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Continuum micromagnetic modeling of antiferromagnetically exchange-coupled multilayers
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The micromagnetic continuum theory has been applied to perfect soft/hard multilayers characterized by
antiferromagnetic interface coupling. The soft and hard phases have uniaxial anisotropy with a common direction,
along which the external field is applied. The model assumes a nonuniform rotation of the magnetization, and
it also considers an interface coupling that is reduced with respect to the strong-limit case. It is found that
the deviation of the magnetization from the saturated antiparallel state can occur at two distinct nucleation
fields, which mainly involve only one of the two phases. Moreover, in the case of a reduced interface
coupling, the saturated parallel state becomes accessible and thus the nucleation from this state is taken into
account. The critical equations have been deduced, allowing us to identify the conditions for which the nucleation
regime changes from reversible to irreversible as a function of the intrinsic and extrinsic parameters. The results
of the model, applied to a typical soft/hard system with planar anisotropy, have been summarized in suitable
phase diagrams, as a function of the layer thicknesses and of the strength of the interface coupling. The analysis,
supported by additional static and dynamic micromagnetic simulations, shows the occurrence of a rich variety of
magnetization curves. As a secondary result we have found that, in the parallel nucleation process, the influence
of the interface coupling extends inside the two phases to distances appreciably larger than the corresponding
Bloch wall widths.
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I. INTRODUCTION

Exchange-coupled magnetic systems,1–5 also called
exchange-spring magnets,6 have long been known7 for specific
properties that make them attractive in application areas
such as permanent magnets6 and magnetic recording.1,8 A
particular variant of these systems, in which the interface
exchange coupling between two ferromagnetic phases is
antiferromagnetic, has recently drawn a great deal of attention
for applications in the field of spintronics, magnetic recording,
and sensing devices.9–18 The rich variety of magnetic behaviors
that arises from the antiferromagnetic character of the interface
coupling19–22 needs a theoretical analysis to ensure a complete
comprehension of this complex phenomenology.

The micromagnetic continuum theory23 has been applied
here to perfect soft/hard bilayers and multilayers, characterized
by uniaxial planar anisotropy and antiferromagnetic exchange
coupling at the interface between the two ferromagnetic
phases. The soft and hard phases have identical anisotropy
axis direction, along which the external field is applied.
Both cases of strong and reduced interface coupling24,25 are
considered. The continuum approach26 allows the analytical
deduction of equations that can effectively support the results
obtained by discrete models,27–29 with particular reference to
one-dimensional systems. Moreover, the developed mathemat-
ical treatment, which considers the nonuniform rotation of
magnetization in the plane of the bilayers, does not impose any
limits to the allowed layer thicknesses or interface coupling
strength, as is implicitly assumed in the case of coherent
rotation.9 A more general aspect of the performed analysis is
that the equations obtained are in principle valid without any
a priori restriction on the possible values of all the intrinsic
and extrinsic parameters, in contrast to other works in which
such restrictions are adopted.30–32

The magnetization process is studied starting from the
antiparallel state, in which the soft and hard phases are

saturated along opposite directions. Similarly to the case
of ferromagnetic interface coupling treated in Ref. 33, the
equations for the nucleation fields, at which the magnetization
begins to deviate from the antiparallel state, are derived.
Moreover, the critical equations are deduced that determine
when the nucleation processes occur in a reversible or
irreversible way. In the case of a reduced interface coupling,
the parallel state, in which the soft and hard phases are
saturated along the same direction, also becomes accessible.
Therefore, the corresponding nucleation field equation and
critical equation are calculated. All the possible behaviors of a
soft/hard system can be summarized in general phase diagrams
as a function of the desired intrinsic and extrinsic parameters.
The analytical results obtained are in principle valid for both
planar and perpendicular anisotropy,34–37 even though, in the
perpendicular case, the antiparallel and parallel states are
allowed only for restricted ranges of the parameters. However,
the perpendicular configuration is not taken into account in
this work. The developed model is in particular applied to a
typical soft/hard system in order to obtain the phase diagrams
as a function of the layer thicknesses and of the interface
coupling strength. We note that in practical realizations of
these systems, the interface coupling strength can be typically
tuned by adjusting the thickness of a nonmagnetic spacer
layer.38–40 In addition to the phase diagrams, complete hystere-
sis loops are calculated by means of both static and dynamic
simulations.

The paper is organized as follows. The general theoretical
treatment is presented in Sec. II. The model is then applied
in Sec. III to bilayers in which the hard layer has an ideal
infinite anisotropy, distinguishing between the antiparallel
(Sec. III A) and the parallel (Sec. III B) nucleation processes.
The general case is treated in Sec. IV, where the antiparallel
nucleation process is analyzed in Sec. IV A and applied
to the case of strong interface coupling in Sec. IV B. The
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reduced interface coupling is then studied in Sec. IV C, which
includes in particular the description of the parallel nucleation
process.

II. MODELING OF THE MAGNETIZATION PROCESS

A. Micromagnetic continuum theory

In the framework of the micromagnetic continuum theory,
the magnetization vector inside a ferromagnetic phase is a
continuous function of the space-time coordinates.23 The dy-
namics of the magnetization is determined by the torque acting
on the magnetic moment of each volume element dV. This
torque is due to the effective field Heff , which is the negative
functional derivative of the total magnetic Gibb’s free energy.41

The effective field coincides here with the sum of the exchange,
anisotropy, and demagnetizing fields, as well as of the external
magnetic field H. Concerning in particular the exchange
interaction between two adjacent volume elements charac-
terized by distance dr, interface area dS, and magnetization

directions
⇀

m and
⇀

m
′ = ⇀

m + (d �m/dr)dr , respectively, the cor-

responding exchange energy is dwex = 2J (1 − ⇀

m · ⇀

m
′
)dS =

J (
⇀

m
′ − ⇀

m)2dS = Jdr(d �m/dr)2dV , where J denotes the
strength of the interaction. Accordingly, one has to as-
sume a strong exchange coupling inside the phase, which
is equivalent to the condition J → ∞ keeping A = Jdr

finite, in order to allow a non-negligible exchange energy
density with respect to the other energy density terms. As
a consequence, the torque d�cex = − �m × (∂dwex/∂ �m)dS =
�m × 2J ( �m′ − �m)dS = �m × 2J (d �m/dr)dV between the two
volume elements turns out to be infinite with respect to the
other torque terms. However, the resultant exchange torque
d �Cex = �m × 2A∇2 �mdV applied to

⇀

m inside the ferromagnetic
phase by all the adjacent volume elements is finite. On
the contrary, such compensation is not present on a free
surface (interface between ferromagnetic and nonmagnetic
phases) along its normal direction n, since the infinite
torque due to the adjacent internal volume element is not
compensated by an external one. Therefore in this case the
magnetization is forced to be oriented so that d �m/dn = 0.
At the interface between two ferromagnetic phases �1 and
�2, it is in general assumed that the strength J12 of the
exchange interaction can also be finite (|J12| � ∞), as a
consequence of a possible reduced interface coupling.24 When
|J12| < ∞, the infinite torques due to the strong coupling
inside the two phases are compensated at the interface by a
discontinuity in the �m direction, so that the angle between
the directions �m1 and �m2 at the two sides of the interface
is finite. Therefore, the following conditions have to be
fulfilled:

A1

J12

d �m1

dn1
= ( �m2 − �m2 · �m1 �m1),

(1)
A2

J12

d �m2

dn2
= ( �m1 − �m1 · �m2 �m2),

where n1 and n2 = −n1 are the outward-pointing nor-
mal directions in the two phases at the interface. From
Eq. (1) one can deduce that in the case of strong inter-
face coupling (J12 → ±∞), the magnetization directions
at the interface tend to be parallel ( �m2 → �m1) or antipar-

allel ( �m2 → − �m1). In the present work we assume that
the sign of the interface exchange coupling is negative
(J12 < 0), corresponding to an antiferromagnetic interface
coupling between the ferromagnetic phases. Accordingly, the
interface exchange torques d�cex1 = �m1 × 2J12( �m2 − �m1)dS

and d�cex2 = �m2 × 2J12( �m1 − �m2)dS favor an antiparallel
alignment of the magnetization directions at the interface.

