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Andreev reflection from noncentrosymmetric superconductors and Majorana bound-state
generation in half-metallic ferromagnets
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We study Andreev reflection at an interface between a half metal and a superconductor with spin-orbit
interaction. While the absence of minority carriers in the half metal makes singlet Andreev reflection impossible,
the spin-orbit interaction gives rise to triplet Andreev reflection (i.e., the reflection of a majority electron into
a majority hole or vice versa). As an application of our calculation, we consider a thin half-metal film or wire
laterally attached to a superconducting contact. If the half metal is disorder free, an excitation gap is opened that
is proportional to the spin-orbit interaction strength in the superconductor. For electrons with energy below this
gap a lateral half-metal–superconductor contact becomes a perfect triplet Andreev reflector. We show that the
system supports localized Majorana end states in this limit.
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I. INTRODUCTION

Heterosystems with adjacent superconducting and ferro-
magnetic phases may show unconventional spin-triplet su-
perconducting proximity effects even if the superconductor
is of the conventional s-wave spin-singlet type.1 Triplet
correlations, even if they are weak, are important in ferro-
magnets, where the standard spin-singlet proximity effect is
short ranged as a result of the exchange splitting.2 In half
metals singlet pairings are ruled out since, in a half metal,
one spin species has zero density of states at the Fermi
level so that the triplet version is the only possible form of
the superconducting proximity effect. Microscopically, the
superconducting proximity effect is mediated by Andreev
reflection, the phase-coherent reflection of an electron into
a hole or vice versa at the superconductor interface.3 Triplet
superconducting correlations then require a form of Andreev
reflection that includes a spin flip.4,5

The triplet proximity effect has been considered first in
ferromagnets (with a finite minority spin population), where
the observation of long-range superconducting correlation
effects6–10 has been shown to be consistent with the existence
of induced triplet correlations in the ferromagnet.1,4 A number
of mechanisms that give rise to the spin-flip Andreev reflection
required for the triplet correlations, such as magnetic domain
walls,4 spin-orbit interaction,11 and unconventional pairing
correlations,12 have been studied in hybrid ferromagnet-
superconductor systems.

Long-range proximity effects have also been observed in
half-metallic CrO2–NbTiN13 and CrO2–MoGe14 heterostruc-
tures. Because of the absence of minority carriers in the
half metal it is concluded that the observed superconducting
correlations must be of the triplet type.13,15,16 However, in half
metals the conditions for spin-flip Andreev reflection are more
restrictive than in a ferromagnet. In particular, electron-hole
symmetry and current conservation pose stronger restrictions
on candidate mechanisms for spin-flip Andreev reflections
than in ferromagnets:17,18 If the interface is symmetric with
respect to reflection in the surface normal, electron-hole sym-
metry and unitarity require the Andreev reflection amplitude
rhe(ε) to vanish at the Fermi energy ε = 0.17 Thus, mechanisms
that give rise to triplet Andreev reflection must either break

electron-hole symmetry (i.e., take place away from the Fermi
energy) or orbital symmetries. Mechanisms of the latter type
are magnetization gradients in the half metal18,19 or impurity
scattering.20

In this article, we study spin-orbit interaction (SOI) in
S as a possible mechanism giving rise to spin-flip Andreev
reflection in a half metal (H). The presence of SOI is
contingent on the breaking of inversion symmetry. Examples
for systems with SOI in the normal state are surface states in
Au,21 semiconductor heterostructures, and two-dimensional
(2D) electron gases in quantum wells with partially tunable
SOI’s.22–24 Crystalline superconductors such as the noncen-
trosymmetric cuprates and heavy-fermion compounds such
as CePt3Si25 and others26 show SOI due to the absence of an
inversion center in their crystal structure. These materials have
received intense interest because they display unconventional
superconducting (helical27–29) phases with mixed singlet and
triplet pairing correlations,26,30–33 magnetoelectric effects,34,35

and an anisotropic spin susceptibility.36,37 However, cen-
trosymmetric superconducting materials also show SOI in
surface or interfacial layers with inversion asymmetry. For
instance, the breaking of inversion symmetry at a plane
interface due to a change in the chemical potential gives rise
to the Rashba SOI.22,36

In our calculation we assume a general model for the SOI
that is linear in momentum and includes the Rashba SOI
as a special case. In the first part of this article, we derive
expressions for the electron-to-hole and hole-to-electron An-
dreev reflection amplitudes rhe and reh in a model Hamiltonian
with parabolic dispersion in the half metal and in (the normal
state of) the superconductor and to first order in the SOI. For
our model Hamiltonian, which includes effects of a Fermi-
velocity mismatch and a tunnel barrier at the half-metal–
superconductor interface, we find that the Andreev reflection
is such that the induced superconducting correlations in the
vicinity of the superconducting interface are of even-frequency
and complex p-wave type. This is a significant difference with
other possible sources of triplet superconducting correlations
in half metals, such as a nonuniform magnetization direction
in the half metal, which also allow for odd-frequency s-wave
proximity effects.
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FIG. 1. (a) Interface between a half metal (H ) and a supercon-
ductor (S). For a superconductor with spin-orbit scattering, normal
reflection as well as triplet Andreev reflection—the reflection of a
majority electron (e) into a majority hole (h)—take place at the HS
interface. (b) A lateral contact between a half-metallic film or wire of
thickness d and a superconductor. For a lateral contact, an effective
Andreev reflection amplitude reff

he for electrons moving toward the
contact region can be defined, which describes the combined effect
of multiple reflections at the H S interface.

Because Andreev reflection relies on the presence of SOI
in the superconductor, the Andreev reflection probability |rhe|2
may be small depending on the strength of the SOI such
that the induced superconducting correlations become weak.
However, a fully developed proximity effect38 can be achieved
in a geometry in which multiple Andreev reflections occur.
Examples of such geometries are a half-metallic film or wire in
contact to a superconductor [shown schematically in Fig. 1(b)].
The latter example is closely related to recent proposals
for the realization of Majorana fermions in a solid-state
setting,39–45 which, in turn, play an important role in proposals
for topological quantum computation.39,46 The second part
of this article contains an investigation of multiple Andreev
reflections in the film or wire geometry. We will show that
the effect of multiple Andreev reflections can be combined
into effective Andreev reflection amplitudes reff

he and reff
eh . These

effective amplitudes may have unit magnitude if sufficient
reflection events contribute coherently them. We show that
in this case localized Majorana states can be formed at the
ends of a half-metal wire in contact to a superconductor
with spin-orbit coupling. The investigation of the thin-film
geometry is motivated by the recent experiments of Refs. 13
and 14.

In the present calculation we do not consider scattering
from impurities in H or S. This does not seriously affect the first
part of our calculation, which addresses the Andreev reflection
amplitude for a single reflection off the HS interface, because
the Andreev reflection amplitude is a local property of the
interface. It is, however, a limitation for the second part of our
calculation since the proximity effect induced by the multiple
Andreev reflections is of the p-wave type, which is suppressed
by impurity scattering. Thus the results derived in the second
part of this article are valid only if the elastic mean free path
in the half-metallic film or wire is sufficiently large.

The article is structured as follows. In Sec. II A we introduce
the model Hamiltonian of the HS heterostructure and describe
the calculation of the Andreev reflection amplitudes for a
single reflection off a HS interface. As an application of our
calculation, we calculate the subgap conductance of a half-
metal–superconductor interface and the Josephson current
in a superconductor–half-metal–superconductor junction in
Sec. III. In Sec. IV we consider the geometry in which
a thin half-metallic film is brought into electrical contact
with a superconductor and derive the effective Andreev
reflection amplitude reff

he for this situation. Applications to
the subgap conductance and Josephson effect in lateral HS
and SHS junctions are then given in Sec. V. Finally, in
Sec. VI, we consider a half-metallic wire placed in con-
tact to a superconductor and relate our findings to predic-
tions of the occurrence of Majorana fermions in such a
system.

