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Enhanced pairing in the checkerboard Hubbard ladder
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We study signatures of superconductivity in a two-leg “checkerboard” Hubbard ladder model, defined as a
one-dimensional (period 2) array of square plaquettes with an intraplaquette hopping t and interplaquette hopping
t ′, using the density-matrix renormalization-group method. The highest pairing scale (characterized by the spin
gap or the pair binding energy, extrapolated to the thermodynamic limit) is found for doping levels close to
half-filling, U ≈ 6t and t ′/t ≈ 0.6. Other forms of modulated hopping parameters, with periods of either one
or three lattice constants, are also found to enhance pairing relative to the uniform two-leg ladder, although to
a lesser degree. A calculation of the phase stiffness of the ladder reveals that in the regime with the strongest
pairing, the energy scale associated with phase ordering is comparable to the pairing scale.
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I. INTRODUCTION

The much debated theoretical issues related to the “mecha-
nism” (i.e., microscopic origin) of high-temperature supercon-
ductivity are often ill-defined. One related question to which
unambiguous answers are possible is as follows: For a given
class of models, what values of the parameters are optimal for
superconductivity? Of course, if one can make predictions
about models, the same insights might provide guidance
in the search for materials with improved superconducting
properties. Two specific questions we would like to address are
the following: (i) In the case in which superconductivity arises
directly from the repulsive interactions between electrons,
how strong (in units of the bandwidth) are the optimal
interactions for superconductivity? (ii) Is there an “optimal
inhomogeneity” for superconductivity,1 in the sense of a
complex (but still periodic) electronic structure with multiple
orbitals per unit cell? An obvious difficulty with this program
is that, in most cases, we do not know how to compute the
transition temperature of the relevant models in a controlled
manner, so as to test the predictions of theory.

In this context, we use the density-matrix renormalization
group (DMRG)2 to numerically compute the superconducting
correlations of the two-leg Hubbard ladder (extrapolated to
infinite length) as a function of the strength of the Hubbard
interaction, U , and for various periodic patterns of the hopping
matrix elements. The one-dimensional (1D) character of the
system studied is what permits us to obtain an accurate solution
of this problem. However, the same 1D character implies that
no nonzero critical temperature is possible, so in assessing
the optimal conditions for superconductivity, we are forced to
use other energy scales in the problem, especially the spin gap,
�Es , the pair-binding energy, �Ep, and the superfluid helicity
modulus, ρc. We find the following: (i) The optimal value of
U is generally U ≈ 6t , where 6t is the total bandwidth of the
uniform ladder. This result agrees with previous studies3,4 of
various ladder systems. It is also consistent with inferences
made on the basis of exact diagonalization5 and dynamical
cluster quantum Monte-Carlo6 studies of the 2D Hubbard
model, where U ≈ 8t (i.e., the 2D bandwidth) was found to be
optimal. (ii) For the checkerboard pattern with four sites per

unit cell shown in Fig. 1(b), the optimal conditions occur for
an intermediate degree of inhomogeneity, t ′/t ∼ 0.6 − 0.7,
where t is the hopping matrix within a square and t ′ is the
hopping matrix between squares. This tends to corroborate
inferences made previously on the basis of exact diagonaliza-
tion studies5 of the 2D “checkerboard-Hubbard model.” (iii) A
qualitatively similar enhancement of superconductivity is ob-
served for the other periodic versions of the model with two or
six sites per unit cell, shown in Figs. 1(a) and 1(c), respectively,
although in these cases the magnitude of the effect is smaller
and the optimal condition occurs with values of t ′/t closer to 1.

The observation that certain patterns of spatial symmetry
breaking can coexist with superconductivity (or even strongly
enhance it), while others do not, is also reminiscent of
recent results obtained using DMRG7 and the dynamic
cluster approximation.8 In the first of these calculations, the
inhomogeneity (in the form of stripes) occurs spontaneously,
while in the second it is imposed externally. As we were
completing this work, a contractor renormalization (CORE)
study of the checkerboard Hubbard model in a 2D geometry
was presented in Ref. 9, extending earlier CORE results for
the uniform 2D Hubbard model.10 Finite-size effects were
found to be large for t ′ � 0.8t , but in the smaller t ′ regime,
where these effects are relatively small, the results of this new
study are completely consistent with those of the earlier exact
diagonalization studies,5 and lead to conclusions concerning
the optimal conditions for superconductivity that are similar to
those obtained in the present ladder study. The CORE method
was also used to study ladders, albeit considerably shorter
than those studied in the present paper, and again the results
obtained are fully consistent with the present results.

II. THE MODEL

We consider the repulsive U Hubbard model defined on a
(spatially modulated) two-leg ladder,

H = −
∑
j,λ,σ

(tj,j+1c
†
j,λ,σ cj+1,λ,σ + H.c.)

