of the Fermi
surface. A number of recent papers deal with two-band
materials with coefficients of the GL free energy (for the
field-free state),

F =
∑
ν=1,2

(
aν�

2
ν + bν�

4
ν/2

) − 2γ�1�2,

introduced phenomenologically; see, for example, Ref. 2.
Choosing these coefficients in various ways, one could arrive
at a number of choice-dependent conclusions.3,4 However,
there are important general constraints on the allowed values.
For example, a straightforward analysis of the above free
energy yields that the coefficients aν do not have the familiar
GL form α(T − Tc). Instead, they acquire a constant part,
const + α(T − Tc), that is intimately related to the constant γ

of the mixed Josephson-type term to ensure �ν ∝ √
Tc − T

near Tc. The coefficients of the GL free energy can furthermore
be derived from microscopic theory; they are certain func-
tions of the microscopic coupling constants responsible for
superconductivity and temperature T . This was done several
decades ago by Tilley5 and later by Zhitomirsky and Dao,6

who confirm, as expected, the const + α(T − Tc) behavior of
the aν within a weak-coupling model.

We show in this work that, independent of the microscopic
origin of the GL coefficients, in the GL domain the ratio of the
order parameters is T independent,

�1(r,T )/�2(r,T ) = const, (1)

with the r-independent constant depending on interactions
responsible for superconductivity. The one-dimensional (1D)
version of Eq. (1) has been obtained while solving the GL
problem of the interface energy between superconducting and
normal phases relevant for the distinction between type I
and type II two-band superconductors.7 For strong intraband
scattering (the dirty limit), the result (1) has been obtained by
Koshelev and Golubov provided the interband scattering could
be disregarded.8 Here, we establish this result for any problem
in the GL domain.

We show that the equations for �1(r,T ) and �2(r,T ) are
reduced to one independent GL equation. In other words, there

is a single complex order parameter describing the two-band
superconductor in the GL domain and, as a consequence, a
single length scale ξ for spatial variation of both �1(r,T ) and
�2(r,T ).

Our results, along with the earlier critique9 and a compre-
hensive review by Brandt and Das,10 question the validity
of publications discussing properties of MgB2 within the
GL framework where each band is attributed with its own
coherence length and sometimes even with its own penetration
depth; see, for example, Ref. 11 and references therein.

We stress that our claim that the gap functions �ν(r,T )
change on the same length scale relates exclusively to the
temperature domain, however narrow it could be, where the
GL theory is valid. Out of this domain and at low temperatures
in particular, different length scales ∼ h̄vFν/�ν(0) may enter
and result in properties substantially different from those in the
GL region. Still, as long as the GL energy functional is used,
the assumption of two coherence lengths cannot be justified.

Below, we discuss the phenomenologic two-band GL
theory and later confirm our conclusions within a weak-
coupling microscopic scheme.

II. TWO-BAND GL IN FIELD

The two-band GL functional reads as follows:

F =
∫

dV

{ ∑
ν=1,2

(
aν |�ν |2 + bν

2
|�ν |4 + Kν |��ν |2

)

− γ (�1�
∗
2 + �2�

∗
1) + B2

8π

}
, (2)

where � = ∇ + 2πiA/φ0. Explicit expressions for the con-
stant γ along with the coefficients a,b,K for a weak-coupling
model will be given later. However, our results do not rely on
the validity of the weak-coupling theory and are more general.

The GL equations are minimum conditions for the func-
tional (2). One obtains, by varying F with respect to �∗

ν ,

a1�1 + b1�1|�1|2 − γ�2 − K1�
2�1 = 0, (3)

a2�2 + b2�2|�2|2 − γ�1 − K2�
2�2 = 0. (4)

We now recall that in the one-band GL equation,

a� + b�|�|2 − K�2� = 0,

all terms are of the same order, (1 − T/Tc)3/2 = τ 3/2 (� ∝
τ 1/2, a ∝ τ , and �2 ∝ ξ−2 ∝ τ ). This is more subtle in the
case of Eqs. (3) and (4) because γ is a constant and aν contain