B. Theoretical model

Let us consider an infinite soft/hard bilayer lying parallel
to the yz plane [see Fig. 1(a)], characterized by magnetocrys-
talline anisotropy constants Ki , exchange stiffness constants
Ai , saturation magnetizations Mi , and layer thicknesses ti ,
where i = 1,2 for the bottom soft and top hard layers,
respectively. We assume that, due to the perfect uniformity of
the external field and of the physical properties in the planes
of the system, the magnetization process can be described by
means of a one-dimensional model, in which the magnetization
depends only on the perpendicular coordinate x, and so its
direction is expressed in general by the azimuthal angle ϑ(x)
and by the polar angle ϕ(x). We take into account here the case
of planar anisotropy, characterized by anisotropy axes parallel
to the z axis, with the external field H applied along the easy
direction.

The equilibrium states of the bilayer, which are char-
acterized by the unique angle ϑ(x),7,42 can be deduced by

easy axes 
z
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y ϑ (x)

ϕ (x)

x1

x2

x0

HARD

SOFT 
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t1= x0−x1
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FIG. 1. (Color online) (a) Basic scheme for the one-dimensional
micromagnetic model of a soft/hard exchange-coupled bilayer. The
reported magnetic configuration corresponds to point P of Fig. 5(a).
(b) Schematic representation of the magnetic configurations straight
after nucleation, for all the possible nucleation regimes (the hard layer
is at the top of each configuration and the initial state is on the left).
In the bottom box, the two typical configurations are shown for the
ES and DM cases. The labels ES1, DM1, RM1, ES2, DM2, RM2,
ES, DM, and RM, are defined in the text.
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analytically solving the micromagnetic equilibrium equation
�m × �Heff = 0 with the boundary conditions introduced in
Sec. II A. The mathematical procedure for solving this
equation in the case of perpendicular anisotropy (anisotropy
axes oriented along the x direction) is equivalent to the
one utilized for planar anisotropy provided that, besides
the substitution ϑ → ϕ, the magnetocrystalline anisotropy
constant is replaced by the total anisotropy constant33 (Ki →
Li = Ki − μ0M

2
i /2). However, this case will be explicitly

treated in a future work.
Direct analytical solutions of the equilibrium equation

exist only for its linearized form. Starting from these in-
finitesimal solutions, the nonlinear nucleation field equations
and critical equations have been analytically deduced and
then solved by utilizing standard numerical methods, with
high precision and within wide ranges of the parameters,
and with very low computation times. Regarding instead the
finite equilibrium solutions needed to generate the complete
magnetization curves, they have been calculated by means
of static simulations, based on the shooting method.43 In
order to further check the validity of the obtained results,
we have also performed dynamic simulations based on the
integration of the Landau-Lifschitz-Gilbert (LLG) equation44

of the bilayer with a one-dimensional grid on the x axis.45 The
boundary conditions of Sec. II A do not require to be explicitly
imposed in the case of dynamic simulations since they are
implicitly fulfilled, being related to the exchange coupling
strength.

The results of the model can also be applied to a symmetric
trilayer or to an infinite periodic soft/hard multilayer. In the
case of a trilayer, one has to consider the half thickness of
the intermediate layer instead of its whole thickness, while
in the case of multilayers, the half thickness of both layers has
to be taken into account.33,46,47

III. BILAYER WITH IDEAL HARD PHASE

First of all we consider the case in which the hard phase
of the bilayer has an infinite anisotropy (K2 = ∞) so that its
magnetization is everywhere oriented along the easy direction.
This approximation allows us to describe in a simplified form
the general mathematical treatment leading to the expression
of the nucleation field equations and of the critical equations.
Moreover the phase diagram can be easily drawn as a function
of the interface coupling strength.

A. Antiparallel nucleation field and phase diagram

Due to the antiferromagnetic coupling at the soft/hard
interface, the magnetization process is studied starting from
the equilibrium state in which the two layers are completely
saturated along opposite directions (antiparallel state). In
particular we consider the antiparallel state in which the hard
layer has positive saturation so that the overall magnetization is
Ma = (−M1t1 + M2t2)/(t1 + t2). If we increment the applied
field starting from this state, the magnetization curve is
characterized by a nucleation field Hn1 (also referred to in
the literature7,27,28 as the bending field) at which the magnetic
moments of the soft phase start to deviate from the initial state
either reversibly or irreversibly. The nucleation field turns out

to be (see the Appendix) the solution H = Hn1 of the nucleation
field equation

A1γ1 tan(γ1t1) = −J12, (2)

where γ1(H ) = √
α1/2 − β1, α1(H ) = μ0M1H/A1, β1 =

K1/A1, and H � Ha1 = 2K1/(μ0M1). The nucleation field
equation (2) has solutions for Ha1 � H � Hn1,strong, where Ha1

is the anisotropy field of the soft phase, and Hn1,strong = Ha1 +
A1π

2/(2μ0M1t
2
1 ) is the solution in the case of strong coupling,

for which Eq. (2) reduces to γ1t1 = π/2. For decreasing |J12|
or increasing t1 values, the nucleation field value diminishes,
thus approaching the anisotropy field Ha1.

The nucleation process can be reversible or irreversible,
depending on the sign of the second energy variation at
nucleation (see the Appendix). It is thus possible to distin-
guish between two different magnetization reversal regimes
of the soft layer [see Fig. 1(b)]. In the exchange-spring regime
(labeled as ES1) the magnetization curve shows a reversible
portion that gradually starts from the nucleation point. On the
contrary, in the decoupled magnet regime (labeled as DM1)
the magnetization at nucleation undergoes an irreversible jump
toward the parallel state, in which both soft and hard layers
are saturated along the positive direction. Typically, but not
necessarily, during this jump the magnetization reaches an
intermediate state and then it follows a reversible path that
gradually tends to approach the parallel state. Starting from
the expression of second energy variation at nucleation (see
the Appendix), the antiparallel critical equation

p1

[
3

cos2(γ1t1)

(
1 + 2γ1t1

sin(2γ1t1)

)
+ 2

]
− 2

3
= 0 (3)

can be obtained (all the reported critical equations have a
positive left side when the nucleation process is reversible),
where p1 = (α1 − 8β1)/[12(α1 − 2β1)] and γ1 are calculated
at H = Hn1. This equation, solved with respect to t1, allows
deduction of the critical thickness t1c beyond which the
nucleation regime changes from ES1 to DM1. In the particular
case of strong coupling, the occurrence of the ES1 regime
requires t1 < t1c,strong = π

√
A1/(12K1). For reduced interface

coupling (|J12| < ∞), the critical thickness turns out to be
t1c < t1c,strong. The critical thickness is always lower than
the soft Bloch wall width d1 (di = 2π

√
Ai/Ki , i = 1,2).