− t
∑
j,σ

(c†j,1,σ cj,2,σ + H.c.) + U
∑
j,λ

nj,λ,↑nj,λ,↓. (1)
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FIG. 1. (Color online) Schematic representation of the “inhomo-
geneous” Hubbard ladders considered in the present paper: (a) The
period-1 “dimer” ladder; (b) the period-2 “checkerboard” ladder; (c)
the period-3 ladder. As discussed below Eq. (1), the solid and dashed
lines represent, respectively, hopping matrix elements t and t ′.

Here c
†
j,λ,σ creates an electron on rung j = 1, . . . ,L − 1 of

chain λ = 1,2 with spin polarization σ = ±, L is the length of
the ladder, U > 0 is the repulsion between two electrons on the
same site, the density operator is nj,λ,σ = c

†
j,λ,σ cj,λ,σ , and n =

(2L)−1 ∑
j,λ,σ 〈nj,λ,σ 〉 is the mean number of electrons per site.

The much studied homogeneous Hubbard ladder corresponds
to the case tj,j+1 = t ′ for all j , although it is worth noting
that for t ′ 	 t , this model can also be viewed as a coupled
array of Hubbard dimers. The “dimer ladder” is shown in
Fig. 1(a). The “checkerboard ladder” in Fig. 1(b) has t2j,2j+1 =
t and t2j+1,2j+2 = t ′ < t . The “period-3” ladder in Fig. 1(c)
has t3j,3j+1 = t3j+1,3j+2 = t and t3j+2,3j+3 = t ′ < t .

The thermodynamic limit is accessed by computing quan-
tities for various lengths, and then using finite-size scaling
analysis to extrapolate to 1/L → 0.

III. EFFECTIVE FIELD THEORY

The uniform two-leg Hubbard ladder with n �= 1 but still
not too far from n = 1 is well known on the basis of weak-
coupling RG,11 bosonzation,12 and DMRG3 approaches to be
in a Luther-Emery phase characterized at low energies by a
spin gap, �Es [defined later in Eq. (4)] and a single, gapless
acoustic “charge” mode that propagates with speed vc, and
whose long-range (power-law) correlations are determined by
a single Luttinger parameter, Kc. The Luther-Emery liquid can
be thought of as a 1D version of a superconducting state in
the sense that it has a nonvanishing superfluid stiffness [see
Eq. (6)], and, for Kc > 1/2 and T 	 �Es , it has a divergent
superconducting susceptibility,

χ ∼ χ0

( vc

aT

)(2−1/Kc)
, (2)

where vc is the charge velocity and a is a lattice constant. In
the single chain realization of a Luther-Emery liquid,

χ0 =
(

a

vc

) (
a�Es

vs

)
=

(
a

vc

) (
a

ξs

)
, (3)

where ξs = vs/�Es is the spin-correlation length and vs is the
spin velocity. For a multicomponent system, the corresponding
expression for χ0 is somewhat more complicated, as there

may be multiple scales (e.g., multiple spin gaps) associated
with the gapped modes. However, χ0 remains a monotonic,
approximately linearly increasing function of �Es .

Perhaps not surprisingly, we will see that the inhomoge-
neous Hubbard ladders we have studied are also Luther-Emery
liquids with Kc > 1/2. Thus, in addressing the “mechanism
of superconductivity,” the primary purpose of our DMRG
calculations is to determine the dependence of vc, Kc, �Es ,
and ξs on microscopic parameters.

The pair binding energy �Ep corresponds to creating
two spatially separated spin-1/2 quasiparticles. Since the
spins for these quasiparticles can either add to S = 0 or
1, we must have �Es � �Ep. If the residual interactions
between quasiparticles are repulsive, we expect �Es = �Ep.
Conversely, if the interactions between quasiparticles are
attractive, a neutral spin-1 “exciton” is formed, which has
lower energy than two far-separated quasiparticles, and hence
�Es < �Ep. The latter behavior has been found previously
in DMRG calculations on the uniform t − J ladder.13

IV. Energy scales

The spin gap, �Es , is the difference between the ground-
state energies of the system with spin S = 1 and 0:

�Es ≡ E0(S = 1,2N ) − E0(S = 0,2N ), (4)

where E0(S,N ) is the spin S ground-state energy of the N -
electron system.

Similarly, the pair-binding energy, �Ep, is defined as

�Ep = 2E0
(

1
2 ,2N + 1

) − E0(0,2N ) − E0(0,2N + 2). (5)

Were we computing these quantities in a BCS superconductor,
then in the thermodynamic limit, both these energies would be
equal to twice the minimum gap �min,

lim
L→∞

�Es = lim
L→∞

�Ep = 2�min.