II. INTERFACE BETWEEN HALF METAL
AND SUPERCONDUCTOR

A. Hamiltonian

We consider the interface between a half metal (H) and
a superconductor (S) as shown in Fig. 1(a). Coordinates are
chosen such that the superconductor and the half metal occupy
the half spaces z > 0 and z < 0, respectively. Electron and
hole excitations at excitation energy ε near the interface are
described by the Bogoliubov-de–Gennes equation

H� = ε�, (1)

where � = (u↑,u↓,v↑,v↓)T is a four-component wave function
with separate amplitudes for the particle/hole excitations (u, v)
in the spin up/down bands (↑, ↓). The Bogoliubov-de–Gennes
Hamiltonian H has the general form

H =
(

Ĥ0 iσ2�(r)

−iσ2�(r)∗ −Ĥ ∗
0

)
. (2)

Here, the superconducting order parameter �(r) =
�0e

iφ�(z), where �(z) = 1 if z > 0 and 0 otherwise, and the
σi are the Pauli matrices i = 1, 2, 3. We take the normal-state
Hamiltonian H0 to be of the form

Ĥ0 = p2

2m
−

∑
σ=↑,↓

μσ (z)P̂σ + h̄wδ(z) + ĤSO, (3)

where m is the electron mass (taken to be the same in H
and S)

μσ (z) =
{
μHσ if z < 0,

μS if z > 0,
(4)

with the potentials μH↑, μH↓, and μS representing the
combined effect of the chemical potential and band offsets
for the majority and minority electrons in the half metal and
for the superconductor, respectively, and where w sets the
strength of a δ-function potential barrier at the interface. The
operators

P̂↑ = 1
2 (1 + σ3), P̂↓ = 1

2 (1 − σ3), (5)
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project onto the majority and minority components, respec-
tively. (The magnetization direction in H is taken as the spin
quantization axis, which need not coincide with the z axis.)
We will take the limit μH↓ → −∞, such that only the majority
spin band is present in H. We further write

μH↑ = h̄2k2
F,H

2m
, μS = h̄2k2

F,S

2m
, (6)

where kF,H and kF,S are the Fermi wave numbers in H and S,
respectively, and

μH↓ = −h̄2κ2

2m
, (7)

where κ is the minority wave function decay rate. The Fermi
velocities are defined as

vF,H = h̄kF,H/m, vS,H = h̄kS,H/m. (8)

The step function model for the superconducting order
parameter �(r) is justified for s-wave superconductors if the
coupling to the half metal takes place via a tunnel barrier with
transparency τ � 1,47 which corresponds to the requirement
that |w| � vF,H, vF,S.

The operator ĤSO represents the effect of spin-orbit cou-
pling. We consider the case that ĤSO is linear in the momentum
p and that ĤSO is nonzero in S only48

ĤSO = h̄

2
[p�(z) + �(z)p] ·

3∑
i=1

�iσi, (9)

where we denote �i = (�i,x,�i,y,�i,z)T . Such a SOI may
originate from the breaking of inversion symmetry by the
crystal structure of S or due to an inversion asymmetry of the
HS heterosystem. We assume that the spin-orbit interaction is
weak, h̄|�(kF,S)| � vF,H, vS,H, so that it can be captured by
treating ĤSO to first order in perturbation theory.

In addition to the spin-singlet order parameter contained
in Eq. (2), the presence of SOI generally allows for a
triplet contribution to the order parameter, which is of the
form �(p) = ∑3

i=1 �i(p)σi . Because of the Pauli principle,
these triplet components are odd in momentum, �i(−p) =
−�i(p). Such a triplet contribution is absent if the pairing
interaction is isotropic,49 but it may be present if the pairing
interaction is anisotropic.36 In Appendix B we include triplet
pairings in the model and give the results for the Andreev
reflection amplitudes. The spin-orbit interaction does not lead
to a modification of the magnitude of the spin-singlet order
parameter to first order in ĤSO.

B. Andreev reflection amplitudes

We now calculate the Andreev reflection amplitudes for
of the interface between H and S using the Blonder-
Tinkham-Klapwijk formalism.50 At the HS interface triplet,
Andreev reflection occurs because quasiparticles incident on
the interface from H penetrate the superconductor over a
finite length before being reflected. Due to the SOI, spin
is not a good quantum number in S, which makes spin-flip
reflection possible. The Andreev reflection amplitudes are
found by matching eigenfunctions of H in H and S to linear
order in the SOI. (An alternative method, using perturbation

theory in the SOI Hamiltonian, will be described at the
end of this section.) The matching conditions, continuity
and conservation of particle flux, hold for plane-wave eigen-
states in the immediate proximity of the interface on length
scales of the Fermi wavelength. Thus, the S matrix of the
interface is a local property and will not be changed by
weak disorder.

The starting point of the matching procedure are expres-
sions for the general solutions of the Bogoliubov-de Gennes
equation in H and S, near the HS interface. Because of
translation symmetry along the interface, we can consider
plane-wave solutions with wave numbers kx and ky in the x and
y directions parallel to the interface. In H, one then finds six
linearly independent solutions, which we label �e,↑,±, �h,↑,±,
�e,↓, and �h,↓,

�e,↑,±(r) = e±ikz(+ε)z+ikxx+ikyy

√
vz(ε)

(1,0,0,0)T, (10)

�h,↑,±(r) = e∓ikz(−ε)z+ikxx+ikyy

√
vz(−ε)

(0,0,1,0)T, (11)

�e,↓(r) = eκz(+ε)z+ikxx+ikyy(0,1,0,0)T, (12)

�h,↓(r)‘ = eκz(−ε)z+ikxx+ikyy(0,0,0,1)T, (13)

where kz(ε) and κz(ε) are the positive solutions of

kz(ε)2 = k2
F,H − k2

|| + 2mε/h̄2,
(14)

κz(ε)2 = κ2 + k2
|| − 2mε/h̄2,

and

k‖ = (kx,ky,0)T, (15)

is the momentum parallel to the interface and

vz(ε) = h̄kz(ε)/m. (16)

The states labeled with + and − are majority states moving
toward or away from the interface, respectively. They are
normalized to unit flux. The states labeled with ↓ are minority
states that decay into the half metal. They appear in interme-
diate stages of the calculation only and their normalization is
not important.