Accordingly, for t1 > d1 the soft layer portion that exceeds
d1 is expected to behave as an uncoupled monolayer.

All the aspects described above can be summarized in
a phase diagram by drawing in the (t1,J12) plane28 the
antiparallel critical line [see Eq. (3)] that separates the different
magnetization regimes. To illustrate this phenomenology
we apply the model to an example of a soft/hard system
with the following typical intrinsic parameters for the soft
layer: M1 = 1.5 MA/m, K1 = 50 kJ/m3, A1 = 10−11J/m
(Ha1 = 0.053 MA/m, d1 = 89 nm). The deduced phase
diagram, reported in Fig. 2, utilizes a logarithmic vertical
scale in order to show the details of the critical line for
low |J12| values. Referring to Fig. 2 we conclude that for
|J12| > ∼0.1 J/m2 the critical thickness is almost coinci-
dent with that of the strong-coupling case [see the vertical
asymptote drawn in Fig. 2]. The central portions of two
hysteresis loops representative of both ES1 (t1 = 8 nm,
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FIG. 2. (Color online) Phase diagram for the example soft/hard
system with ideal hard layer. Representative points corresponding
to different soft layer thicknesses are evidenced. The equifield and
equienergy lines are labeled with the condition that is satisfied on the
side indicated by the corresponding arrow.

Hn1 = 0.462 MA/m) and DM1 (t1 = 18 nm, Hn1 =
0.134 MA/m) regimes for strong coupling (points A and B
in Fig. 2, respectively) are reported in Fig. 3(a) assuming
M2 = 0.7 MA/m and t2 = 10 nm. It has to be noticed that
the two branches of the hysteresis loops are never connected
as the ideal hard layer cannot reverse its magnetization. The
DM1 loop has a small hysteresis (not appreciable in the
figure) in the neighborhood of the nucleation field.27,28 This
hysteresis is due to the fact that if we reduce the applied field
after the nucleation, the magnetic configuration returns to the
antiparallel state by an irreversible jump at a reversal field
Hr1 = 0.123 MA/m < Hn1. In both loops, the magnetization
never reaches the parallel state after the nucleation, due to the
strong coupling that keeps the magnetic moments of the soft
phase directed along the negative direction at the soft/hard
interface.

B. Parallel nucleation field and phase diagram

In the presence of a reduced interface coupling, the
angle between the soft and hard magnetization directions at
the interface assumes finite values. Consequently, after the
nucleation from the antiparallel state, the magnetization can
reach the parallel state and then it can return to the initial state
as well. This means that the analysis has to take into account the
nucleation process from the parallel state. The corresponding
parallel nucleation field H = Hp is the solution of the equation

A1γ1 tanh(γ1t1) = −J12 (4)

with γ1(H ) = √
α1/2 + β1 and H � −Ha1. On increasing

|J12| from zero to the strong limit, the parallel nucleation field
goes from −Ha1 to a positive infinite value. The parallel critical
equation is

−p1

[
3

cosh2(γ1t1)

(
1 + 2γ1t1

sinh(2γ1t1)

)
+ 2

]
+ 2

3
= 0, (5)

where p1 = (α1 + 8β1)[12(α1 + 2β1)] and γ1 are calculated at
H = Hp.
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FIG. 3. (Color online) Hysteresis loops for the example soft/hard
system with ideal hard layer in the case of (a) strong and (b) reduced
interface coupling. The hysteresis loops correspond to points A, B, C,
D, and E of the phase diagram of Fig. 2. Only the first branch of the
loops is shown in (b).

In analogy to the case of Sec. III A, it is possible to draw
in the (t1,J12) plane of the phase diagram the parallel critical
line that separates the exchange-spring and decoupled magnet
regions, which are labeled as ES and DM, respectively [see also
Fig. 1(b)]. The parallel critical line for the example system is
reported in Fig. 2. This line tends to the horizontal asymptote
J12 = −0.000 71 for t1 ∼= 75 nm < d1.

The shape of the magnetization curve of a generic bilayer
can be deduced starting from the antiparallel and parallel phase
diagrams. This shape also depends on the comparison between
Hn1 and Hp, so that the equifield line Hp = Hn1 is introduced
in the phase diagram (see Fig. 2). Considering the antiparallel
nucleation process in the case Hp > Hn1, the parallel state
is unstable at Hn1 so that it cannot be reached by a direct
irreversible jump. Accordingly, if we increase the applied field
after the nucleation event, the magnetization approaches the
parallel state by following a reversible path, since the parallel
regime is of ES type in the region Hp > Hn1 of the phase
diagram. As an example, a reversible saturating hysteresis loop
is reported in Fig. 3(b) for the bilayer with t2 = 18 nm (DM1-ES
regimes) assuming J12 = −0.002 J/m2 (point C in Fig. 2;
Hn1 = 0.103 MA/m, Hp = 0.373 MA/m). For the sake of
clarity, only the first branch of the loop is shown. In this case,
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the hysteresis near the nucleation field (Hr1 = 0.08 MA/m) is
evident in the figure.

A different behavior is observed in the region Hp < Hn1.
First of all, the parallel state can be reached only in an
irreversible way after nucleation from the antiparallel one;
otherwise it should be Hp > Hn1. Moreover, the antiparallel
regime is irreversible (DM1 regime) in this region. Then, at
Hn1 the magnetization directly jumps to the parallel state, since
its energy Ep = −μ0M1Ht1 − μ0M2Ht2 is lower than the
energy Ea = μ0M1Ht1 − μ0M2Ht2 + 4J12 of the initial state,
according to the condition Hn1 > Hap = −2J12/(μ0M1t1)
(see the corresponding equienergy line drawn in Fig. 2). To
illustrate this behavior, the first branches of two hysteresis
loops corresponding to J12 = −0.001 J/m2 (point D in
Fig. 2; Hn1 = 0.089 MA/m, Hp = 0.063 MA/m, Hap =
0.059 MA/m) and J12 = −0.0007 J/m2 (point E in Fig. 2; Hn1

= 0.082 MA/m, Hp = 0.013 MA/m, Hap = 0.041 MA/m)
are reported in Fig. 3(b) for the bilayer with t1 = 18 nm. The
shapes of the two curves differ only when the applied field is
reduced after the common jump to the parallel state at Hn1.
Specifically, if one reduces the applied field below Hn1, the
magnetization stays in the parallel state until H = Hp. Then,
it comes back to the antiparallel state in an irreversible way;
otherwise it should be Hp >Hn1. In particular, the loop related
to point D (ES region) is characterized by an initial reversible
path starting from the parallel state at H = Hp, followed by
a final irreversible jump to the antiparallel state at a reversal
field Hr1 = 0.046 MA/m. In contrast, a direct irreversible jump
from the parallel to the antiparallel state at Hp occurs if the
bilayer lies in the DM region, since Hp < Hap according to the
corresponding equienergy line reported in Fig. 2. Therefore,
the hysteresis in the loop related to point E is perfectly squared
and it tends to that of a true decoupled bilayer (Hn1 = Ha1 and
Hp = −Ha1) as J12 → 0.