054515-11098-0121/2011/83(5)/054515(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.054515


V. G. KOGAN AND J. SCHMALIAN PHYSICAL REVIEW B 83, 054515 (2011)

constant parts. Keeping this in mind, we express �2 in terms
of �1 from Eq. (3) and substitute the result in Eq. (4), keeping
only terms up to order τ 3/2:

(a1a2 − γ 2)�1 + (
b1a2 + b2a

3
1/γ

2
)
�1|�1|2

− (a1K2 + a2K1)�2�1 = 0. (5)

Similarly, one obtains an equation for �2:

(a1a2 − γ 2)�2 + (
b2a1 + b1a

3
2/γ

2
)
�2|�2|2

− (a1K2 + a2K1)�2�2 = 0. (6)

In zero field, one has �2
ν ∝ (a1a2 − γ 2), so that at Tc, a1a2 −

γ 2 = 0, and therefore aν must contain constant parts,

aν = aνc − αντ,

such that a1ca2c = γ 2.
Equations (5) and (6) for �ν can now be written as

−ατ�1 + β1�1|�1|2 − K�2�1 = 0, (7)

−ατ�2 + β2�2|�2|2 − K�2�2 = 0, (8)

with

α = α1a2c + α2a1c, K = a1cK2 + a2cK1,
(9)

β1 = b1a2c + b2a
3
1c/γ

2, β2 = b2a1c + b1a
3
2c/γ

2.

We note that within the accuracy of the GL theory, up to
O(τ 3/2), these equations differ only in coefficients β of the
nonlinear terms that determine the overall amplitude of the
solutions, whereas the rest of the coefficients are the same.
The equations for �1 and �2 are coupled only via the vector
potential. In particular, in zero field we have

�2
ν0 = ατ/βν,

so that the ratio

�2
10(T )

�2
20(T )

= β2

β1
(10)

comes out to be T independent in the GL domain.
Furthermore, one easily checks that for any solution

�1(r,T ) of Eq. (7), Eq. (8) is satisfied by

�2(r,T ) = �1(r,T )
√

β1/β2. (11)

In particular, this implies that in equilibrium �1(r,T ) and
�2(r,T ) must have either the same phases or phases differing
by π .12 It is found in Ref. 6 that for small γ the ratio �2/�1

changes away from Tc; we note, however, that this deviation
is beyond the GL accuracy. Reliable results beyond GL can be
obtained only within microscopic approaches like the Gor’kov
or Bogolyubov–de Gennes theories.

Moreover, introducing the order parameters normalized on
their zero-field values,

�1

�10(T )
= �2

�20(T )
= �, (12)

both Eqs. (7) and (8) are reduced to one:

�(1 − |�|2) = − K

ατ
�2�. (13)

Thus, the length scale of the space variation of both �1 and
�2, the coherence length, is given by

ξ 2 = K/ατ. (14)

III. MICROSCOPIC WEAK-COUPLING TWO-BAND
MODEL NEAR Tc

To establish a connection of GL equations with the two-
band microscopic theory we turn to a weak-coupling model
for clean and isotropic materials (not because these restrictions
are unavoidable, but rather due to the model simplicity).

Perhaps the simplest formally weak-coupling approach
is based on the Eilenberger quasiclassical formulation of
the Gor’kov equations valid for general anisotropic order
parameters and Fermi surfaces.13 Eilenberger functions f,g

for clean materials in zero field obey the system:

0 = �g − h̄ωf, (15)

g2 = 1 − f 2, (16)

�(k) = 2πT N (0)
ωD∑
ω>0

〈V (k,k′)f (k′,ω)〉k′ . (17)

Here, k is the Fermi momentum; � is the order parameter that
may depend on the position k at the Fermi surface. Further,
N (0) is the total density of states (DOS) at the Fermi level per
spin; the Matsubara frequencies are given by h̄ω = πT (2n +
1) with an integer n, and ωD is the Debye frequency; 〈...〉
stands for averages over the Fermi surface.