What we have in mind here is a system with a strongly k-
dependent superconducting gap. In 2D, then, the value of the
gap would depend on the position on the Fermi surface. For
a ladder with a finite number of legs, there is a discrete set
of transverse values of k, so even in the thermodynamic limit,
only certain discrete points on what would, in 2D, be a full
Fermi surface are crossed. In this case, in the thermodynamic
limit, the gap we would obtain would be the gap that occurs
at the point on the 2D Fermi surface where the gap happens
to be smallest. For an s-wave superconductor (SC), this is
a reasonable measure of the gap in 2D. For a d-wave SC,
the precise value depends on how close the closest Fermi
surface crossing is to the nodal point. Thus, it is intuitively
reasonable to associate these energy scales with a mean-field
estimate of the superconducting critical temperature, T MF

c ∼
�Es/4. Of course, since the ladder is a 1D system, the actual
Tc = 0.

While it may be reasonable to interpret �Es and/or �Ep

as measures of a pairing scale in the problem, to address
the growth of superconducting correlations it is ultimately
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necessary to consider the helicity modulus, which governs the
energetics of superconducting phase fluctuations:

ρc = vcKc

2π
≡ lim

L→∞

[
L

∂2E0

∂φ2

∣∣∣∣
φ=0

]
, (6)

where, in this case, the ground-state energy is computed in the
presence of pair fields applied to the two ends of the system
with a relative phase twist φ.

In 2D, the relative importance of phase and pair-breaking
fluctuations can be assessed14 by considering the ratio of the
phase stiffness (which has units of energy) to the pairing gap.
However, in 1D, ρc has units of a velocity, so defining an energy
scale, �Eθ , characteristic of the phase fluctuations requires
introducing a length scale in the problem. The important
(longest) emergent length scale is ξs , in terms of which we
define

�Eθ ≡ πρc/ξs ≡ R �Es. (7)

Here R ≡ �Eθ/�Es is the dimensionless ratio of the phase
ordering and pairing scales.

To appreciate the significance of this ratio, consider its
value for the attractive Hubbard chain in various limits. The
1D version of a BCS limit, in which there is a single character-
istic energy and temperature scale, �s ∼ exp[−πvs/a|U |],
is realized in the limit |U | 	 1 where, up to corrections
of order U/t , vs = vc and Kc = 1, so R = vcKc/2vs =
1/2 + O(U/t), that is, both mesoscale phase coherence and
pairing correlations onset at a temperature of the order of
Tpair ∼ �Es/4. Conversely, R → 0 as |U |/t → ∞; for large
U , a spin pseudogap opens when T ∼ Tpair = |U |/2, with a
second crossover from a largely incoherent paired state to
a coherent Luther-Emery liquid occurring at a temperature
Tθ ∼ �Eθ ∝ t2/|U |, well below Tpair. A similar dichotomy
exists in the two-leg repulsive U Hubbard ladder, where
R → 0 as the doped hole concentration, x → 0, while R ∼ 1
at larger values of x where the spin gap is significantly
suppressed relative to its value at x = 0. In the small-x case,
the doped holes can be thought of as a dilute gas of charge
2e bosons at temperatures small compared to Tpair, but the
phase-coherence scale is much smaller and vanishes as x → 0.

With these examples in mind, we identify the case R ∼ 1
with the 1D version of the “BCS-like limit” in which there
is a single crossover temperature Tpair that separates the
“normal” (multicomponent Luttinger liquid) high-temperature
regime from the low-temperature regime in which substantial
mesoscale superconducting order has developed. Conversely,
if R 	 1, two distinct crossover scales characterize the evolu-
tion from the normal state: a first, high-temperature crossover,
Tpair, characterized by the opening of a spin pseudogap, and
a lower crossover temperature, Tθ ∼ �Eθ/4, which can be
viewed as the scale at which the liquid of bosonic pairs begins
to exhibit substantial local phase coherence.

The most direct and efficient way to compute ξs from
DMRG is to apply a staggered Zeeman field to one end
of the ladder, j = 0 (thus locally breaking spin-rotational
symmetry), and then measure the decay of the magnetization

as a function of distance down the ladder. In a spin-gapped
phase, we expect

M(j ) =
∑

σ

σ 〈[c†j,1,σ cj,1,σ − c
†
j,2,σ cj,2,σ ]〉

∼ cos[Qj + φ0] exp[−|j |a/ξs]. (8)

In the limit of an asymptotically small spin gap, Q = 2kF , but
for larger gaps it may depend not only on n but on U/t as well.
To be explicit, we therefore define the spin-correlation length
as

ξs =
∑

j |j M(j )|∑
j |M(j )| . (9)

It turns out that Eq. (6) is relatively difficult to implement to
obtain quantitatively reliable results for ρc using DMRG. How-
ever, it is possible15 to compute ρc by separately calculating
vc and vc/Kc from quantities that are more straightforwardly
computed using DMRG. From the bosonized field theory, we
can identify the inverse compressibility of the ladder with the
ratio πvc

2Kc
. In turn, in all circumstances relevant to the present

calculation,16 the compressibility is related to the energy to
add or remove a singlet pair of electrons from the ladder:

1

κ
= lim

L→∞
L
E0(0,2N + 2) + E0(0,2N − 2) − 2E0(0,2N )

4
.