From the above examples, we conclude that the mag-
netization curve of a soft/hard ferromagnetic bilayer with
antiferromagnetic interface coupling shows the occurrence
of displaced hysteresis loops of the soft layer,29 similarly to
the exchange-bias phenomenology observed in ferromagnetic/
antiferromagnetic structures.48,49

IV. GENERAL CASE

The mathematical treatment is now extended to the study
of a soft/hard system with finite magnetocrystalline anisotropy
of the hard layer (K2 < ∞).

A. Antiparallel nucleation fields and phase diagrams

In contrast to the ferromagnetic case,50 the magnetization
curve in the presence of an antiferromagnetic interface
coupling is in general characterized by two nucleation fields
Hn1 and Hn2 from the antiparallel state. These fields can be
reached by increasing and by decreasing, respectively, the
initial external field value after which the magnetization begins
to deviate from the antiparallel state. This departure mainly
involves the soft phase for increasing fields (soft nucleation
field Hn1) and the hard one for decreasing fields (hard
nucleation field Hn2). Once the strength J12 of the interface
coupling is assigned, the nucleation processes can be reversible

or irreversible as a function of the thicknesses of the two
layers. Therefore, the phenomenology of the magnetization
process can be summarized in two magnetic phase diagrams
drawn in the layer thicknesses plane (t1,t2).46,50 Unlike the
case of the bilayer with ideal hard phase described in Sec. III,
a third regime of magnetization, the rigid magnet one, is also
possible now. In this case, the nucleation process takes place
through an irreversible jump of the magnetization directly
to the inverted antiparallel state. A necessary condition for
the rigid magnet regime to occur is that the energy E−a =
−μ0M1Ht1 + μ0M2Ht2 + 4J12 of the inverted antiparallel
state is lower than the energy Ea of the initial antiparallel
one, which corresponds to the condition M1t1 > M2t2 for
positive H values and M1t1 < M2t2 for negative values. These
two conditions are equivalent to a negative and a positive
magnetization Ma of the antiparallel state, respectively.

The nucleation field equation for the soft nucleation field
H = Hn1 turns out to be

A1γ1 tan(γ1t1)

A2γ2 tanh(γ2t2)
= 1

1 − A2γ2

J12
tanh(γ2t2)

, (6)

where γ1(H ) = √
α1/2 − β1, γ2(H ) = √

α2/2 + β2, αi(H ) =
μ0MiH/Ai , and βi = Ki/Ai (i = 1,2). One can show that
the nucleation field satisfies the condition Ha1 < Hn1 <

[1 + π2A1/(4t2
1 K1)]Ha1. When t2 → ∞, the nucleation field

turns out to be independent of the hard layer thickness since
tanh(γ2t2) → 1, while for t2 → 0 it tends to the nucleation
field Ha1 of the soft monolayer. The expression for the soft
antiparallel critical equation is

p1ω
3
1

{
3

cos2(γ1t1)

[
1 + 2γ1t1

sin(2γ1t1)

]
+ 2

}

− p2ω
3
2

{
3

cosh2(γ2t2)

[
1 + 2t2γ2

sinh(2γ2t2)

]
+ 2

}

− 2

3
(ω1 − ω2)3 = 0, (7)

where p1(H ) = (α1 − 8β1)/[12(α1 − 2β1)] , p2(H ) =
(α2 + 8β2)/[12(α2 + 2β2)], ω1(H ) = 1/[A1γ1 tan(γ1t1)],
ω2(H ) = 1/[A2γ2 tanh(γ2t2)], γ1, and γ2, are calculated at
H = Hn1.

Analogously one finds that the nucleation field equation for
the hard nucleation field H = Hn2 is

A2γ2 tan(γ2t2)

A1γ1 tanh(γ1t1)
= 1

1 − A1γ1

J12
tanh(γ1t1)

, (8)

where γ1(H ) = √−α1/2 + β1 and γ2(H ) = √−α2/2 − β2.
The hard nucleation field satisfies the condition
−[1 + π2A1/(4t2

1 K1)]Ha2 < Hn2 < −Ha2, where Ha2 =
2K2/(μ0M2) is the anisotropy field of the hard layer.
Therefore the antiferromagnetic interface coupling implies
an increase of the switching field of the hard phase too. The
nucleation field turns out to be independent of the soft layer
thickness when t1 → ∞ and it tends to the nucleation field
−Ha2 of the hard monolayer for t1 → 0.
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The hard antiparallel critical equation is

− ω3
1p1

{
3

cosh2(γ1t1)

[
1 + 2t1γ1

sinh(2γ1t1)

]
+ 2

}

+p2ω
3
2

{
3

cos2(γ2t2)

[
1 + 2γ2t2

sin(2γ2t2)

]
+ 2

}

+ 2

3
(ω1 − ω2)3 = 0, (9)

where ω1(H ) = 1/[A1γ1 tanh(γ1t1)] and ω2(H ) =
1/[A2γ2 tan(γ2t2)], together with p1, p2, γ1, and γ2, are
calculated at H = Hn2.

B. Strong interface coupling

The model described above is now applied to the example
soft/hard system assuming a strong interface coupling (J12 →
−∞ or equivalently ω1 = ω2), and setting K2 = 2 MJ/m3

and A2 = A1 = 10−11 J/m (Ha2 = 4.55 MA/m, d2 =
14 nm). Unlike the case of ferromagnetic interface coupling,
here the magnetization, once nucleated from the antiparallel
state, cannot reach the parallel state due to the strong antifer-
romagnetic interface coupling. The calculated soft and hard
phase diagrams reported in Figs. 4(a) and 4(b), respectively,
show the occurrence of all three exchange-spring, decoupled
magnet, and rigid magnet regimes, which are labeled as ES1,
DM1, RM1 and ES2, DM2, RM2 in the soft and hard phase
diagrams, respectively [see also Fig. 1(b)]. Considering first
the soft phase diagram [strong case of Fig. 4(a)], the line
that separates the RM1 from the DM1 region (bifurcation
line) has been obtained by exploiting the fact that no finite
equilibrium solution exists for systems of the RM1 region.
The vertical asymptote of the critical line, which is the
boundary of the DM1 region, is placed at t1 = 10.5 nm
(t1 ∼= 0.1d1). This asymptote is related to the fact that the
hard layer portion sufficiently far from the interface behaves
as an uncoupled monolayer. Analogously, the bifurcation line
tends toward a horizontal asymptote given that also the soft
layer portion sufficiently far from the interface, behaves as an
uncoupled monolayer. The RM1 region stays on the right of the
M1t1 = M2t2 line where the inverted antiparallel state has a
lower energy than the noninverted one, due to the positive
values of Hn1. Accordingly, by expanding Eqs. (6) and (7) to
the first order in t1 and t2, one obtains that for strong coupling
the antiparallel critical line approaches the M1t1 = M2t2 line
near the origin of the phase diagram. The hard phase diagram,
reported in Fig. 4(b), has a horizontal asymptote for the same
reasons explained above. Unlike the soft phase diagram, here
the RM2 region now lies on the left of the M1t1 = M2t2 line,
due to the negative values of Hn2. As a result, the rigid magnet
regimes of the two diagrams can never coexist.