Consider a model material with the gap given by

�(k) = �1,2, k ∈ F1,2, (18)

where F1,F2 are two sheets of the Fermi surface. The gaps
are assumed constant at each band. Denoting DOS on the two
parts as N1,2, we have for a quantity X constant at each Fermi
sheet,

〈X〉 = (X1N1 + X2N2)/N (0) = n1X1 + n2X2, (19)

where n1,2 = N1,2/N (0); clearly, n1 + n2 = 1.
Equations (15) and (16) are easily solved:

fν = �ν/βν, gν = h̄ω/βν, β2
ν = �2

ν + h̄2ω2, (20)

where ν = 1,2 is the band index. The self-consistency
Eq. (17) takes the form

�ν =
∑

μ=1,2

nμλνμ�μ

ωD∑
ω

2πT

βμ

, (21)

where λνμ = N (0)Vνμ are dimensionless effective interaction
constants. The notation commonly used in literature, λ(lit)

νμ =
nμλνμ, includes DOS. We find our notation convenient since,
being related to the coupling potential, our coupling matrix is
symmetric: λνμ = λμν .

It is seen from the system (21) that �1,2 turns to zero at the
same temperature Tc unless λ12 = 0 and Eqs. (21) decouple,
the property that has been noted in earlier work.14–16 As T →
Tc, �1,2 → 0, and β → h̄ω. The sum over ω in Eq. (21) is
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readily evaluated:

S =
ωD∑
ω

2πT

h̄ω

∣∣∣
Tc

= ln
2h̄ωD

Tcπe−γ
= ln

2h̄ωD

1.76Tc

, (22)

where γ = 0.577 is the Euler constant. This relation can also
be written as

1.76Tc = 2h̄ωDe−S. (23)

The system (21) at Tc is linear and homogeneous:

�1 = S(n1λ11�1 + n2λ12�2),
(24)

�2 = S(n1λ12�1 + n2λ22�2).

The zero determinant gives S and, therefore, Tc:

S2n1n2η − S(n1λ11 + n2λ22) + 1 = 0, (25)

η = λ11λ22 − λ2
12. (26)

The roots of this equation are

S =
n1λ11 + n2λ22 ±

√
(n1λ11 − n2λ22)2 + 4n1n2λ

2
12

2n1n2η
.

(27)

Various possibilities that arise depending on values of λμν

are discussed, for example, in Refs. 14–18. Introducing T -
independent quantities,

S1 = λ22 − n1ηS, S2 = λ11 − n2ηS, (28)

we write Eq. (25) as

S1S2 = λ2
12, (29)

the form useful for manipulations below.
If λ12 = 0, Eq. (27) provides two roots: 1/n1λ11 and

1/n2λ22. The smallest one gives Tc, whereas the other
corresponds to the temperature at which the second gap turns
to zero. We note that this situation is unlikely; it implies that
the ever-present Coulomb repulsion is exactly compensated by
the effective interband attraction.

Since the determinant of the system (24) is zero, the two
equations are equivalent and give at Tc(

�2

�1

)
Tc

= 1 − n1λ11S

n2λ12S
. (30)

When the right-hand side is negative, the �’s are of opposite
signs. Within the one-band BCS, the sign of � is a matter of
convenience; for two bands, �1 and �2 may have equal or
opposite signs.19

After simple algebra, Eq. (30) can be manipulated to(
�2

�1

)2

Tc

= S1

S2
. (31)

We thus obtain, by comparing with Eq. (10), the ratio
of phenomenological coefficients in terms of microscopic
couplings: β1/β2 = S1/S2. We have seen above that within
the GL approximation this ratio remains the same at any T in
the GL domain not only for a uniform field-free state (or for
γ → ∞ as in Ref. 20) but for any situation with �’s depending
on coordinates in the presence of magnetic fields.

