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Free energy in a magnetic field and the universal scaling equation of state for the
three-dimensional Ising model
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We have substantially extended the high-temperature and low-magnetic-field (and the related low-temperature
and high-magnetic-field) bivariate expansions of the free energy for the conventional three-dimensional Ising
model and for a variety of other spin systems generally assumed to belong to the same critical universality class. In
particular, we have also derived the analogous expansions for the Ising models with spin s = 1,3/2, . . . and for the
lattice Euclidean scalar-field theory with quartic self-interaction, on the simple-cubic and the body-centered-cubic
lattices. Our bivariate high-temperature expansions, which extend through 24th order, enable us to compute,
through the same order, all higher derivatives of the free energy with respect to the field, namely, all higher
susceptibilities. These data make more accurate checks possible, in critical conditions, both of the scaling and
the universality properties with respect to the lattice and the interaction structure and also help to improve an
approximate parametric representation of the critical equation of state for the three-dimensional Ising model
universality class.
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I. INTRODUCTION

We present a brief analysis of high-temperature (HT) and
low-field expansions for the free energy of the conventional
three-dimensional (3D) Ising model in an external uniform
magnetic field, extended from the presently available1–4 order
17 up to order 24 in the case of the simple-cubic (sc) lattice,
and from the order 13 up to 24 in the case of the body-
centered-cubic (bcc) lattice. In addition to the conventional
Ising model (i.e., with spin s = 1/2), we have considered
also a few models with spin s > 1/2, and the lattice scalar
Euclidean field theories with even polynomial self-interaction.
All results for the simple Ising system in a field can be readily
transcribed into the lattice-gas model language and therefore
are of immediate relevance also for the theory of the liquid-gas
transition.5,6 The HT and low-field expansions of the spin-s
Ising models can be transformed7,8 into low-temperature (LT)
and high-field expansions.

The spin-s Ising model in an external magnetic field H is
described by the Hamiltonian9–12

H{s} = − J

s2

∑
〈ij〉

sisj − mH

s

∑
i

si , (1)

where si = −s, − s + 1, . . . ,s is the spin variable at the lattice
site �i, m is the magnetic moment of a spin, and J is the
exchange coupling. The first sum extends over all distinct
nearest-neighbor pairs of sites, and the second sum over all
lattice sites. The conventional Ising model is recovered by
setting s = 1/2.

The one-component self-interacting scalar-field theory on
a lattice is described by the Hamiltonian13–15

H{φ} = −
∑
〈ij〉

φiφj +
∑

i

(V (φi) + Hφi). (2)

Here −∞ < φi < +∞ is a continuous variable associated to
the site �i and V (φi) is an even polynomial in the variable φi . In

this study, we have only considered the specific model in which
V (φi) = φ2

i + g(φ2
i − 1)2, although we can cover interactions

of a more general form.
All these models are expected to belong to the 3D Ising uni-

versality class, therefore our extensive set of series-expansion
data can be used to test the accuracy of the basic hypotheses
of critical scaling and universality with respect to the lattice
and the interaction structure, by comparing the estimates of the
exponents and of universal combinations of critical amplitudes
for the various models, as well as by forming approximate
representations of the equation of state (ES). In this study
our attitude15,16 is, to some extent, complementary to the
current one. Usually, universality is essentially assumed from
the outset: For example, in the renormalization group (RG)
approach,17–25 an appropriate scalar-field theory in continuum
space is taken as the representative of the Ising universality
class, as suggested by the independence of the renormalization
procedure from the details of the microscopic interaction. Also
in HT and Monte Carlo approaches, attention has been recently
focused14–16,26,27 on particular continuous- or discrete-spin-
lattice models that exhibit vanishing (or very small) leading
nonanalytic corrections to scaling,28,29 in order to be able to
estimate more accurately the physical quantities of interest.
In this paper, we prefer to take advantage of our extended
expansions to test a wide sample of models, expected to belong
to the same universality class, and to show how closely, already
at the present orders of expansion, each model approaches the
predicted asymptotic scaling and universality properties.