In order to clearly identify the different shapes that the
magnetization curve can assume, we have drawn the soft
and hard phase diagrams in the same plot, which is shown
in Fig 4(c). The typical hysteresis loop of an antiferromag-
netically exchange-coupled soft/hard bilayer,51 reported in
Fig. 5(a), corresponds to the ES1 and DM2 nucleation regimes.
In our case, the loop has been simulated for the example
system assuming t1 = 6 nm and t2 = 8 nm [point A of
Fig. 4(c); Hn1 = 0.46 MA/m, Hn2 = −5.18 MA/m, and
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FIG. 4. (Color online) Antiparallel phase diagrams for the exam-
ple soft/hard system corresponding to (a) soft nucleation process with
strong and reduced interface coupling, (b) hard nucleation process
with strong and reduced interface coupling, and (c) soft and hard
nucleation processes with strong interface coupling. Representative
points corresponding to different soft and hard layer thicknesses are
evidenced in (c). The equifield and equienergy lines are labeled
with the condition that is satisfied on the side indicated by the
corresponding arrow.

Ma = −0.24 MA/m]. Accordingly, at Hn1 the magnetization
gradually starts to depart from the antiparallel state. In contrast,
at −Hn2 the magnetization jumps to an intermediate state
[point P of Fig. 5(a)] that, in this case, is very near to the
magnetization Mp = (M1t1 + M2t2)/(t1+t2) of the parallel
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FIG. 5. (Color online) Hysteresis loops for the example soft/hard system with strong interface coupling, corresponding to the representative
points of the phase diagram of Fig. 4(c): (a) point A, (b) points A, B, and C, (c) point D, (d) point E. Only the related soft parts of the loops are
reported in (b).

state (Mp = 1.04 MA/m), as also confirmed by the corre-
sponding magnetic configuration reported in Fig. 1(a). This
jump connects the two branches of the hysteresis loop.

For comparison, the portions of the hysteresis loops related
to the soft nucleation are shown in Fig. 5(b), as well as for
the above-reported ES1 case, also for the additional cases
of the DM1 (t1 = 12 nm, t2 = 8 nm, Hn1 = 0.18 MA/m,
Hn2 = −5.18 MA/m, Ma = −0.62 MA/m, Mp = 1.18 MA/m)
and RM1 (t1 = 6 nm, t2 = 1 nm, Hn1 = 0.3 MA/m, Hn2 =
−28 MA/m, Ma = −1.19 MA/m, Mp = 1.39 MA/m) regimes
[points B and C of Fig. 4(c), respectively]. In the DM1 case, a
sudden jump of magnetization from point P to point Q takes
place at Hn1 (the small hysteresis of width 0.0012 MA/m in
the neighborhood of Hn1 is not appreciable in the figure), while
the behavior at Hn2, not shown in the figure, is similar to that of
Fig. 5(a) (DM2 regime). In the RM1 case, the reported curve
portion is squared, while after the nucleation of the hard phase
at Hn2 (not shown in the figure) the curve varies reversibly with
a very low susceptibility (χ = 0.018, ES2 regime) tending to
the inverted parallel state.

Despite the typical shape of the loop of Fig. 5(a), after the
nucleation from the antiparallel state, the magnetization curve
can also approach the inverted antiparallel state in both the soft
and hard parts of the magnetization process. This approach can

occurs in different ways depending on the comparison between
the nucleation field (Hn1 or Hn2) from the initial antiparallel
state and the nucleation field (−Hn2 or −Hn1, respectively)
related to the final inverted antiparallel state. This comparison
can be suitably made by tracing the equifield line |Hn1| =|Hn2|
in the phase diagram of Fig. 4(c) (note that this equifield line
and the hard bifurcation line are overlapped). Considering at
first the soft nucleation part of the magnetization process, the
magnetization can reach the inverted antiparallel state only if
the bilayer lies on the right of the equienergy line M1t1 = M2t2.
In this region of the phase diagram, |Hn1| < |Hn2| so that the
inverted antiparallel state can be reached only by a direct or
final irreversible jump. As an example we report in Fig. 5(c)
the simulated hysteresis loop for the case of DM1-DM2
regimes [point D of Fig. 4(c); t1 = 12 nm, t2 = 3 nm,
Hn1 = 179 kA/m, Hn2 = −7.91 MA/m, Ma = −1.06 MA/m,
Mp = 1.34 MA/m]. In the soft portion of the loop the
magnetization at Hn1 undergoes an irreversible jump to an
intermediate state at point P, this jump being mainly due to the
switching of the soft layer toward the positive magnetization
direction (the jump is absent if the soft regime is of ES1 type);
then, the magnetization follows a reversible path from point
P to point Q, and finally it goes through a second irreversible
jump from point Q to point R, at which the inverted antiparallel
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state is reached (the small hysteresis of width 0.002 MA/m
in the neighborhood of Hn1 cannot be appreciated in the
figure). The second jump is mainly due to the switching of
the hard phase toward the negative magnetization direction.
Subsequently, if we further increase the applied field H, at H =
−Hn2 the magnetization of the hard layer undergoes another
irreversible jump, this time toward the positive magnetization
direction, and then, if we decrease the applied field, it
irreversibly comes back to the antiparallel state at a reversal
field −Hr2 < −Hn2.

In the case of the hard nucleation part of the magnetization
curve, the magnetization can reach the inverted antiparallel
state only if the bilayer lies on the left of the equienergy
line of the phase diagram. We note that in this region
Ma > 0 and consequently t1 < t2. To illustrate this behavior, the
magnetization curve obtained in particular when |Hn2| >|Hn1|
(right side of the equifield line) is reported in Fig. 5(d)
for an example bilayer that lies in the ES1-DM2 region on
the left of the equienergy line [point E of Fig. 4(c); t1 =
2 nm, t2 = 8 nm, Hn1 = 2.13 MA/m, Hn2 = −5.16 MA/m,
Ma = 0.26 MA/m, Mp = 0.86 MA/m]. In this case, the
magnetization can indirectly reach the inverted antiparallel
state by an initial jump to the reversible path (ES1 regime) that
originates from −Hn1 in the second branch of the hysteresis
loop. We remark that this reversible path tends to the inverted
parallel state on further decrease of the applied field value
toward −∞. On the contrary, the magnetization reaches the
inverted antiparallel state along this path if we increase the
applied field until its value becomes −Hn1. Experimental
realizations showing a similar behavior in the case of asym-
metric hard/soft/hard trilayers can be found, for example, in
Ref. 52.

C. Reduced interface coupling

We now take into account the occurrence of a reduced
coupling at the soft/hard interface. In this case, the magne-
tization process approaches that of a true decoupled system,
characterized by a rigid behavior of both layers. In fact, the
DM1 region of the soft nucleation phase diagram grows at the
expense of the ES1 and RM1 portions as reported in Fig. 4(a),
where the diagrams obtained for J12 = −0.01 J/m2 and
J12 = −0.001 J/m2 are compared with that of the strong case
(J12 > ∼−0.1 J/m2). A similar trend is observed in the hard
nucleation phase diagram of Fig. 4(b). In both diagrams, the
asymptotes approach the graph axes and so the corresponding
asymptotic thicknesses decrease with respect to the strong
case. Due to the reduced interface coupling, the parallel
states become accessible to the soft and hard parts of the
magnetization process. As in Sec. III, the analysis therefore
takes into account the nucleation process from the parallel
state. We consider only the positive parallel state given that
the nucleation field for the negative parallel state has the same
absolute value and opposite sign. The parallel nucleation field
is the solution H = Hp of the parallel nucleation field equation

A1γ1 tanh(γ1t1)

A2γ2 tanh(γ2t2)
= − 1

1 + A2γ2 tanh(γ2t2)
J12

(10)

with γi(H ) = √
αi/2 + βi and H > −Ha1. In the

strong-limit case (J12 → −∞) the parallel nucleation

field can be approximated by the expression Hp
∼=

2J 2
12(

√
A1M1 + √

A2M2)2/(μ0A1M1A2M2), evidencing that
Hp → +∞ in this limit.