Only the spin-orbit interaction terms proportional to �1

and �2 give rise to spin flips in the superconductor. For a
calculation of Andreev reflection amplitudes linear in the SOI,
it is then sufficient to set �3 = 0, which significantly simplifies
the form of the solutions of the Bogoliubov-de–Gennes
equation in S. In S, one then finds four linearly independent
solutions �s,t of the Bogoliubov-de–Gennes equation t, s =
±1, which read

�s,t (r) = 1

2

⎛
⎜⎜⎝

1
eiγs,t

e−iφ−isη+iγs,t

e−iφ−isη

⎞
⎟⎟⎠ eiqs,t z+ikxx+ikyy, (17)

where

η = arccos(ε/�0), (18)

qs,t = t

√
k2

F,S − k2
|| + 2itm

√
�2

0 − ε2 − mst�s,t , (19)
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and γs,t and �s,t are defined such that

(�1 + i�2) · q = �s,tqeiγs,t , (20)

with q = (kx,ky,qs,t )T.
A complete solution �(r) of the Bogoliubov-de–Gennes

equation consists of a linear combination of the six special
solutions (10)–(13) in H for z < 0 and a linear combination
of the four special solutions (17) in S, with the boundary
conditions

�(r)|z=0− = �(r)|z=0+ (21)

∂�(r)

∂z

∣∣∣∣
z=0−

= ∂�(r)

∂z

∣∣∣∣
z=0+

+ m

(
i

3∑
j=1

�j,zσj + 2w

h̄

)
�(r)

∣∣∣∣∣
z=0+

(22)

at the interface z = 0. Since �(r) is a four-component spinor,
the boundary conditions provide eight linear relations between
the coefficients of the ten basis functions. The Andreev
amplitude rhe is then defined as the coefficient of �h,↑,− if the
coefficients of the two incoming wave solutions �e,↑,+ and
�h,↑,+ are chosen to be 1 and 0, respectively. Analogously,
the Andreev amplitude reh is defined as the coefficient of
�e,↑,− if the coefficients of �e,↑,+ and �h,↑,+ are chosen to be
0 and 1, respectively. To lowest order in the SOI and to lowest
order in the normal-state transmission τ (θ ) of the HS interface,
we find that

rhe(k‖,ε) = −imτ (θ )e−iφ(�1 + i�2) · k‖�0

2
(
k2

F,S − k2
F,H sin2 θ

)√
�2

0 − ε2
, (23)

and

reh(k‖,ε) = rhe(−k‖, − ε)∗

= −imτ (θ )eiφ(�1 − i�2) · k‖�0

2
(
k2

F,S − k2
F,H sin2 θ

)√
�2

0 − ε2
. (24)

Here θ = arcsin(|k‖|/kF,H) is the angle between the incident
momentum and the interface normal, see Fig. 1, and

τ (θ )2 = v2
F,H cos2 θ

(
v2

F,S − v2
F,H sin2 θ

)
w4

+ O
(

1

w6

)
. (25)

Equation (23) has been simplified using the “Andreev approx-
imation,” which amounts to neglecting corrections of order
O(ε/EF,S,�0/EF,S). (This approximation is uniformly valid
for all angles if kF,S > kF,H. If kF,S � kF,H there is a small
range of angles for which the approximation fails.)

The divergence for ε → ±� in Eqs. (23) and (24) is a
consequence of the expansion in the normal-state transmission
coefficient τ of the HS interface and has to be cutoff for 1 −
(ε/�)2 � τ 2. This means that the immediate vicinity of ±�

has to be excluded from the region of validity of Eqs. (23)
and (24) so that these equations are valid for 1 − (ε/�)2 � τ 2

only. The same condition will be required for the validity
of Eq. (26) and for expressions that are derived from these
equations. (We note that similar restrictions also apply to an
expansion in the transmission coefficient for a normal-metal–
superconductor interface, see, e.g., Ref. 50.)

For completeness, we also give the results for the normal
reflection amplitudes ree and rhh of the HS interface consistent
with the assumptions of our calculation

ree(k‖,ε) = −1 + i

√√√√ τ (θ )kF,H cos θ√
k2

F,S − k2
F,H sin2 θ

+ τ (θ )

2

⎛
⎝ kF,H cos θ√

k2
F,S − k2

F,H sin2 θ

− iε√
�2

0 − ε2

⎞
⎠ ,

(26)

rhh(k‖,ε) = r∗
ee(−k‖, − ε). (27)

Alternatively, Eqs. (23) and (24) can be obtained from a
calculation of the first-order perturbation theory correction to
the scattering matrix of the HS interface without spin-orbit
interaction. This calculation is outlined in the Appendix
(see Ref. 18 for more details).

Equations (23) and (24) are the two central results of the first
part of this article. Although the Andreev reflection amplitudes
have been derived for a specific model Hamiltonian and in the
limit of a tunneling interface, we believe that the symmetry
properties of rhe and reh (rhe and reh are odd in k‖ and even
in ε) persist in a more general calculation, as long as the SOI
is linear in momentum. We have verified this statement for
the cases that a finite minority-wave function decay rate κ

is included in the calculation, that the spin-orbit interaction
extends only a finite distance into the superconductor, and
that higher-order terms in the interface transmission τ (θ ) are
included (see Appendix A for details).

The antisymmetry of rhe and reh as a function of k‖ implies
that the Andreev reflection amplitudes rhe and reh contain only
four elements �1,x , �1,y , �2,x , and �2,y of the spin-orbit
coupling matrix. We had already discussed, that the three
elements �3,x , �3,y , and �3,z that describe the coupling
between the spin component parallel to the magnetization
direction and the orbital motion of the electrons do not give
rise to spin flips and hence do not contribute to the Andreev
reflection amplitude. Equations (23) and (24) show that the
same is true for the elements �1,z, �2,z, and �3,z of the
spin-orbit coupling matrix that couple the electron spin to
the orbital motion perpendicular to the interface and thus
provide a spin-flip mechanism that is symmetric in k‖. For
zero excitation energy ε, this observation can be understood
from the general symmetry considerations of Ref. 18, which
stated that rhe(k‖,0) = 0 if rhe is a symmetric function of k‖.
That this remains true for nonzero ε is special to the case
of spin-orbit coupling as a source of spin-flip scattering and
requires the explicit calculation of this section.

There is a direct relation between the Andreev reflection
amplitudes rhe and reh and the anomalous Green function
f (k,iω),18

f (k,iω) ∝
{

�(−kz)reh(k‖,iω) if ω > 0,

−�(kz)rhe(k‖, − iω)∗ if ω < 0,
(28)

up to a prefactor that is not important for the identification of
the symmetries of f . Since rhe(k‖, − iω)∗ = −reh(k‖,iω) in
the present case, see Eq. (24), one concludes that the induced
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superconducting correlations in H are odd in momentum
[i.e., predominantly of (complex) p-wave type] and even in
frequency.

III. APPLICATIONS: SUBGAP CONDUCTANCE
AND JOSEPHSON CURRENT

As an application, we now calculate the subgap conduc-
tance of an HS junction and the Josephson current of a
superconductor–half-metal–superconductor (SHS) junction.

A. Subgap conductance

We assume the interface to have lateral dimensions
Wx × Wy and impose periodic boundary conditions in these
directions. This leads to a quantization of the transverse modes
with wave numbers knx

= 2πnx/Wx and kny
= 2πny/Wy ,

nx and ny integers. At zero temperature, the differential
conductance G = dI/dV can be calculated in terms of the
Andreev reflection amplitudes rhe. Replacing the summation
over modes by an integral, we find50,51

G(V ) = 2e2

h
Tr|rhe(k‖,eV )|2, (29)

where Tr{. . .} = WxWy/(4π2)
∫
k‖<kF,H

dk‖{. . .} is the trace
over transverse mode k‖. The factor of 2 is due to the doubling
of the transferred charge by conversion of an electron into a
hole upon Andreev reflection.

Substituting Eq. (23) for the Andreev reflection amplitude
rhe and performing the integrations over kx and ky , we then
find

G(V ) = e2

h

3N

8

〈τ 2〉θ�2
0

�2
0 − (eV )2

× h̄2
(
�2

1,x + �2
2,x + �2

1,y + �2
2,y

)
v2

F,H

, (30)

where N = k2
F,HWxWy/4π is the number of propagating

channels in H and

〈. . .〉θ = 2
∫ π/2

0
dθ . . . sin θ cos θ, (31)

denotes an average over the angle of incidence θ .