The paper is organized as follows: in Sec. II we briefly
characterize our expansions, sketch the method of derivation,
and list the numerous tests of correctness passed by the series
coefficients. In Sec. III we define the higher-order suscepti-
bilities, whose critical parameters enter into the determination
of the scaling ES and update an approximate representation
of it. In Sec. IV we discuss numerical estimates of exponents,
amplitudes, and universal combinations of these, which can
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be computed from the bivariate series. In the last section, we
summarize our results and draw some conclusions.

II. EXTENSIONS OF THE BIVARIATE
SERIES EXPANSIONS

The HT series-expansion coefficients for the models under
study have been derived by a fully computerized algorithm
based on the vertex-renormalized linked-cluster (LC) method,
which calculates the mean magnetization per spin in a
nonvanishing magnetic field from the set of all topologically
distinct, connected, 1-vertex-irreducible (1VI), single-rooted
graphs.9 We have taken advantage of the bipartite structure of
the sc and the bcc lattices to restrict the generation of graphs to
the subset of the bipartite graphs, i.e., to the graphs containing
no loops of odd length.

In the past, the LC method was employed mainly to derive
expansions in the absence of magnetic field. In the presence
of a field, the most extensive1,2 data so far available in 3D
were derived indirectly by transforming7,8 bivariate LT and
high-field expansions30 into HT and low-field expansions. This
computation was performed only for the s = 1/2 Ising model,
although some LT and high-field data existed also for other
values of the spin. Shorter HT expansions in a finite field had
also been previously obtained,6 only for the s = 1/2 model,
by a direct expansion of the free energy. It is worth noting that
we are now in a position to follow the opposite route: namely,
of transforming our bivariate HT data for the spin-s Ising
systems into LT and high-field expansions, thus extending also
the known LT results.

It is fair to remark that the finite-lattice (and the related
transfer-matrix) methods of expansion31,32 have been shown
to be more efficient33 than the LC approach, at least for

s = 1/2 in d = 2 dimensions, even in the presence of a
magnetic field, while they remain rather difficult and unwieldy
in higher space dimensions. In the case of the 2D spin-1/2 Ising
model, with the support of a variational approximation, these
methods made a representation of the ES of unprecedented
accuracy34 possible. In the future, these techniques might
prove to be competitive32 in the 3D case also for calculations
in a nonvanishing field. We believe, however, that it has been
worthwhile to test and develop also a LC approach, because
it expresses the series coefficients in terms of polynomials
in the moments of the single-spin measure and, therefore,
unlike the finite-lattice method, is flexible enough to apply
also to non-discrete-state models such as the one-component
scalar-field model15 within the Ising universality class studied
here and, more generally, to the O(N )-symmetric spin35 or
lattice-field systems in any space dimension.

A. The algorithms

To give a hint of the strong points of our graphical
algorithms, we mention that, using only an ordinary desktop
personal quad-processor computer with a 4-GB fast memory
[random access memory (RAM)], our code can complete in
seconds all calculations already documented1,2 in the literature
(see Table III). The whole renormalized calculation presented
here can be completed in a central processing unit (CPU) time
of a few days, most of which goes into producing the highest
order of expansion. In what follows all timings are single-core
times.

The LC computation has been split into three parts. First,
we generated the simple, bipartite, unrooted, topologically
distinct 1VI graphs. This part is memory intensive, but takes
only a few hours. Table I lists the numbers of these graphs
from order 4 through 24. In a second step, we computed the

TABLE I. The numbers of simple, connected, bipartite, unrooted 1VI graphs with l lines and with a given number v of odd vertices, which
contribute to the HT expansion coefficient of the free energy at order Kl .