The parallel critical equation is

− p1ω
3
1

{
3

cosh2(γ1t1)

[
1 + 2γ1t1

sinh(2γ1t1)

]
+ 2

}

−p2ω
3
2

{
3

cosh2(γ2t2)

[
1 + 2γ2t2

sinh(2γ2t2)

]
+ 2

}

+ 2

3
(ω1 + ω2)3 = 0, (11)

where pi(H ) = (αi + 8βi)/[12(αi + 2βi)], ωi(H ) =
1/[Aiγi tanh(γiti)], and γi (i = 1,2), are calculated at
H = Hp. Equation (11) allows the parallel nucleation phase
diagram to be deduced by drawing the related critical line.
The occurrence of the hyperbolic functions in both soft and
hard parts of this expression implies that both horizontal and
vertical asymptotes can appear. Regarding the rigid magnet
regime, a necessary condition for jumping from the parallel
to the inverted parallel state is Hp < 0, which assure a final
energy lower than the initial one. In agreement with the
analysis reported in Ref. 9, the rigid magnet region, when
present, does not correspond to an area of the phase diagram,
but instead it is limited to a line, as also described with
more particulars in the following. Therefore, this regime
has a pure theoretical meaning, all the more so because the
magnetization, once the parallel states are reached, can only
switch between them.

The deduced parallel critical line of the example system is
shown in Fig. 6 for different |J12| values, the exchange-spring,
decoupled magnet, and rigid magnet regions being labeled
as ES, DM, and RM, respectively [see also Fig. 1(b)]. For
sufficiently low values of |J12| the magnetization regime is of
DM type almost everywhere, and the behavior of the bilayer is
similar to that of a true decoupled system. If we increase |J12|,
two initially joined DM regions appear in the phase diagram
[see Fig. 6(a)]. Subsequently, these two regions separate and
then tend to depart one from the other [see Fig. 6(b)]. In the
superior DM region, which is initially bounded by a vertical
and a horizontal asymptote [see Fig. 6(b)], a second vertical
asymptote [see Fig. 6(c)] appears on the right of the first one at
t1 ∼= 320 nm (t1 ∼= 3.6×d1) for |J12| = 0.0005 J/m2. After that,
this region disappears [see Fig. 6(d)]. The inferior DM region
shows two horizontal asymptotes, one of them being so close
to the t1 axis that it becomes visible only if |J12| is sufficiently
large [see Fig. 6(d)]. Finally, for |J12| ∼= 0.00176 J/m2 also
this region collapses and the magnetization regime becomes
of ES type everywhere. As regards the occurrence of two
DM regions in the parallel phase diagram, in the superior
DM region it is the soft layer that drives the switching of the
magnetization toward the antiparallel state [see Fig. 1(b)]. In
contrast, in the inferior DM region this action is performed by
the hard layer, which instead tries to lead the magnetization to
the inverted antiparallel state [see Fig. 1(b)], or equivalently
from the inverted parallel state at −Hp to the antiparallel
one (see, for example, the hysteresis loop described at the
end of this section). According to Ref. 9, the rigid magnet
regime is present only when the superior and inferior DM
regions are joined together and it corresponds to the points
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FIG. 6. (Color online) Parallel nucleation phase diagrams for the example soft/hard system corresponding to different values of the
interface coupling strength. The isofield lines Hp = 0 are labeled with the condition that is satisfied on the side indicated by the corresponding
arrow.

of the line that separates the two typical behaviors related
to these regions. In fact, it is only at these limit points that
both layers reverse their magnetic state and finally jump
to the inverted parallel configuration. As a consequence of
this behavior, the rigid magnet line can be calculated with a
good approximation by seeking for the points of maximum
susceptibility as a function of the hard layer thickness, since
a variation of its very low value appreciably influences
the character of the switching. The result (t2 ∼= const =
0.138 nm) is in good agreement with that (t2 ∼= const =
0.151 nm) obtained by applying the corresponding critical
condition of Ref. 9, which is valid for the limit case
of coherent rotation (this approximation can be accepted
here, due to the considered low |J12| value). As a further
remark concerning the nucleation from the parallel state, we
observe that the hard and soft thicknesses beyond which
this process is no longer affected by the sizes of the
layers appreciably exceed the related Boch wall widths,
as evidenced by the position of the asymptotes in the
diagrams.

In the phase diagrams of Fig. 6 is also reported the isofield
line Hp = 0 that identifies the region Hp < 0, in which the
parallel state is stable in absence of the external field [in the
case of Fig. 6(d), this line is outside the figure]. Moreover,

only inside this region can the rigid magnet regime occur, as
previously observed.

The shape of the magnetization curve of a generic bilayer
can be deduced starting from the related phase diagrams,
also supported by suitably defined isofield, equifield, and
equienergy lines. Due to the complexity of a general analysis of
the phase diagrams, we limit the application of the model to the
example system for the particular case of J12 = −0.0007 J/m2.
The corresponding soft antiparallel and parallel critical lines
are reported in Fig. 7 while for the clarity of the figure, the
equienergy lines, whose meaning is analogous to that of Fig. 2,
are not shown. Due to the low |J12| value, the hard nucleation
regime is of DM2 type almost everywhere, since the ES2
and the RM2 regions are very close to the soft (t2 < 0.1
nm) and to the hard (t1 < 0.15 nm) thickness axes of the
diagram, respectively. In particular it is |Hn2| > |Hn1| almost
everywhere. Analogously, the equifield line Hn2 = −Hp is
almost coincident with the vertical axis (t1 < 0.18) so that we
can assume Hn2 < −Hp.

The magnetization curves of bilayers whose representative
points lie inside the region Hp > Hn1 but outside the RM1
region of the phase diagram (see points A and B of Fig. 7), reach
the parallel state in a reversible way after the soft nucleation at
Hn1. This path can be completely reversible (point A of Fig. 7,
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indicated by the corresponding arrow.

regime ES1) as happens in the strong case. It can also start with
an irreversible jump to an intermediate state (point B of Fig. 7,
regime DM1) similarly to the curve C of Fig. 3(b). The hard
nucleation part of the magnetization curve is instead similar to
that related to point C of Fig. 7 (see below).