B. Josephson current

For the Josephson effect, we consider a half-metallic
junction of length Lj separating two superconducting contacts.
Again, we take the junction to have lateral dimensions
Wx × Wy and impose periodic boundary conditions in the
x and y directions. Taking periodic boundary conditions is
justified if the lateral dimensions Wx,y � Lj, see Fig. 2(a). We
further take both HS interfaces to have the same normal-state
transmission τ (θ ), take the same spin-orbit interaction Hamil-
tonian ĤSO in both superconductors, and neglect impurity
scattering in the half-metallic junction.

The Josephson current can be found from the density
of states in the junction which, in turn, may be expressed
in terms of the scattering matrices of the HS interfaces
(see Ref. 52 and 53 for details). In the absence of impurity
scattering, the contributions to the Josephson current from

(a)

(b)

FIG. 2. (a) Serial and (b) a lateral superconductor–half-metal–
superconductor (SHS) junction.

different transverse wave vectors k‖ add up, and one finds
that the Josephson current at temperature T is given by the
expression

I = −2ekBT

h̄

d

dφ

∞∑
n=0

× Tr{ln det[1 − R(k‖,iωn)R′(k‖,iωn)]}, (32)

where ωn = (2n + 1)πkBT is the Matsubara frequency, R is a
2 × 2 reflection matrix containing reflection and transmission
amplitudes for the first HS interface,

R(k‖,iωn) =
(

eikz(iωn)Lj 0

0 e−ikz(−iωn)Lj

)

×
(

ree(k‖,iωn) reh(k‖,iωn)

rhe(k‖,iωn) rhh(k‖,iωn)

)
, (33)

with kz(ε) is given in Eq. (14) and the reflection amplitudes
given by Eqs. (23)–(27) above, and R′(k‖,iωn) is a simi-
lar matrix describing Andreev reflection at the second HS
interface. Specifically, in the serial geometry in Fig. 2(a),
R′(k‖,iωn) = R(k‖,iωn)|φ=0 with the phase of the order
parameter set to zero.

Closed-form expressions for the Josephson current I can
be obtained in limiting cases only. In the limit of a “long”
junction, Lj � ξ , where ξ = h̄vF,H/�0 is the superconducting
coherence length, and for high temperatures kBT Lj/h̄vF,H � 1
one finds

eI = 2e2

h
8πkBT sin(φ)Tr

{|rhe(k‖,iω0)|2φ=0 e2ω0L/vz(0)
}
. (34)

Performing the integration over the transverse momentum k‖
for the parabolic dispersion of our model Hamiltonian then
gives the result

eI = 2πkBT sin φ

3
G(0)f (2πkBT Lj/h̄vF,H), (35)

where G(0) is the zero-bias conductance of a single HS
interface, see Eq. (30), and

f (x) = e−x(6 − 10x − x2 + x3) + x2(x2 − 12)Ei(−x)

≈ 48e−x/x2 for x � 1, (36)

with the exponential integral Ei(x) = − ∫ ∞
−x

dte−t /t .
In the opposite limit of zero temperature, the expres-

sion for the Josephson current in a long junction (Lj � ξ )
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becomes

I = 2e sin φ

h̄

∫ ∞

0
dω

× Tr

⎧⎨
⎩ |rhe|2

cosh 2ωLj

vz
− Re

[
r2

eee
2ikz(0)L

] + |rhe|2 cos φ

⎫⎬
⎭ .

(37)

Normal reflection with amplitude ree at the two HS interfaces
gives rise to terms in Eq. (37) that oscillate with the
junction length Lj. These oscillations disappear once the trace
over transverse modes is taken since kz(0)Lj � 1 for long
junctions. The remaining nonoscillatory contribution to the
supercurrent Ī can then be calculated by taking the average
Ī = (2π )−1

∫ 2π

0 dχI (χ ), where I (χ ) is obtained from Eq. (37)
by the replacement 2ikz(0)Lj → χ . One thus obtains

I = e sin φ

2Lj
Tr

{
vz|rhe|2 log

[
16 sin2(φ/2)

|rhe|2 sin2 φ

]}
. (38)

The remaining trace over modes can be performed to logarith-
mic accuracy by neglecting the dependence of the argument of
the logarithm on k‖. This amounts to the replacement |rhe|2 →
〈|rhe|2〉θ = hG(0)/2e2N in the argument of the logarithm. One
then obtains

eI = 4πh̄vF

15Lj
G(0) sin φ log

[
32e2N sin2(φ/2)

hG(0) sin2 φ

]
, (39)

up to corrections of order G(0)h̄vF/Lj, but without the large
logarithm log(e2N/G(0)h. The small corrections to the ap-
proximately sinusoidal phase dependence of the supercurrent
in Eq. (39) originate from scattering processes with multiple
normal reflections at the HS interfaces.

IV. LATERAL GEOMETRY

An experimentally relevant situation13,14 is the lateral
geometry where the superconducting contact is attached
laterally to a thin H film. This situation is shown in Fig. 1(b).
In comparison to the serial contact considered in the previous
section, a lateral contact has a significantly larger contact area
per unit cross section of H. Multiple reflections occur at the
HS interface because quasiparticles are repeatedly reflected
backward from the lower film boundary toward the interface.
In the absence of impurity scattering in the half-metallic film,
the coherent addition of these multiple Andreev reflections
leads to a significant enhancement of the Andreev reflection
probability for a quasiparticle incident on the lateral contact
from the left [in Fig. 1(b)], as we now show.

We choose coordinates such that the half metal occupies
the region between z = 0 and z = −d and the superconductor
occupies the region x > 0, z > 0, see Fig. 1(b). We take
periodic boundary conditions in the y direction, with system
size Wy . For the half metal, we take hard-wall (Dirichlet)
boundary conditions at z = −d for all x, and at z = 0 for
x < 0. The thickness d of the half-metallic film is taken to
be much smaller than the superconducting coherence length
ξ = h̄vF,H/�0. As before, we take the HS interface to be a
tunneling interface with a transmission probability τ (θ ) � 1.

The goal of our calculation is to find the amplitude reff
he

that a right-moving electron-like quasiparticle approaching the
contact from the left is Andreev reflected into a left-moving
hole-like quasiparticle, as well as the amplitude reff

eh for the
process that a hole-like quasiparticle is Andreev reflected as an
electron-like quasiparticle. The calculation proceeds in three
steps. First, we construct scattering states in the absence of
spin-orbit interaction. Second, we account for the effect of
spin-orbit interaction in a superconducting region of length
d,δL � ξ using perturbation theory. Finally, we combine
Andreev reflections from different segments and compute the
Andreev reflection amplitudes reff

he and reff
eh .

A. Scattering states in the absence of SOI

Because of translation symmetry in the y direction, the
scattering states can be chosen as plane waves in the y direction
with wave number ky , which takes discrete values only because
of the periodic boundary conditions in the y direction. We
first construct scattering states for x < 0. There, because of
the hard-wall boundary conditions at z = 0 and z = −d, the
z dependence can be chosen proportional to sin(kzz), where
kz = nπ/d, n = 1, 2, . . . , is discrete as well. For each discrete
value of the transverse momenta k⊥ = (0,ky,kz)T one then has
four scattering states that we label �e,k⊥± and �h,k⊥,±,

�e,k⊥,±(r) = 2e±ikx (ε)x+ikyy sin(kzz)√
vxdWy

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , (40)

�h,k⊥,±(r) = 2e∓ikx (−ε)x+ikyy sin(kzz)√
vxdWy

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , (41)

where kx(ε) is the positive solution of

kx(ε)2 = k2
F,H − k2

y − k2
z + 2mε

h̄2 , (42)

and

vx = h̄kx/m. (43)

The scattering states labeled “+” represent quasiparticle
states moving to the left; the states labeled “−” represent
quasiparticle states moving to the right. All scattering states
are normalized to unit flux.