(10)

An independent measurement of vc can be obtained by
calculating also the energy of the first excited state,
E1(S,N ),according to

vc = lim
L→∞

L

π
[E1(0,2N ) − E0(0,2N )]. (11)

We then compute the helicity modulus as

ρc = v2
c κ

4
. (12)

Note that this procedure also gives us

Kc = π

2
κvc. (13)

An alternative way to obtain Kc is by measuring the amplitude
of the “Friedel-like” density oscillations, which exhibit a
power-law decay as a function of distance from the edge of
the system. For long systems, the density near the center of a
length L ladder takes the form15

〈nj 〉 ∼ cos[2πn(j − L/2)]

LKc/2
. (14)

Therefore, by measuring the amplitude of the density oscilla-
tions ACDW versus L and plotting ln(ACDW) versus ln(L), Kc

can be obtained. Whenever possible, we have calculated Kc

using both Eqs. (13) and (14), and we found that the two values
agree with each other to within about 10%.

V. DMRG RESULTS

We have computed ground-state properties for ladder
systems for various values of n, t ′/t , and U/t using DMRG.
We have kept up to m = 2400 states and extrapolated our
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FIG. 2. (Color online) The spin gap, �Es , of the checkerboard
Hubbard ladder as a function of t ′/t for n = 0.9375, 0.875, and 0.75
at fixed U = 8t , extrapolated to the thermodynamic limit (L → ∞).

results to zero truncation errors. As is well known,17 ground-
state energies (as well as one-point correlation functions18)
can be extracted with great accuracy in this way. Results have
been obtained for system sizes from 2 × 16 up to 2 × 64,
and then extrapolated to the thermodynamic limit (1/L → 0)
using a finite-size scaling analysis. For an example of this
procedure, see Appendix A. Since DMRG converges better
for open boundary conditions, all the calculations were done
using open boundary conditions in the long direction. From
the extrapolated values, we have extracted �Es , ξs , �Ep, ρc,
and Kc, as described earlier.

In Fig. 2, we show �Es for fixed U/t = 8 as a function
of t ′/t for n = 0.9375, 0.875, and 0.75. Note that the value
of �Es rises from its value for the uniform ladder as t ′/t

is reduced below t ′/t = 1, reaches a maximum value at an
intermediate value of t ′/t , and then drops to zero as t ′/t → 0.
For instance, for n = 0.875, the maximum value �Es ≈ 0.12t ,
which occurs for t ′/t = 0.6, is approximately four times larger
than its value in the uniform ladder. More broadly, we have
studied the spin gap as a function of both U/t and t ′/t ; the
results for n = 0.875 are shown in Fig. 3. One can see that �Es

exhibits a broad maximum for U of order the bandwidth (U ∼

FIG. 3. (Color online) �Es(L → ∞) of the checkerboard Hub-
bard ladder for n = 0.875 as a function of U and t ′, fixing t = 1.

FIG. 4. (Color online) The pair-binding energy, �Ep , of the
checkerboard Hubbard ladder for n = 0.875 (in the thermodynamic
limit) as a function of U and t ′, fixing t = 1.

4 − 8t) and intermediate inhomogeneity, t ′/t ∼ 0.5. This
figure looks qualitatively similar to the analogous result for
the two-dimensional checkerboard Hubbard model obtained
previously by exact diagonalization of a 16-site system in
Ref. 5; however, in contrast to that study, the present results
are obtained in the thermodynamic limit.

The dependence of �Ep on U/t and t ′/t is generally
similar to that of �Es , as can be seen by comparing the
contour plots of these two quantities for n = 0.875, which
are shown in Figs. 4 and 3, respectively. However, there are
interesting differences, as can be seen in Fig. 5, where the two
quantities are plotted as a function of t ′/t for fixed U/t = 8
and n = 0.875. Note that for t ′/t > 0.6, �Ep > �Es . This is,
presumably, indicative of the existence of a spin-1 excitonic
bound state for t ′/t > 0.6. A similar result was found in the
uniform two-leg t-J model ladders.13,19