We now consider a point of the phase diagram (point
C in Fig. 7; t1 = 6 nm, t2 = 5 nm, Hn1 = 0.15 MA/m,
Hn2 = −4.81 MA/m, Hp = 0.12 MA/m, Ma = −0.5 MA/m,
Mp = 1.14 MA/m) inside the region Hp < Hn1 and again
outside the RM1 region. The corresponding soft nucleation
part of the magnetization process is similar to the second
curve (curve D) of Fig. 3(b). In analogy to what happens
in the soft part of the magnetization process, in the case of
the hard part the magnetization directly jumps to the inverted
parallel state at Hn2 [see Fig. 8(a)]. After that, if we reduce
|H| the magnetization stays in this state until H = −Hp and
then, exactly as in the soft part of the second branch of the
hysteresis loop, it reaches the inverted antiparallel state by
following an initial reversible path (not appreciable in the
figure) and by doing a final irreversible jump at a reversal field
Hr2 = −Hr1

∼= −Hp.
If we finally consider the points of the phase diagram

lying in the RM1 region, the magnetization at Hn1 goes to
the inverted antiparallel state rather than to the parallel one,
which is not stable since Hn1 < Hp. Therefore, the parallel
states are accessed only in the hard parts of the magnetization
curve. In fact, at Hn2 the magnetization jumps (DM2 regime)
to the inverted parallel state, since this state is stable (Hn2 <

−Hp) and since the energy E−p = μ0M1Ht1 + μ0M2Ht2 of
the inverted parallel state is lower than initial energy Ea,
according to the condition Hn2 < −H−ap = 2J12/(μ0M2t2)
(the corresponding equienergy line is almost coincident with
the vertical axis of the phase diagram, so that Hn2 < −H−ap

almost everywhere). The magnetization comes back to the
antiparallel state at −Hp, through a possibly initially reversible
path (regime RM1-ES) and a final or direct irreversible jump
(regimes RM1-ES and RM1-DM, respectively). An example
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FIG. 8. (Color online) Hysteresis loops for the example soft/hard
system corresponding to (a) point C and (b) point D of the phase
diagram of Fig. 7.

of such a loop is reported in Fig. 8(b) for the bilayer
corresponding to point D of Fig. 7 (regime RM1-DM; t1 =
5 nm, t2 = 0.3 nm, Hn1 = 0.12 MA/m, Hn2 = −9.46 MA/m,
Hp = 1.89 MA/m, Ma = −1.38 MA/m, Mp = 1.45 MA/m).
We note in particular that the jump from the inverted parallel to
the antiparallel state at −Hp on the first branch of the hysteresis
loop, or equivalently the jump from the parallel to the inverted
antiparallel state at Hp on the second branch of the hysteresis
loop, is typical of the bilayers belonging to the inferior DM
region of the parallel phase diagrams.

V. CONCLUSIONS

A general continuum micromagnetic modeling of the
interlayer and intralayer exchange interaction has been pre-
sented and the general boundary conditions at the interface
between two ferromagnetic phases have been derived. Then the
continuum micromagnetic theory has been applied to perfect
soft/hard bilayers with uniaxial anisotropy and antiferromag-
netic interface coupling in order to analyze the corresponding
magnetization process, which is characterized by a nonuniform
rotation of magnetization inside the two phases. The essential
aspects of the mathematical procedure have been described
for the particular case of an ideal hard phase with infinite
anisotropy. In the general case we have shown that when the
external field is applied along the easy direction, which is
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identical in the two layers, the magnetization can leave the
saturated antiparallel state at two different nucleation fields,
each mainly concerning only one of the two ferromagnetic
phases. Moreover, the saturated parallel state can also be
accessed in the presence of an interface coupling that is reduced
with respect to the strong case. Therefore, the description of
the magnetization process requires that the nucleation from
the parallel state is taken into account, so that three different
parts related to the antiparallel soft nucleation, the antiparallel
hard nucleation, and the parallel nucleation appear in the
magnetization curves. Different magnetization regimes, which
depend on the reversible or irreversible character of the various
nucleation events, can be identified by solving the correspond-
ing critical equations. Accordingly, the behavior of the possible
bilayers can be summarized in suitable phase diagrams as a
function of intrinsic and extrinsic parameters. The nucleation
field equations and the critical equations have been analytically
deduced and then applied to a typical soft/hard system with
planar anisotropy. The corresponding phase diagrams have
been calculated as a function of the layer thicknesses and
of the interface coupling strength, obtaining a rich variety
of possible behaviors. Additional equations, related to the
comparison between the different nucleation fields and to the
comparison between the energies of different antiparallel and
parallel saturated states, have also been utilized to include ad-
ditional information in the phase diagrams. Static and dynamic
simulations of hysteresis loops have been performed to support
the analysis based on the phase diagrams. All the results
obtained with the simulations have turned out to be in perfect
mutual agreement. As a secondary result, we have found that
the influence of the interface coupling in the parallel nucleation
process extends inside the two ferromagnetic phases at
distances appreciably larger than the corresponding Bloch wall
widths. Finally, we observe that all the deduced equations have
been accurately tested with the aim of making them available
for possible applications to systems characterized by whatever
parameter values and also by perpendicular anisotropy.

ACKNOWLEDGMENTS

This work was supported by the Italian Ministry of
University and Research through PRIN2008 Project entitled
“Thermal stability of exchange-spring planar magnetic nano-
structures with perpendicular and lateral exchange coupling
(20084LFC29).”

APPENDIX

The equilibrium equation �m × �Heff = 0 inside the consid-
ered soft/hard bilayers assumes the form

d2ϑ

dx2
− Ki

Ai

sin ϑ cos ϑ − μ0Mi

2Ai

H sin ϑ = 0 (A1)

with boundary conditions

dϑ

dx

∣∣∣∣
x1

= 0, A1
dϑ

dx

∣∣∣∣
x0−

= A2
dϑ

dx

∣∣∣∣
x0+

= J12 sin(ϑ0+ − ϑ0− ),
dϑ

dx

∣∣∣∣
x2

= 0.

(A2)

In the ideal case in which the hard phase has an infinite
anisotropy (K2 = ∞), the equilibrium equation (A1) inside
the soft layer (i = 1) becomes

d2ψ

dx2
+

(
μ0

M1

2A1
H − K1

A1
cos ψ

)
sin ψ = 0, (A3)

where we have introduced the angle ψ = π − ϑ . The corre-
sponding boundary conditions (A2) turn into

dψ

dx

∣∣∣∣
x1

= 0, A1
dψ

dx

∣∣∣∣
x0−

= J12 sin ψ0− . (A4)

In the strong-coupling limit (J12→−∞) the second boundary
condition simplifies to ψ0− = 0. Equations (A3) and (A4) can
also be deduced by minimizing the energy per unit area of the
soft layer:

E =
∫ x0

x1

[
A1

(
dψ

dx

)2

+ μ0M1H cos ψ + K1 sin2 ψ

]
dx

+ 2J12(1 + cos ψ0− ). (A5)

We now consider an infinitesimal solution ψ + η (ψ and
η being the first- and third-order contributions, respectively)
of Eq. (A3) in the neighborhood of the antiparallel state
ψ = 0 and in the neighborhood h of the nucleation field H.
Then, from Eq. (A3) we obtain the equation for the first-order
contribution

d2ψ

dx2
+

(
μ0

M1

2A1
H − K1

A1

)
ψ = 0, (A6)

with boundary conditions

dψ

dx

∣∣∣∣
x1

= 0, A1
dψ

dx

∣∣∣∣
x0−

= J12ψ0− , (A7)

and the equation for the third-order contribution

d2η

dx2
+

(
μ0

M1

2A1
H − K1

A1

)
η

= − μ0
M1

2A1
hψ − 1

12
(8β1 − α1)ψ3 (A8)

with boundary conditions

dη

dx

∣∣∣∣
x1

= 0, A1
dη

dx

∣∣∣∣
x0−

= J12

(
η0− − ψ3

0−

6

)
. (A9)