In the region x > 0, the scattering states differ from those
given above because of the finite tunnel coupling to the
superconductor. In particular, the scattering states acquire
a finite weight inside the superconductor. In the tunneling
limit τ � 1, this weight is small and the majority component
of the scattering states inside the half metal remains well
approximated by Eqs. (40) and (41). The exact expressions for
the full scattering state in the region x > 0 are cumbersome,
and we refer to Ref. 18 where the detailed expressions can be
found.

The “turning on” of the tunnel coupling to the superconduc-
tor at x = 0 gives rise to a small amount of normal reflection,
but it does not cause Andreev reflection. We neglect this normal
reflection at x = 0 in the remainder of this section.
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B. Andreev reflection from a superconducting
segment of length δL

The presence of spin-orbit coupling in the superconductor
gives rise to Andreev reflection at the HS interface, as we
have seen in Sec. III. In the second step of our calculation,
we compute the effective Andreev reflection amplitude for a
superconducting segment of size 0 < x < δL. We choose the
length δL of the superconducting segment such that d,δL � ξ .
The inequality d � ξ , together with translation symmetry in
the y direction, ensure that the Andreev reflection amplitude
is diagonal in ky and kz. The inequality δL � ξ gives |kx(ε) −
kx(−ε)|δL � 1 for excitation energies up to �0. This, in turn,
leads to Andreev reflection amplitudes proportional to δL,
which we write as ρhe(k⊥,ε)δL and ρeh(k⊥,ε)δL, for electron-
to-hole and hole-to-electron reflection, respectively.

Calculating the Andreev amplitudes for the segment 0 <

x < δL in first-order perturbation theory in the spin-orbit
interaction gives

ρhe(k⊥,ε)δL = −i〈�h,k⊥,−|δHSO|�e,k⊥,+〉,
(44)

ρeh(k⊥,ε)δL = −i〈�e,k⊥,−|δHSO|�h,k⊥,+〉,
where δHSO is the 4 × 4 matrix Hamiltonian representing the
projection of the spin-orbit interaction Hamiltonian onto the
segment 0 < x < δL,

δHSO = 1
2

{
PδL(x),HSO

}
, (45)

HSO =
(

ĤSO 0

0 −Ĥ ∗
SO

)
, (46)

with PδL(x) = 1 for 0 < x < δL and 0 otherwise. Evaluating
the matrix element in the limit d � δL � ξ then gives

ρhe(k⊥,ε) = rhe(k‖,ε)
kz

2dkx

, (47)

where k‖ = (kx(0),ky,0)T. Equation (47) has the simple
interpretation as the Andreev reflection amplitude for a single
reflection at the HS interface, multiplied by the number of
bounces at the HS interface per unit length.18,19 Similarly, one
finds that

ρeh(k⊥,ε) = reh(k′
‖,ε)

kz

2dkx

, (48)

where k′
‖ = (−kx(0),ky,0)T.

In the same way, one also calculates Andreev reflection
amplitudes ρhe(k⊥,ε)′δL and ρhe(k⊥,ε)′δL for quasiparticles
incident on the segment 0 < x < δL from the right. These are

ρhe(k⊥,ε)′ = rhe(k′
‖,ε)

kz

2dkx

, (49)

ρeh(k⊥,ε)′ = reh(k‖,ε)
kz

2dkx

. (50)

C. Effective Andreev reflection amplitudes
for the lateral contact

In the final part of the calculation, we consider a super-
conducting contact of finite length 0 < x < L. To keep the

notation simple, we omit the arguments k⊥ and ε in the
intermediate results.

Upon comparing contacts of length L and L + δL, one
finds that

reff
he (L + δL) = reff

he (L)ei(kx (ε)−kx (−ε))δL

+ [
ρhe + ρ ′

ehr
eff
he (L)2

]
δL + O(δL)2. (51)

Making use of the relations

ρ ′
he = −(ρeh)∗, ρ ′

eh = −(ρhe)∗, (52)

which follow from quasiparticle conservation or from the
explicit solutions obtained above, and expanding kx(ε) ≈
k(0) + ε/h̄vx plus terms of order ε2 that are neglected in the
Andreev approximation, one arrives at a nonlinear differential
equation for reff

he (L),

dreff
he

dL
= 2iε

h̄vx

reff
he + ρhe − ρ∗

he

(
reff

he

)2
. (53)

Solving this equation with the boundary condition reff
he (0) = 0

gives

reff
he (L) = ρhe sin QheL

Qhe cos QheL − i(ε/h̄vx) sin QheL
, (54)

and similarly,

reff
eh (L) = ρeh sin QehL

Qeh cos QehL + i(ε/h̄vx) sin QehL
, (55)

where we abbreviated

Qhe =
√

(ε/h̄vx)2 − |ρhe|2,
(56)

Qeh =
√

(ε/h̄vx)2 − |ρeh|2.
Upon taking the expression for reff

he (L) to first order in L, one
verifies that one reproduces the starting point reff

he (δL) = ρheδL

of the previous section. Upon taking reff
he (L) to first order in

ρhe, one finds

reff
he (L) = ρhe

∫ L

0
dxe2iεx/h̄vx , (57)

which one obtains by applying first-order perturbation theory
to the entire superconducting contact of length L at once.18

Equation (57) represents the effect of a single Andreev
reflection at the HS interface, with the phase factor accounting
for the relative phase shift between the electron and the
Andreev reflected hole for an Andreev reflection taking place
at position x. One checks for consistency that reff

he (δL)/δL
turns into Eq. (47) in the limit δL → 0.

The relevant limit for the lateral contact of Fig. 1(b) is
the limit L → ∞. In this limit, the energy dependence of reff

eh
through the energy dependence of ρhe can be neglected in
comparison to the explicit energy dependence in Eq. (54), so
that one may approximate ρhe(k⊥,ε) by ρhe(k⊥,0) in Eq. (54).
Defining

ε0(k⊥) = h̄vx |ρhe(k⊥,0)|
= h̄vz

2d
|rhe(k‖,0)|, (58)
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one then finds that

reff
he (k⊥,ε) = ρhe(k⊥,0)

|ρhe(k⊥,0)|e
i arcsin(ε/ε0(k⊥))

= rhe(k‖,0)

|rhe(k‖,0)|e
i arcsin(ε/ε0(k⊥)), (59)

if ε < ε0(k⊥). Hence, as long as ε < ε0(k⊥), |reff
he | = 1 such

that a lateral contact serves as an “ideal” contact between a
superconductor and a half metal, allowing perfect spin-flip
Andreev reflection back into the half metal. For ε > ε0(k⊥),
rhe(k⊥,ε) is an oscillating function of the contact size L,
whereas the magnitude of the Andreev reflection amplitude
is a decreasing function of energy,

∣∣reff
he (k⊥,ε)

∣∣2 = sin2(QheL)

(ε/ε0(k⊥))2 − cos2(QheL)

≈ 1 −
√

1 − (ε0(k⊥)/ε)2 if L → ∞, (60)

where the last line is obtained by averaging L over a
period 0 < QheL < 2π and is proportional to the envelope
of |reff

he (ε)|2. The energy ε0(k⊥) separating the regions of
complete and partial Andreev reflection can be interpreted
as a mode-dependent proximity-induced “minigap” in the
half-metallic film.