To calculate R = �Eθ/�Es , we must compute ρc and ξs .
To obtain ξs , we apply a relatively strong staggered Zeeman
field of magnitude t to the end sites of the ladder and measure
the decay of the staggered magnetization, M(j ), as in Eq. (8).
In all cases, we have found that M(j ) decays rapidly on scales
short compared to the length of our longest ladders, so ξs can
be extracted from the calculations accurately. Representative
results for M(j ) are shown in the inset of Fig. 6. ξs as a function

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

t′/t

ΔE
s

ΔE
p

FIG. 5. (Color online) �Es(L → ∞) and �Ep(L → ∞) for the
checkerboard ladder with fixed n = 0.875 and U/t = 8, as a function
t ′/t .
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FIG. 6. (Color online) The spin correlation length, ξs , for the
checkerboard ladder with U = 8t and n = 0.875 as a function of
t ′/t , calculated from Eq. (9). The inset shows the expectation value
of the spin 〈Sz〉 for U = 8t , n = 0.875, and t ′/t = 1, as a function of
position. A staggered Zeeman field of strength t has been applied to
the two sites at the left edge of the ladder.

of t ′/t is shown in Fig. 6, for fixed n = 0.875 and U/t = 8.
Note that for t ′/t < 1/2, the spin-correlation length is roughly
3a, which is of the order of one unit cell of the checkerboard
ladder.

Next, we calculate both ρc and Kc following the procedure
described above [Eqs. (10)–(14)]. The value of Kc is shown
in Fig. 7 for n = 0.75, 0.875, and 0.9375, fixing U/t = 8,
as a function of t ′/t . In contrast to the results for �Es

(and somewhat to our surprise), for n = 0.875, Kc is a
weakly varying function of t ′/t (and, as it turns out, U/t

is as well). To a good approximation, for a wide range
of values, we can simply take Kc ≈ 1, independent of t ′/t

and U/t . Note that this implies that the superconducting
susceptibility diverges as T → 0, so that it is reasonable to
think of the ladder as a fluctuating superconductor. (Of course,
there is also a divergent charge-density-wave susceptibility,
χCDW ∼ T −(2−Kc), so there is some unavoidable ambiguity
with this simple intuitive picture.) As n is increased to 0.9375,
Kc increases, consistent with the expectation that Kc → 2 as
n → 1.20

From the measured values of ξs , κ , and Kc, the energy
scale characteristic of phase-ordering can be extracted. Table I
shows the ratio R from Eq. (7). Note that for t ′/t > 0.5, R ≈ 1.

0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

t ′

K
c

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

t ′

ρ c

n=0.9375

0.75
0.875

0.9375

0.875
n=0.75

FIG. 7. (Color online) Left: the Luttinger parameter Kc as a
function of t ′/t for n = 0.75, 0.875, and 0.9375, and U = 8t . The
error bars were estimated by comparing between the values of Kc

obtained from Eqs. (13) and (14). Note that according to our definition
of Kc, the noninteracting value is Kc = 2. Right: The phase stiffness
ρc [defined in Eq. (12)] as a function of t ′/t .

TABLE I. Values of the ratio R defined in Eq. (7) for n = 0.875
and U = 8t .

t ′ = 0.2 0.4 0.6 0.7 0.8 1.0
R = 3.38 3.06 0.96 1.01 0.99 0.98

Thus, at least crudely, this regime can be thought of as a
“BCS-like” regime, in which there is a single energy scale,
set by �Es , that characterizes the growth of superconducting
correlations. Depending on precisely what criterion one
chooses to quantify the crossover scale, phase fluctuations
will produce a quantitative difference in the magnitude of the
specified scale, but not large qualitative effects. Therefore, it
is reasonable to assert that the values of the parameters that
lead to the largest values of �Es and/or �Ep are the “optimal
values for superconductivity.”

For t ′ < 0.5t , we obtain R ∼ 3, that is, �Eθ > �Es ,
suggesting that this regime cannot be thought of in terms of
either a naive weak- or strong-coupling picture. Remarkably,
the transition from R ∼ 1 to R > 3 occurs quite sharply around
t ′ = 0.5, close to the point where the spin gap is optimal.

It is interesting to note that for n = 0.75, t ′/t = 0.4, we
find a sharp decrease of Kc and ρc. The value of Kc at this
point is smaller than the critical value of 1 at which a static
charge-density wave should be stable,15 indicating that this
behavior of Kc and ρc may be due to a charge-density-wave
phase that exists for n = 0.75, t ′ � 0.4t .

We thus conclude that for the checkerboard Hubbard ladder,
optimal superconductivity occurs for intermediate values of
U/t ∼ 6, intermediate inhomogeneity, t ′/t ∼ 0.6 − 0.7, and
electron concentrations near (but not equal to) one electron per
site. We can now ask if this result is special to the checkerboard
pattern, or if it applies more generally to the situation in which
there are multiple sites per unit cell. We thus have repeated
(although not in as much detail) the same calculations for the
dimer ladder (period 1) and the period-3 ladder. (See Fig. 1.)