l \ v 0 2 4 6 8 10 12 14 16 Totals

4 1 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0 2
7 0 1 0 0 0 0 0 0 0 1
8 2 1 1 0 0 0 0 0 0 4
9 0 3 1 1 0 0 0 0 0 5
10 3 6 5 0 0 0 0 0 0 14
11 0 11 7 2 0 0 0 0 0 20
12 9 20 31 4 1 0 0 0 0 65
13 0 49 53 22 0 0 0 0 0 124
14 20 101 194 54 7 0 0 0 0 376
15 0 258 432 238 20 2 0 0 0 950
16 84 520 1471 732 127 0 0 0 0 2934
17 0 1482 3725 2886 434 29 0 0 0 8556
18 300 3243 12233 9531 2403 97 5 0 0 27812
19 0 9646 33 608 36 067 9675 845 0 0 0 89841
20 1520 21 859 1 09 796 1 23 543 46 241 4023 133 0 0 3 07 115
21 0 68 697 3 18 283 4 60 225 1 91 416 26 435 594 13 0 10 65 663
22 8186 1 63 780 10 48 349 16 08 030 8 58 792 1 34 409 6672 0 0 38 28 218
23 0 533 569 31 66 399 59 70 246 35 66 324 75 7696 40 686 744 0 14 035 664
24 52 729 13 28 836 10 594 514 21 241 772 15 475 018 37 96 365 3 17 259 4267 38 52 810 798
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single-rooted multigraphs, their symmetry numbers, and their
lattice embeddings. This part of the calculation requires little
memory: In the case of the bcc lattice, completing the 24th
order took approximately one day, while in the case of the
sc lattice 2 weeks were necessary. In the latter case, most
of the time was spent to determine the graph embeddings.
These two parts of the calculation were implemented by
C++ codes, and used the “Nauty”36 library to compute
the graph certificates and symmetry factors. The relevant
procedures of this package were supplemented with the
GNU Multiprecision Arithmetics Library37 to get the exact
graph symmetry numbers. The third step implements the
algebraic vertex-renormalization9 procedure by deriving the
magnetization from the single-rooted 1VI graphs and then,
by integration, the free energy F(K,h) = ∑

fn(h)Kn. Here
K = J/kBT , with kB the Boltzmann constant and T the
temperature, while h = mH/kBT is the reduced magnetic
field. The magnetization is expressed in terms of the bare
vertices M0

i (h) obtained deriving i times with respect to h the
generating function M0

0 (h) = ln[ sinh(h(2s+1)/2s)
sinh(h/2s) ] in the case of

the spin-s Ising systems, or, in the case of the scalar-field
system, M0

0 (h) = ln[
∫

dφ e−V (φ)+hφ]. For example, the HT
expansion coefficient of the free energy at order K2, on the
bcc lattice, is given by

f2(h) = 2
[
M0

2 (h)
]2 + 32

[
M0

1 (h)
]2

M0
2 (h), (3)

while on the sc lattice

f2(h) = 3
2

[
M0

2 (h)
]2 + 18

[
M0

1 (h)
]2

M0
2 (h). (4)

TABLE II. The numbers of monomials in the bare vertices, with a
given number v of odd vertices, which contribute to the HT expansion
coefficient of the free energy on a bipartite lattice, at order Kl .

l \ v 0 2 4 v > 4 Totals

1 0 1 0 0 1
2 1 1 0 0 2
3 0 3 1 0 4
4 3 4 3 0 10
5 0 10 6 2 18
6 6 14 15 6 41
7 0 27 25 18 70
8 14 39 45 39 137
9 0 70 77 86 233
10 25 94 130 164 413
11 0 157 201 305 663
12 53 222 318 541 1134
13 0 348 481 924 1753
14 89 457 742 1529 2817
15 0 699 1091 2519 4309
16 167 941 1589 3972 6669
17 0 1379 2289 6213 9881
18 278 1796 3314 9566 14 954
19 0 2577 4635 14 487 21 699
20 480 3370 6492 21 662 32 004
21 0 4711 9010 32 134 45 855
22 760 5965 12 430 46 887 66 042
23 0 8257 16 858 67 949 93 064
24 1273 10 664 22 895 97 543 1 32 375