An analogous calculation including multiple Andreev re-
flections can be done for the transmission through the contact.
For electrons and holes incoming from the left we find the
transmission amplitudes

teff
ee (k⊥,ε) = Qhee

ikx (0)L

Qhe cos QheL − i(ε/h̄vx) sin QheL
, (61)

teff
hh (k⊥,ε) = Qehe

−ikx (0)L

Qeh cos QehL − i(ε/h̄vx) sin QehL
. (62)

The amplitudes for particles incoming from the right are
related to Eqs. (61) and (62) by t ′eff

ee = ei2kx (0)Lteff
hh and t

′,eff
hh =

e−i2kx (0)Lteff
ee . For a long contact, |ρhe(k⊥,ε)|L � 1 and ε <

ε0(k⊥) the transmission amplitudes can be approximated as

teff
ee (k⊥,ε) ≈ 2eikx (0)Le−qheLei arcsin(ε/ε0(k⊥)), (63)

with qhe = iQhe. Thus, tee, thh become exponentially sup-
pressed consistent with a fully developed proximity effect.

V. APPLICATIONS: SUBGAP CONDUCTANCE
AND JOSEPHSON CURRENT

The effective Andreev reflection amplitude reff
he can be

used for a calculation of the subgap conductance G and the
Josephson current I in a lateral HS or SHS junction in the
same way as the Andreev reflection amplitude rhe is used in
the case of a serial junction.

A. Subgap conductance

In the limit of a long ballistic contact and at the Fermi
level ε = 0, the effective Andreev reflection amplitude of
Eq. (59) has modulus 1 for all transverse channels (labeled

by the integer n and the wave number ky). Hence the zero bias
conductance G(0) is

G(0) = Gm = 2e2

h
N, (64)

where

N = k2
H,FWyd

4π
, (65)

is the number of propagating modes at the Fermi level in the
half metal.

Upon increasing V , the Andreev reflection probabilities
and hence the conductance G decrease. The precise functional
form of this decrease depends on the details of the spin-orbit
coupling. For voltages much larger than the induced “minigap”
in the half metal, but still much smaller than �0 (i.e.,
h̄vF,H|rhe|/2d � eV � �0) we may take |reff

he (k⊥,ε)|2 from
Eq. (60) and find

G(V ) = e2

h

N〈τ 2〉θ
128

(
h̄

eV d

)2

× [
2�2

1,x + �2
1,y + 2�2

2,x + �2
2,y

]
. (66)

This decay of the subgap conductance with the applied voltage
is a marked difference with the case of the serial geometry, for
which G is an increasing function of V .

B. Josephson current

The expression for the Josephson current I in a lateral
SHS junction can be obtained from Eq. (32) upon setting
ree = rhh = 0 and upon replacing rhe and reh by reff

he and reff
eh ,

respectively,

I = −4ekBT

h̄

Wyd

4π2
Re

d

dφ

∞∑
n=0

∫
k⊥<kF,H

dk⊥

× ln
[
1 − reff

he (k⊥,iωn)reff
eh (k⊥,iωn)′e−2ωnLj/vx

]
, (67)

where Lj is the junction length, see Fig. 2(b), reff
he (k⊥,ε) is

the effective electron-to-hole Andreev amplitude of the right
superconducting contact for quasiparticles incident from the
left, and reff

eh (k⊥,ε)′ the effective hole-to-electron Andreev
amplitude of the left superconducting contact for quasipar-
ticles incident from the right. We have set the phase of the
superconducting order parameter for the right superconductor
equal to zero. Upon setting ε = iωn, the effective Andreev
reflection amplitudes reff

he (k⊥,ε) and reff
eh (k⊥,ε)′ have a well-

defined limit for the contact size L → ∞, which is given by
Eq. (59) for all ωn.

We first consider the limit when the minigap ε0 � ETh

is much larger than the Thouless energy ETh = h̄vz/Lj of
the junction (long-junction limit). For high temperatures
kBT Lj/h̄vF � 1, one finds

eI = −8
√

2πGmkBT e
− 2πkBT Lj

h̄vF,H

(
h̄vF,H

2πkBT Lj

) 3
2

sin φ. (68)

This expression for I has the same sinusoidal phase de-
pendence and exponential junction length dependence as in
the serial geometry, but in the lateral contact geometry I is
proportional to the much larger conductance Gm, Eq. (64),
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instead of Eq. (30). In the limit of zero temperature, the
Josephson current is given by

I = 2e

3

NvF,H

Lj
φ, − π < φ < π , (69)

and I (φ + 2π ) = I (φ). Equation (69) is the known form of
a supercurrent if the superconductor and the normal junction
material are strongly coupled and the junction is disorder-
free.54 The phase dependence is sectionally linear (sawtooth-
like) and the critical current decreases with the length Lj of
the junction.

In the opposite limit of a short junction (ε0 � ETh), we
distinguish three temperature regimes. For very high tempera-
tures kBT � ETh = h̄vF,H/Lj, one obtains a sinusoidal phase
dependence of the Josephson current

I = 3eN〈τ 2〉θ
8π2h̄d2kBT

(
ETh

2πkBT

)2

× (
�2

1,x + �2
2,x

)
e
− 2πkBT

ETh sin φ. (70)

For intermediate temperatures, ε0 � kBT � ETh, one finds

I = eh̄N〈τ 2〉θ
512 d2kBT

(
2�2

1,x + �2
1,y + 2�2

2,x + �2
2,y

)
sin φ. (71)

For T = 0, the trace over transverse modes could not be
performed in closed form. However, the dependence on phase
difference φ can be found. One obtains

I = e

4d
Tr{vz|rhe|} sin

φ

2
, − π < φ < π , (72)

and I (φ + 2π ) = I (φ). The dependence I ∝ sin(φ/2) of the
zero-temperature Josephson current is reminiscent of the
“fractional Josephson effect,” characteristic of Josephson junc-
tions that have Majorana bound states at the superconductor
interfaces39,55 (see also the next section).

VI. MAJORANA STATES

Majorana bound states have been proposed as an elementary
building block of a topological quantum computer since they
are an example of an excitation with non-Abelian statistics.46

Majorana bound states exist as the fundamental excitations
of a candidate state for the ν = 5/2 quantum Hall effect,56,57

in vortices in superconductors with a spinless p-wave pairing
symmetry,57–60 or in vortices of s-wave superconductors in
contact with a topological insulator61–63 or a standard 2D
electron gas in a large magnetic field and with strong spin-orbit
coupling.40

Very recently, it was suggested that Majorana bound states
can be found at the ends of semiconducting quantum wires
with strong spin-orbit coupling and a strong magnetic field,
in contact with an s-wave superconductor.42,43,45 In these
proposals, the role of the magnetic field is to create a gap
for spin excitations, so that the wires become effectively
half metallic. We now show that Majorana bound states
also occur in the system considered here: a half-metallic
quantum wire in contact with a superconductor with spin-
orbit coupling. This enables us to make contact between the
(experimentally observed) triplet proximity effect and the,
so far, purely theoretical search for avenues to topological

FIG. 3. A lateral contact between a half-metallic film or wire and
a superconductor. The contact has length L, with a segment of length
δL singled out. The main text describes how the effective Andreev
reflection of the entire lateral contact is calculated, starting from
the effective Andreev reflection amplitudes ρheδL and ρehδL of the
segment of length δL. As discussed in Sec. VI, inserting a normally
reflecting boundary at the left end of the H film or wire gives rise to
a Majorana bound state.