In Fig. 8, we exhibit the dependence of the spin gap of all
three ladders for fixed U = 8t and n = 0.875 as a function of
t ′/t . In all the cases, we see that there is an increase in the spin
gap for some t ′/t < 1.

The result was expected, qualitatively, in the dimer (period-
1) case from previous works,3,4,21 which found that the spin
gap (as well as pairing correlations) is enhanced upon making
t ′ smaller than t in the dimer (period-2) ladder. In the case of
the period-3 ladders, there is a very weak increase of the spin
gap, which occurs at t ′/t ∼ 0.9.

In Ref. 4, it was argued that the enhancement of super-
conducting correlations in the dimer ladder is due to the
increase in the density of states close to the “Van Hove”
point, in which one of the two bands of the two-leg ladder
becomes unoccupied. Beyond this point, there is only a single
band crossing the Fermi level, and the system is likely to
behave as a single-component Luttinger liquid. Therefore, the
superconducting signatures are rapidly suppressed. Consistent
with this picture, in the dimer ladder we find that the spin
gap collapses to zero below t ′/t � 0.6. In the period-2 (the
checkerboard ladder) and period-3 cases, however, no such
sudden suppression of the spin gap is observed as t ′/t is
reduced below the optimal point. This leads us to believe that
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FIG. 8. (Color online) �Es(L → ∞) for the three types of
inhomogeneous ladders in Fig. 1 is shown at fixed n = 0.875 and
U/t = 8 as a function of t ′/t . The inhomogeneity induced by
breaking up the ladders to period-1, -2, and -3 clusters increases
the spin gap for t ′/t < 1. The increase is most dramatic for the
checkerboard ladder, in which the maximum spin gap is about four
times larger than the spin gap for the uniform (t ′ = 1) system. For the
period-1 (dimer) ladder, the enhancement is by a factor of 2, while for
the period-3 ladder, the spin gap is only slightly enhanced (by about
10%).

the mechanism of the enhancement of the spin gap for t ′ < t in
the checkerboard and period-3 ladders is unlikely to be related
to a proximity to a Van Hove point.

Note also that for all the inhomogeneous patterns in Fig. 8,
the spin gap seems to reach zero at a critical t ′c > 0 (which is
different for each pattern). In particular, for the “checkerboard”
pattern, t ′c ∼ 0.05t . It is likely that for t ′ < t ′c, the Luther-
Emery phase gives way to a Luttinger-liquid phase with one
gapless charge mode and one gapless spin mode (or more),
although more work is needed to establish that.

Overall, among all the patterns we have reported, the
optimal ladder for superconductivity is a checkerboard ladder
with U = 6t , t ′/t = 0.6 − 0.8, and n = 0.875, for which
�Es = 0.12t and �Ep = 0.16t .

VI. EXTENSION TO QUASI-1D

Earlier in the paper, we argued that the superconducting
tendency in the checkerboard Hubbard ladder is optimized for
an intermediate value of t ′/t . However, since the supercon-
ducting Tc of that system (as in any 1D system) is strictly
zero, one can worry that this statement may depend on how
one chooses to measure the strength of the superconducting
correlations. We will now consider a system composed of
an array of parallel checkerboard Hubbard ladders coupled
weakly in the direction transverse to the ladders, in which Tc

can be estimated in a controlled way based on the solution of
the single-ladder problem. We will show that Tc is maximal for
t ′
t

< 1. Thus, in this system, Tc is indeed optimized when the
electronic structure is nonuniform; that is, there is an “optimal
degree of inhomogeneity” for superconductivity.

The quasi-1D system of coupled checkerboard Hubbard
ladders is depicted in Fig. 9. The ladders are coupled by a
single-particle tunneling matrix element t ′′. We fix the value
of t ′′ 	 t,t ′, and estimate Tc(t ′/t) from an interchain mean-
field theory, described in Appendix B. From the numerical

FIG. 9. (Color online) A system of coupled checkerboard ladders,
connected by a single particle tunneling matrix element t ′′.

results for the checkerboard Hubbard ladder with n = 0.875
and U = 8t , we recall that Kc( t ′

t
) ≈ 1 over the entire range

0 < t ′ � 1 (see Fig. 7). We therefore fix Kc = 1, independent
of t ′. The resulting expression for Tc is

Tc ∼ K(
√

1 − x2)

x
�Es

(
at ′′

vc

)2

. (15)

Here, x ≡ vs/vc, and K(x) is a complete elliptic integral of the
first kind. Note that Tc depends on t ′/t through vs , vc, and �Es .
As t ′ decreases, both vc and vs decrease; their ratio, however, is
found to be approximately constant as a function of t ′/t down
to about t ′/t = 0.5. (The value of vs is obtained by using
the estimate �Esξs , where both �Es and ξs are calculated
from DMRG.) �Es( t ′

t
), on the other hand, has a maximum for

t ′
t

< 1. Therefore, as t ′
t

is reduced from 1, Tc(t ′) necessarily
increases, and reaches a maximum for some t ′max < t .