We note that the function ψ in Eq. (A8) is the first-order
contribution, solution of Eq. (A6). This solution ψ exists if
and only if H fulfills the nucleation field equation (2) and it
takes the form

ψ(x) = ψ0−

cos(γ1t1)
cos[γ1(x − x1)]. (A10)

Analogously, the third-order contribution η, solution of
Eq. (A8) (which can be obtained by using the method of
variation of parameters53), exists if and only if the following
relation between the first-order infinitesimal constant ψ0− and
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the infinitesimal field increment h is satisfied:

ψ2
0− =

μ0
M1
A1

(
1
γ 2

1
+ 2t1

γ1 sin(2γ1t1)

)
p1

[
3

cos2(γ1t1)

(
1 + 2γ1t1

sin(2γ1t1)

)
+ 2

]
− 2

3

h. (A11)

If one calculates the variation of the energy at nucleation
with respect to the antiparallel state, then the first energy
variation, which is obtained by considering the second-order
terms in Eq. (A5), is obviously vanishing. On the contrary,
the second energy variation at nucleation, which is obtained
by considering the fourth-order terms54,55 in Eq. (A5) and by
utilizing Eqs. (2), (A8), (A9), (A10), and (A11), turns out to be

�E = − 1

8ω1

{
p1

[
3

cos2(γ1t1)

(
1+ 2γ1t1

sin(2γ1t1)

)
+2

]
−2

3

}
ψ4

0− .

(A12)

Therefore, if

p1

[
3

cos2(γ1t1)

(
1 + 2γ1t1

sin(2γ1t1)

)
+ 2

]
− 2

3
> 0, (A13)

the nucleated state has an energy lower than that of the
antiparallel state at the same field H + h. In the opposite
case the nucleated equilibrium state has a greater energy, thus
representing for the antiparallel state an energy barrier that
vanishes at the nucleation field H. These conclusions are in
agreement with the stability criterion50 based on the sign of
the susceptibility χ at the nucleation field, since

χ = −μ0M
2
1

(
t1

cos2(γ1t1)
+ tan(γ1t1)

γ1

)2
ψ4

0−

32(t1 + t2)�E
.

(A14)

1R. H. Victora and X. Shen, IEEE Trans. Magn. 41, 537
(2005).

2E. E. Fullerton, J. S. Jiang, and S. D. Bader, J. Magn. Magn. Mater.
200, 392 (1999).

3E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D.
Bader, Phys. Rev. B 58, 12193 (1998).

4F. Montaigne, S. Mangin, and Y. Henry, Phys. Rev. B 67, 144412
(2003).

5K. Mibu, T. Nagahama, and T. Shinjo, J. Magn. Magn. Mater. 163,
75 (1996).

6E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
7E. Goto, N. Hayashi, T. Miyashita, and K. Nakagawa, J. Appl. Phys.
36, 2951 (1965).

8H. J. Richter, J. Phys. D 40, R149 (2007).
9G. H. Guo, G. F. Zhang, L. Y. Sun, and P. A. J. de Groot, Chin.
Phys. Lett. 25, 2634 (2008).

10E. E. Fullerton, D. T. Margulies, M. E. Schabes, M. Carey,
B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, H. Rosen,
and M. Doerner, Appl. Phys. Lett. 77, 3806 (2000).

11B. R. Acharya, J. N. Zhou, M. Zheng, G. Choe, E. N. Abarra, and
K. E. Johnson, IEEE Trans. Magn. 40, 2383 (2004).

12S. N. Piramanayagam, J. Appl. Phys. 102, 011301 (2007).
13S. N. Piramanayagam, K. O. Aung, S. Deng, and R. Sbiaa, J. Appl.

Phys. 105, 07C11 (2009).
14J. M. L. Beaujour, S. N. Gordeev, G. J. Bowden, P. A. J. de Groot,

B. D. Rainford, R. C. C. Ward, and M. R. Wells, Appl. Phys. Lett.
78, 964 (2001).

15T. Hauet, F. Montaigne, M. Hehn, Y. Henry, and S. Mangin, Phys.
Rev. B 79, 224435 (2009).

16D. V. Dimitrov, J. van Ek, Y. F. Li, and J. Q. Xiao, J. Appl. Phys.
87, 6427 (2000).

17R. C. Sousa, Z. Zhang, and P. P. Freitas, J. Appl. Phys. 91, 7700
(2002).

18X. G. Xu, D. L. Zhang, X. Q. Li, J. Bao, Y. Jiang, and M. B. A. Jali,
J. Appl. Phys. 106, 123902 (2009).

19M. Sawicki, G. J. Bowden, P. A. J. de Groot, B. D. Rainford, J. M.
L. Beaujour, R. C. C. Ward, and M. R. Wells, Phys. Rev. B 62, 5817
(2000).

20N. Persat, H. A. M. van den Berg, and A. Dinia, Phys. Rev. B 62,
3917 (2000).

21J. F. Bobo, H. Kikuchi, O. Redon, E. Snoeck, M. Piecuch, and
R. L. White, Phys. Rev. B 60, 4131 (1999).

22M. Buchmeier, B. K. Kuanr, R. R. Gareev, D. E. Bürgler, and
P. Grünberg, Phys. Rev. B 67, 184404 (2003).

23W. F. Brown Jr., Micromagnetics (Wiley Interscience, New York,
1963).

24K. Yu. Guslienko, O. Chubykalo-Fesenko, O. Mryasov,
R. Chantrell, and D. Weller, Phys. Rev. B 70, 104405 (2004).

25A. Bill and H.B. Braun, J. Magn. Magn. Mater. 272, 1266
(2004).

26S. Mangin, F. Montaigne, and A. Schuhl, Phys. Rev. B 68,
140404(R) (2003).

27G. J. Bowden, K. N. Martin, B. D. Rainford, and P. A. J. de Groot,
J. Phys. Condens. Matter 20, 015209 (2008).

28G. H. Guo, G. F. Zhang, and X. G. Wang, J. Appl. Phys. 108, 043919
(2010).

29S. Mangin, L. Thomas, F. Montaigne, W. Lin, T. Hauet, and
Y. Henry, Phys. Rev. B 80, 224424 (2009).

30B. Dieny, J. P. Gavigan, and J. P. Rebouillat, J. Phys. Condens.
Matter 2, 159 (1990).

31D. C. Worledge, Appl. Phys. Lett. 84, 2847 (2004).
32A. Layadi, J. Appl. Phys. 100, 083904 (2006).
33G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, M. Solzi,

F. Albertini, F. Casoli, S. Fabbrici, and L. Pareti, Phys. Rev. B
73, 094406 (2006).

34O. Hellwig, A. Berger, J. B. Kortright, and E. E. Fullerton, J. Magn.
Magn. Mater. 319, 13 (2007).

35N. S. Kiselev, C. Bran, U. Wolff, L. Schultz, A. N. Bogdanov,
O. Hellwig, V. Neu, and U. K. Rößler, Phys. Rev. B 81, 054409
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