quantum computation. Our approach has the additional benefit
of providing a fully microscopic description of the p-wave
proximity state, in contrast to the existing studies of this
effect in semiconducting wires with strong spin-orbit coupling,
which rely on an effective description using an induced pairing
potential in the semiconducting wire.42,43

First, we show that a Majorana state exists at the end of
a ballistic half-infinite half-metallic quantum wire laterally
coupled to a superconductor. We consider the geometry shown
in Fig. 3. The difference with the calculation of Sec. V is that
here the half metal is a wire, not a film. We therefore have
to use hard-wall boundary conditions in the y direction, not
periodic boundary conditions as in Sec. V. With hard-wall
boundary conditions, the Andreev reflection amplitudes ρhe

and ρeh per unit length have to be replaced by amplitudes ρ̃he

and ρ̃eh, which are defined as

ρ̃he(ky,kz,ε) = 1
2 [ρhe(ky,kz,ε) + ρhe(−ky,kz,ε)], (73)

ρ̃eh(ky,kz,ε) = 1
2 [ρeh(ky,kz,ε) + ρeh(−ky,kz,ε)]. (74)

Since ρhe and ρeh are odd in ky , the components of the SOI
coupling to ky drop out. Apart from the replacement ρhe → ρ̃he

and ρeh → ρ̃eh, the results of Sec. IV continue to hold for the
present case.

At the left end of the half-metallic wire, quasiparticles
undergo normal reflection with amplitude sH(ε) and sH(−ε)∗
for electron-like and hole-like quasiparticles, respectively.
With the Andreev reflection amplitudes of Eq. (59) we then
find a nondegenerate bound state at ε = 0 with (unnormalized)
wave function

�(r) = i
[
reff

he

]− 1
2 [sH(0)�e,k⊥,+(r) + �e,k⊥,−(r)]

+ i
[
reff

he

] 1
2 [�h,k⊥,−(r) + sH(0)∗�h,k⊥,+(r)], (75)

where the scattering states �e,k⊥,± and �h,k⊥,± are obtained
from those given in Eqs. (40) and (41), but with the replacement
eikyy → sin(kyy) because of the hard-wall boundary condi-
tions. The distance to the next bound states is of the order
of the minigap ε0 or the level spacing in the normal segment
extending from the superconductor, whichever is smaller.

The bound state (75) is identified as a Majorana bound state
because it is invariant under electron-hole conjugation (i.e.,
τ1�

∗ = � where τ1 is the first Pauli matrix in electron-hole
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space). Alternatively, with ψ̂
†
↑,↓,ψ̂↑,↓ being electron and hole

creation operators, � corresponds to the field operator

γ =
∫

dx[u↑(x)ψ̂↑(x) + v↑(x)ψ̂†
↑(x)], (76)

with u↑ = �1 and v↑ = �3 given by the electron and hole
spin-up component of �, respectively. This operator satisfies
the condition

γ = γ †, (77)

which is the defining characteristic of a Majorana state. Being
a Majorana bound state, � is stable against perturbations
because, by particle-hole symmetry, a perturbation that moves
� to some finite energy ε �= 0 must generate a pair of states at
±ε. Since � is a single state this is not possible.

We note that there is one Majorana mode per transverse
mode in the half-metallic wire. Disorder, which is not included
here, will lead to interactions between these modes, which
will cause Majorana modes to pairwise combine into standard
fermionic excitations. If the number of transverse modes is
odd, a single Majorana mode is guaranteed to remain present
at the end of the half-metallic wire.44

If the half-metallic quantum wire has a finite length L,
the Majorana bound states at the two ends will interact so
that the excitation acquires a finite energy, exponentially small
in the length of the wire. This finite excitation energy can
be calculated from the full scattering matrix S(ε) of the
lateral HS contact, calculated in Sec. IV, and the reflection
amplitudes sH(ε) and s ′

H(ε) at the left and right ends of the
half-metallic wire. The energy spectrum is found from the
condition

det(1 − SH(ε)S(ε)) = 0, (78)

where

SH(ε) =

⎛
⎜⎜⎜⎜⎝

sH(ε) 0 0 0

0 sH(−ε)∗ 0 0

0 0 s ′
H(ε) 0

0 0 0 s ′
H(−ε)∗

⎞
⎟⎟⎟⎟⎠ ,

S(ε) =

⎛
⎜⎜⎜⎜⎜⎝

0 reff
eh (ε) teff

ee (ε) 0

reff
he (ε) 0 0 teff

hh (ε)

teff
ee (ε) 0 0 reff

eh (ε)

0 teff
hh (ε) reff

he (ε) 0

⎞
⎟⎟⎟⎟⎟⎠ .

In the limit of a long contact |ρ̃he|L � 1, we then find

ε± = ±2|ρhe(ε)|h̄vx(ε)e−|ρhe(ε)|L| sin(kx(ε)L)||ε=0, (79)

where we have set sH = s ′
H = −1. Thus, the energy splitting

decreases exponentially with the contact length [besides
accidental degeneracies for integer kx(ε = 0)L/2π ].

It is instructive to compare our calculation with the model of
a spinless one-dimensional p-wave superconductor,39 which
has been used as a phenomenological model description of
the induced superconductivity in a semiconductor wire with a

strong magnetic field and spin-orbit coupling.41,44 This model
has the Hamiltonian

H = p2

2m
τ0 + �′pτ1, (80)

where τ0 is the 2 × 2 unit matrix in electron-hole space and
�′ the effective p-wave superconducting order parameter.
Comparing with our calculation, and specializing to a quantum
wire with one quantized mode only, for which kz = π/d, we
identify

|�′| = πh̄τ (k⊥)

4d2
(
k2

F,S − k2
x − k2

y

)√�2
1,x + �2

2,x , (81)

where τ (k⊥) is the transparency of the interface at the relevant
(lowest) transverse mode.

VII. DISCUSSION AND CONCLUSION

In this article, we have shown that spin-orbit interaction
in a singlet superconductor gives rise to a triplet proximity
effect if the superconductor (S) is coupled to a half-metallic
ferromagnet (H). We have calculated the conductance of a
HS junction and the Josephson current of a SHS junction
in both a serial geometry and in a lateral contact geometry.
Because of the coherent effect of multiple Andreev reflections,
the effective Andreev amplitudes for a lateral contact geometry
are significantly enhanced in comparison to those at a serial
geometry. In particular, multiple Andreev reflections at the
interface between a clean (disorder-free) half-metallic film or
wire and a superconductor can lead to a fully developed triplet
proximity effect in the half metal, with an Andreev reflection
amplitude of unit magnitude.

The results found here have been derived under the assump-
tion of a ballistic system (i.e., without taking into account
disorder scattering in the half metal or in the superconductor).
For the single-reflection amplitude rhe in Sec. II B this does
not strongly restrict the validity of the result since the Andreev
reflection amplitude is a microscopic property of the interface:
rhe is determined by matching the eigenstates on length scales
of the Fermi wave length in H and S and the wave function
decay length in S. If the disorder is weak, such that the
mean free path l exceeds these microscopic length scales, rhe

will be unchanged by the presence of disorder. In this way,
the microscopic Andreev reflection amplitudes calculated in
Sec. II B may also serve as a starting point for studies of the
conductance of a disordered HS junction or the Josephson
current in a disordered SHS junctions. (For example, the
Josephson current through a disordered or a chaotic Josephson
junction can be found by combining the reflection ampli-
tudes of the clean superconductor interface with the normal-
state scattering matrix of the junction, see, e.g., Refs. 52
and 53.)