VII. DISCUSSION

The present study, along with a variety of other re-
cent studies,5,8,9,22 provides strong support for a number of
intuitively appealing ideas concerning the physics of the
superconducting Tc in unconventional superconductors in
which the pairing arises directly from the repulsive interactions
between electrons: (i) The highest superconducting transition
temperatures occur at intermediate interaction strength, when
U is comparable to the bandwidth. (A corollary of this is
that materials that are studied because of their high transition
temperatures are also likely to exhibit more general signatures
of lying in an intermediate-coupling regime; here, theoretical
results from both weak- and strong-coupling approaches
must be extrapolated, at best, to the limits of their regimes
of applicability.) (ii) Certain mesoscale structures (“optimal
inhomogeneity”1) can lead to enhanced superconducting
pairing, although clearly if the system is too strongly inhomo-
geneous, that always leads to a suppression of global phase
coherence. (iii) While short-range magnetic correlations,
possibly of the sort envisioned in the putative resonating
valence bond state of a quantum antiferromagnet or in certain
theories of a spin-fluctuation exchange mechanism, may well
be important for pairing, longer-range magnetic correlations,
especially of the sort one would expect near a magnetic
quantum critical point, do not appear to be particularly
favorable for superconductivity. (This final conclusion follows
from a comparison of the t ′/t dependence of the magnetic
correlation length and the superconducting pairing in Figs. 6
and 4, respectively.)

In addition, we found that the two-leg ladder at intermediate
coupling (with U of the order of the bandwidth) and close to
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half-filling is, in many respects, surprisingly well described
as a “BCS-like” superconductor, in which there is a single
crossover energy scale from the “normal” to the “supercon-
ducting” state (rather than two separate scales, associated with
pairing and phase coherence). This is based on the fact that
the ratio of the pairing and phase-coherence scales [defined in
Eq. (7)] is close to its weak-coupling value, which justifies the
identification of the spin gap �Es (or the pair-binding energy
�Ep) as the relevant energy scale for superconductivity.

Finally, there are a few unresolved issues and further
directions we would like to highlight: (i) The extrapolation
of the present results to higher dimensions is, of course, the
most important open issue. The strong qualitative similarity
between the present results and those obtained by exact
diagonalization and CORE calculations on relatively small
2D clusters certainly encourages us to believe that the results
obtained here give insight into the behavior of the higher-
dimensional problem. In this context, it might be useful to
carry out similar calculations on four-leg and possibly even
six-leg ladders and cylinders, although it is considerably more
difficult to extend these results to such long systems as are
accessible for the two-leg ladder. (ii) It is not clear exactly
what aspects of the local electronic structure are essential
features of an optimal inhomogeneity for superconductivity.
In the present case, it is notable that pair binding does not
occur on an isolated dimer or six-site rectangle for any value
of U/t , while there is pair binding on an isolated square for
U/t < 4.6. However, this observation does not provide an
entirely satisfactory account of our findings, since the optimal
pairing in the checkerboard ladder occurs for U/t = 4 − 8t ,
where the pair-binding energy of an isolated square is either
small or negative.
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APPENDIX A: EXTRAPOLATION TO THE
THERMODYNAMIC LIMIT

The physical quantities reported in this paper are mostly
extrapolated to the thermodynamic (L → ∞) limit. This is
done by calculating the corresponding quantity for various
system sizes (typically we have used L = 16,32, and 64 rungs)
and then extrapolating to the limit 1/L → 0. As an example
of this procedure, we present the spin gap �Es for n = 0.875,
U = 8t , and various values of t ′/t , as a function of 1/L, in
Fig. 10. We use a second-order polynomial in 1/L to fit the
data and extrapolate, which in most cases fits the finite-size
data well.

Overall, the extrapolation to the thermodynamic limit gives
a correction of up to about 30% to the measured values,
making it the largest source of error in our calculations (DMRG
truncation errors are typically smaller than the symbol sizes in
Fig. 10). Interestingly, the amount of extrapolation needed is
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FIG. 10. (Color online) Spin gap �Es as a function of 1/L for
systems of sizes 2 × L, where L = 16,32,64, with n = 0.875, U/t =
8, and various values of t ′/t . Symbols: DMRG results; solid lines:
second-order polynomial fits.

smallest at values of t ′/t that correspond to the maximum spin
gap. We found that this behavior repeats itself for other values
of n and U/t .