We note that the proportionality of �1 and �2 has also
been shown to hold within microscopic weak-coupling theory
in the dirty limit by Koshelev and Golubov.8 It is also worth
mentioning here that the proof of this proportionality in the
preceding section based on the GL approach is quite general
and holds for any scattering, gap anisotropies, etc.

In the following we use the GL coefficients obtained in
Refs. 5 and 6. In our notation they read

aν = N (0)

η
(Sν − nνητ ), bν = N (0)

W 2
nν, W 2 = 8π2T 2

c

7ζ (3)
,

(32)

γ = N (0)

η
λ12, Kν = N (0)h̄2v2

ν

6W 2
nν,

where the energy scale W ∼ πTc is introduced for brevity and
vν are the Fermi velocities in two bands which for simplicity
is assumed isotropic. We, in fact, confirmed Eqs. (32) of
Zhitomirsky and Dao employing different methods (except our
bν is by a factor of 2 larger than that of Ref. 6). It is worth noting
that the microscopically derived aν are not proportional to τ as
in the standard one-band GL unless one of the parameters Sν is
zero; given the condition (29) this may happen only if λ12 = 0.
This feature of the two-band GL is sometimes overlooked.21,22

As stressed in Ref. 6, the term Kν |��ν |2 with order
parameter gradients is the only possible in the GL energy,
although the symmetry may allow for other combinations of
gradients.

The coefficients entering the GL Eqs. (7) and (8) are

α = N (0)2C

η
, K = h̄2ṽ2N (0)2

6W 2η
, sβν = N (0)2DSν

ηW 2λ2
12

, (33)

where

ṽ2 = n1S2v
2
1 + n2S1v

2
2 (34)

has the dimension of a squared velocity and

C = n1S2 + n2S1, D = n1S
2
2 + n2S

2
1 (35)

are constants.
Hence, we can express the length scale (14) of the space

variation of both �1 and �2 in the GL domain in terms of
microscopic parameters:

ξ 2 = h̄2ṽ2

2W 2Cτ
. (36)

The upper critical field follows: Hc2 = φ0/2πξ 2. The one-
band limit is obtained by setting n1 = 1, n2 = 0 so that C = S2

and ṽ2 = S2v
2/3, which yields ξ 2 = 7ζ (3)h̄2v2/48π2T 2

c τ as
it should.

Variation of the free energy F with respect to the vector
potential A gives the current density. Following the standard
procedure we obtain for the penetration depth of a weak
magnetic field,

1

λ2
= 32π3

φ2
0

∑
ν=1,2

�2
ν0Kν = 16πCN (0)e2ṽ2

c2D
τ. (37)

In the one-band limit this yields the correct result: λ−2 =
[16πe2N (0)v2/3c2]τ .
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A straightforward calculation yields the equilibrium zero-
field free energy:

F0 = −N (0)W 2 C2

2D
τ 2. (38)

The thermodynamic field Hc follows: H 2
c /8π = −F0. One can

show that the relative specific heat jump at Tc differs from the
one-band value 12/7ζ (3) = 1.43 by a factor C2/D < 1.23

One can now form the dimensionless GL parameter,

κ2 = λ2

ξ 2
= c2W 2D

8πN (0)e2h̄2ṽ4
, (39)

and verify the standard relation Hc2/Hc

√
2 = κ .

Finally, the equilibrium energy is evaluated by substituting
the solutions of the GL equations to the functional (2):

F = H 2
c

4π

∫
dV

{
b2 − 1

2
|�|4

}
, (40)

where b = B/Hc

√
2 is the dimensionless field. Thus, the

theory of a two-band superconductor near Tc is mapped onto
the standard one-order parameter GL scheme.

In particular, this mapping means that the GL problem
of the interface energy between normal and superconducting
phases has the same solution as in the one-band case, that is,
κ = 1/

√
2 separates type I and type II superconductors. This

has been demonstrated in Ref. 7 by solving numerically the
nonlinear system of GL Eqs. (3) and (4) without discarding
the terms O(τ 2) employed here.