On the other hand, quantities that rely on free (phase-
coherent) propagation in H may change qualitatively in
the presence of disorder. Specifically, the effective Andreev
reflection amplitude reff

he of the lateral contact has been obtained
by phase-coherently summing single reflection amplitudes.
At the Fermi energy, these multiple Andreev reflections add
constructively because the momentum k‖ parallel to the
interface is conserved and amplitudes of subsequent reflections
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have the same sign. However, scattering from impurities under
the contact will lead to a summation over single amplitudes
with different incident angles. Since the Andreev reflection
amplitudes rhe and reh are odd in k‖, this sum may no
longer be constructive. Thus, the result for reff

he is valid for
an ideal, disorder-free lateral contact only. Since the reflection
properties of a lateral junction saturate if the junction length
L � d/|rhe|, where d is the thickness of the half-metallic film
or wire, disorder is not expected to significantly alter our
results as long as the elastic mean free path l � d/|rhe|. These
conditions need not be met in the two existing experiments13,14

on the triplet proximity effect in superconductor–half-
metal heterostructures, which involve the half metal
CrO2.

As a particularly timely application of our calculation,
we connect the Andreev reflection amplitudes rhe and reh

calculated here to the existence of Majorana bound states at
the ends of a ballistic half-metallic quantum wire in (lateral)
contact to a superconductor with spin-orbit coupling. This
proposal for the construction of Majorana bound states is a
variation of a recent proposal that such Majorana bound states
exist at the ends of a semiconducting wire in contact with a
superconductor, where the semiconductor has strong spin-orbit
coupling and the system is placed in a large Zeeman field such
that the wire becomes effectively half metallic.42,43 In our
construction, the Zeeman field is replaced by the exchange
field in the half metal, and the spin-orbit coupling is not
located in the wire, but in the superconductor. It thus avoids
the necessity of a (fine-tuned) applied magnetic field, which
could negatively interfere with the superconducting order.

Note added. Shortly after our manuscript was submitted, a
related eprint appeared,64 in which it is shown that Majorana
edge states appear in a 2D half-metal proximity coupled to an
s-wave superconductor with spin-orbit coupling.
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APPENDIX A: PERTURBATION THEORY IN ĤSO

An alternative calculation of the Andreev reflection
amplitudes rhe and reh makes use of perturbation theory in the
spin-orbit interaction ĤSO. For this calculation, finite lateral
dimensions Wx × Wy are assumed, with periodic boundary
conditions in the x and y directions.

As before, we consider wave functions proportional to
eikxx+ikyy . In the absence of spin-orbit coupling, there are two
linearly independent solutions of the Bogoliubov-de–Gennes
equation for each pair kx,ky . The first of these is “electron-
like,” and of the general form

�ek‖(r) = ce↑eikz(ε)z + c′
e↑e−ikz(ε)z√

vz(ε)WxWy

× eikxx+ikyy(1,0,0,0)T

+ ch↓eikxx+ikyy+κz(−ε)z(0,0,0,1)T, (A1)

for z < 0 and

�ek‖(r) = d ′
↑eikxx+ikyy+iq+z(1,0,0,e−iφ−iη)T

+ d↑eikxx+ikyy+iq−z(1,0,0,e−iφ+iη)T, (A2)

for z > 0, where

qs = s

√
k2

F,S − k2
x − k2

y + 2ism

√
�2

0 − ε2. (A3)

The boundary conditions (22) with �j,z = 0 give four equa-
tions for the five coefficients ce,↑, c′

e,↑, ch,↓, d↑, and d ′
↑ so that

one coefficient can be chosen freely. Choosing ce,↑ = 1 one
obtains the “retarded scattering state” �R

e,k‖ , while choosing

c′
e,↑ = 1 one obtains the “advanced scattering state” �A

e,k‖ .
The second scattering state is “hole-like” and has the

general form

�hk‖ (r) = ch↑e−ikz(−ε)z + c′
h↑eikz(−ε)z√

vz(−ε)WxWy

× eikxx+ikyy(0,0,1,0)T

+ ce↓eikxx+ikyy+κz(ε)z(0,1,0,0)T, (A4)

for z < 0 and

�hk‖ (r) = d ′
↓eikxx+ikyy+iq+z(0,1, − e−iφ−iη,0)T

+ d↓eikxx+ikyy+iq−z(0,1, − e−iφ+iη,0)T, (A5)

for z > 0. The boundary conditions (22) with �j,z = 0 give
four equations for the five coefficients ce,↓, ch,↑, c′

h,↑, d↓, and
d↓′ (see Ref. 18 for details). Choosing ce,↑ = 1 one obtains the
“retarded scattering state” �R

e,k‖ , while choosing c′
e,↑ = 1 one

obtains the “advanced scattering state” �A
e,k‖ .

In the Born approximation, the Andreev reflection ampli-
tudes to first order in the spin-orbit interaction are then found
as the matrix element

rhe(k‖,ε) = −i
〈
�A

h,k‖

∣∣HSO

∣∣�R
e,k‖

〉
, (A6)

reh(k‖,ε) = −i
〈
�A

e,k‖

∣∣HSO

∣∣�R
h,k‖

〉
, (A7)

between retarded and advanced scattering states, where HSO

is given by Eq. (46).
Inserting the explicit expressions for the scattering states

into Eqs. (A6) and (A7) then gives the Andreev reflection
amplitudes of Eqs. (23) and (24).

Note that only the wave functions in the superconducting
region z > 0 enter into the calculation of the Andreev reflection
amplitudes. The observation that the SOI proportional to �1,z

or �2,z does not give rise to Andreev reflection to first order
in the SOI then follows from the observation that the matrix
elements (A6) and (A7) vanish for arbitrary coefficients d↑,
d ′

↑, d↓, and d ′
↓ if ĤSO contains �1,z or �2,z only.
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APPENDIX B: TRIPLET PAIRINGS IN S

In this Appendix we give the results for the Andreev
reflection amplitudes in the presence of finite triplet pairings in
S which are linear in momentum. The triplet proximity effect
in a half metal in contact with a spin-triplet superconductor
was also considered by Linder et al.12 We consider a pairing
of the form

�i(p) =
3∑

j=1

dijpj , (B1)

where dij are the components of the triplet order parameter
which is taken as a small correction to the spin singlet
s-wave pairing �0e

iφ (see Sec. II). In a similar calcula-
tion as in the main text we find the Andreev reflection
amplitude r t

he induced by �i(p) to first order in �i(p).
The amplitude r t

he = r
t,e
he + r

t,o
he contains contributions r

t,e
he ,

r
t,o
he that are even and odd in momentum, respectively.

We find

r
t,e
he = ετ (θ )

2
(
�2

0 − ε2
) (d∗

13 + id∗
23)

√
k2

F,S − k2
F,H sin2 θ, (B2)

and

r
t,o
he =

3∑
j=1

k||,j
iτ (θ )

2

⎡
⎣ d∗

1j + id∗
2j(

�2
0 − ε2

) 1
2

− �2
0

2

(d∗
1j + id∗

2j ) + e−2iφ(d1j + id2j )(
�2

0 − ε2
) 3

2

⎤
⎦ , (B3)

for the electron-to-hole conversion amplitudes and

r t
eh(k‖,ε) = [

r t
he(−k‖,−ε)

]∗
, (B4)

for the opposite process. Triplet pairings can be included in
the calculation of the conductance and the Josephson current
by the substitution

rhe → rhe + r t
he. (B5)

The enhancement due to multiple Andreev reflections found
in the second part of the article for the lateral geometry
does not rely on the details of rhe and is not changed
by the presence of the �i . For a detailed discussion of
amplitudes that are odd or even in frequency we refer to
Ref. 18.
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