APPENDIX B: INTERCHAIN MEAN-FIELD THEORY

In this appendix, we describe the interchain mean-field
treatment of the quasi-one-dimensional system described in
Sec. VI. This procedure is quite standard.23–25 We consider
an array of plaquette ladders, modeled by Luther-Emery
liquids. For simplicity, we will assume that each ladder is a
single-component system with a spin gap �Es . (The extension
to the case of a two-component system is straightforward, and
the result is qualitatively the same.) The ladders are coupled
by an interchain hopping term of the form

H⊥ = −t ′′
∑

σ,P=±

∑
n

∫
dxψ

†
Pσ (x,n)ψPσ (x,n + 1), (B1)

where ψ
†
Pσ (x,n) (P = ±) creates a right- or left-moving

electron with spin σ =↑ , ↓ at position x in chain n. Next,
we integrate out degrees of freedom of length scales smaller
than the spin correlation length ξs ∼ vs

�Es
. Over such length

scales, the system is essentially gapless and can be treated as a
Luttinger liquid. To second order in t ′′, the following effective
interchain action is generated:

Seff
⊥ = (t ′′)2

∑
σσ ′,n

∫
dx dτ

∫
dx ′dτ ′〈T ψ

†
+,σ (x,τ,n)

×ψ+,σ (x,τ,n + 1) ψ
†
−,σ ′(x ′,τ ′,n)

×ψ−,σ ′ (x ′,τ ′,n + 1)〉0,>, (B2)

where 〈· · ·〉0,> denotes averaging over the “fast” (short-
wavelength) degrees of freedom [using the decoupled (t ′′ = 0)
action], and T denotes time ordering. Since we are essentially
performing a “coarse-graining” step, increasing the cutoff
of the theory from the lattice constant a to ξs , the region
of integration in Eq. (B2) is

√
(x − x ′)2 + v2

s (τ − τ ′)2 < ξs .
To evaluate the integrand, we write the fermionic fields in
bosonized form: ψPσ ∼ ei

√
π(θσ +Pϕσ ), where ϕσ and θσ are dual

bosonic fields that satisfy [ϕσ (x),∂xθσ ′(x ′)] = iδσσ ′δ(x − x ′).
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As usual, we introduce also charge and spin fields de-
fined as ϕc,s = (ϕ↑ ± ϕ↓)/

√
2, and similarly θc,s = (θ↑ ±

θ↓)/
√

2. We define the fermionic Green’s function G(x,τ ) =
〈T ψ+,↑(x,τ,n)ψ−,↓(0,0,n)〉0,>. ExpressingG(x,τ ) in terms of
the bosonic fields,

G(x,τ ) ∼ 〈
ei

√
2π [ θc+θ ′

c
2 + θs−θ ′

s
2 + ϕc−ϕ′

c
2 + ϕs+ϕ′

s
2 ]

〉
0,>

∼
∣∣∣∣ a2

x2 + (vcτ )2

∣∣∣∣
1

8Kc
∣∣∣∣ a2

x2 + (vcτ )2

∣∣∣∣
Kc
8

∣∣∣∣ a2

x2 + (vsτ )2

∣∣∣∣
1
4

× ei
√

2π[θ̄c+ϕ̄s ], (B3)

where we have used the shorthand notation θc ≡ θc(x,τ ),
θ ′
c ≡ θc(x ′,τ ′), θ̄c ≡ θc(x/2,τ/2), and similarly for θs , ϕc, and

ϕs . Plugging G(x,τ ) into Eq. (B2) and performing the integral,
we get that the following interchain Josephson coupling
term:

H eff
⊥ = −J⊥

∑
n

∫
dx �(x,n)�†(x,n + 1) + H.c., (B4)

where �(x,n) = ψR↑ψL↓ − ψR↓ψL↑ ∼ ei
√

2πθc cos
√

2πϕs

and

J⊥ ∼ K

⎡
⎣

√
1 −

(
vs

vc

)2
⎤
⎦(

at ′′

vc

)2
vc

a
. (B5)

Here, K(α) = ∫ π/2
0 dλ/

√
1 − α2 sin2 λ is a complete elliptic

integral of the first kind. Equation (B5) contains a Kc-
dependent prefactor, which we omit.

The mean-field equation for Tc is

zJ⊥χ (Tc) = 1, (B6)

where χ (T ) is the superconducting susceptibility of a single
chain, and z is the number of nearest-neighbor chains (e.g.,
for a two-dimensional array of checkerboard ladders, z = 2).
Inserting Eqs. (2) and (B5) in the mean-field equation (B6),
and using the fact that for the checkerboard Hubbard ladder
Kc ≈ 1 over a wide range of parameters, we obtain Eq. (15)
for Tc.
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