A. Remark on boundary conditions

The solution (11) for the two gap functions of the
GL Eqs. (7) and (8) holds indeed provided the boundary
conditions for �2 are the same as for �1 multiplied by
the factor

√
β1/β2. This is clearly the case for the 1D

problem of the S-N interface energy discussed in Ref. 7.
The same is true for the problem of the single-vortex
structure: both �’s are zero at the vortex center and
approach �ν,0 with the correct ratio at infinity. However,
for example, for proximity situations with a two-band
superconductor on one side of the contact with a normal
metal, the condition on the superconducting side far from
the boundary is satisfied, whereas the question of boundary
conditions at the interface remains open. In this case, one
cannot claim that both �(r)’s are proportional to each
other. Nevertheless, as is seen from Eqs. (7) and (8), the
length scale ξ = √

K/ατ is still the same for both order
parameters.

IV. DISCUSSION

Two-band GL equations have been used in a number of
publications where the coefficients in the GL energy functional
aν,bν,Kν and γ were varied and possible consequences
were discussed. Moreover, different ξ ’s and even λ’s were
assigned to the two bands along with two different κ’s.
This led to speculations that situations may exist where
one of the bands behaves as a type II superconductor
with κ1 > 1/

√
2, while the other may have κ2 < 1/

√
2 and

behave near Tc as the type I; the superconductivity in such
situations was called “type 1.5.” MgB2 has been suggested

as such an example; see, for example, Ref. 11 and references
therein.

The present work argues that such situations do not exist.
The point is that the GL equations are derived from the
microscopic theory within certain approximations that lead to
the free energy near Tc being proportional to (1 − T/Tc)2 and
the order parameter (or parameters) varying as (1 − T/Tc)1/2.
Formally, the nonlinear system of GL Eqs. (3) and (4) for
two-band materials can be solved with whatever accuracy one
chooses. However, physically there is no point in going for
accuracy higher than that of equations themselves; whatever
results obtained along these lines will be unreliable. To get
a near-Tc description more accurate than GL, one should go
back to microscopic theory that generates many extra terms
in the free energy expansion even for the one-band situation;
see, for example, Ref. 24, so that the multiband generalization
of such an approach is unlikely to produce a useful theory. It
is demonstrated on a one-dimensional problem of Ref. 7 and
is shown for a general case in this paper that within the GL
accuracy, both order parameters of a two-band superconductor
vary on the same length scale ξ of Eq. (14) contrary to
requirements of “1.5-type superconductivity.”

We note that this conclusion holds for the “GL domain”
defined as the temperature interval near Tc where the GL
expansion can be justified. We do not specify this domain
explicitly because its size may vary from one case to another;
for example, it is argued in Ref. 8 that for two dirty bands
(with no interband scattering) of MgB2, the domain of GL
applicability shrinks practically to zero. However, whatever
this size is, within this domain the two order parameters vary
on the same length scale. Therefore, attempts to employ the GL
functionals, on the one hand, and to assume different length
scales, on the other, cannot be justified.

Moreover, we show that—within the GL accuracy—the
two GL equations for the two-band case are reduced to a
single equation for the normalized order parameter; in other
words, the two-band superconductor is described by a single
complex order parameter. This excludes possibilities of having
“fractional vortices” with exotic properties such as those
discussed in Refs. 25 and 26.

Microscopically, our results were derived within a weak-
coupling theory of clean superconductors. We believe, how-
ever, that our conclusions go beyond that. For our results to
hold it is crucial that due to the finite interband Josephson
coupling γ , the coefficients aν in the GL energy remain finite
at Tc. Once this is guaranteed our qualitative conclusions
remain unchanged, even if assumptions of the weak coupling,
no scattering, and isotropy do not apply.

Note added in proof. In the recent paper by Shanenko
et al.,27 our conclusion on a single length scale ξ in two-band
superconductors near Tc is confirmed. Extra terms in the GL
expansion discussed in this work are, by construction, small
corrections and do not change our conclusion that the idea
of 1.5-type superconductivity is not warranted by the GL
theory.
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