Table II lists the number of monomials of the bare vertices, with
a given number v of odd indices that contribute to the free-
energy HT expansion coefficient at order Kl . Equivalently,
this is the number of admissible vertex-degree sequences of
the (far more numerous) graphs contributing to this coefficient.
Notice that the monomials containing at least two bare vertices
of odd order are the overwhelming majority. They all vanish
in zero field, which shows that the finite-field calculation has a
substantially higher complexity. The renormalization through
24th order was performed in a few hours. The third step of the
calculation is based on codes written in the Python and Sage38

languages.
It is also not without interest that in a preliminary step of

our work, we have been able to employ the simple unrenor-
malized linked-cluster method,9 which uses all topologically
distinct unrooted connected graphs (including multigraphs) to
compute the bivariate expansions of the free energy through
order 20. It takes only 1 day to complete this calculation. Of
course, while the unrenormalized procedure is algebraically
straightforward, it would make further extensions of the
series impractical, using our desktop computers, for the rapid
increase with order of the combinatorial complexity and, as a
consequence, of the memory requirements. The computation
of the 21st order does not fit in 4 GB of RAM, but would require
some increase of memory. These calculations are, however,
interesting by themselves, both because the unrenormalized
method is still generally (and too pessimistically) dismissed
as unwieldy beyond just the first few orders, and because
they provide a valuable cross check, through order 20, of the
results of the algebraically more complex vertex-renormalized
procedure, which remains necessary to push the calculation to
higher orders. Our improvements of the presently available HT
series in a field are summarized in Table III, in the case of the
sc and the bcc lattices. Similar extensions for the same class
of models, in the case of the simple quadratic lattice and for
bipartite lattices in d > 3 space dimensions, will be discussed
elsewhere. The series-expansions coefficients will be tabulated
in a separate paper.

The feasible correctness checks of our computations
are inevitably partial, because the extended expansions include
information much wider than that already available in the
literature. The easiest nontrivial check is that our procedure
yields the known bivariate expansion of the free energy for
the spin-1/2 Ising model in a finite field on the 1D lattice. Of
course, we have also checked that our results agree, through

TABLE III. Maximal order in K of the HT and low-field
expansions of the free energy for the models in the Ising universality
class considered in this note.

Existing data (Ref. 2) This work

sc lattice
Ising s = 1/2 17 24
Ising s > 1/2 0 24
φ4 0 24

bcc lattice
Ising S = 1/2 13 24
Ising s > 1/2 0 24
φ4 0 24
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their common extent, with the old data cited above1,2 for the
spin-1/2 Ising system in a magnetic field, both on the sc and
the bcc lattices. Otherwise, our results can only be compared
with the related data in zero field, in particular, with the HT
expansions of the free energy and its second field derivative,
both for the Ising model with general spin s and for the
scalar-field model, on the sc and the bcc lattices, which have
been tabulated15,16 through order K25, while the fourth field
derivative is already known15,16 through K23 for both lattices.
Our results agree, through their common extent, also with the
expansions of the sixth field derivative in zero field, tabulated39

up to order K19, and of the eighth field derivative, tabulated39

up to order K17, in the case of the spin-1/2 model on the bcc
lattice. We have finally checked that our expansions reproduce
the sc lattice calculations of the sixth field derivative (known
up to order K19), of the eighth (known up to order K17), and
of the tenth (known up to order K15) in the case of the sc
lattice scalar field with quartic self-coupling g = 1.1, which
have been tabulated in Ref. 14.

III. ASYMPTOTIC SCALING AND THE
EQUATION OF STATE

The hypothesis of asymptotic scaling40–44 for the singular
part Fs(τ,h) of the reduced specific free energy, valid as both
h and τ approach zero, can be expressed in the form

Fs(τ,h) ≈ |τ |2−αY±(h/|τ |βδ). (5)

where τ = (1 − Tc/T ) is the reduced temperature. The expo-
nent α specifies the divergence of the specific heat, β describes
the small τ asymptotic behavior of the spontaneous specific
magnetization M on the phase boundary (h → 0+,τ < 0),

M ≈ B(−τ )β, (6)

and B denotes the critical amplitude of M . The exponent
δ characterizes the small h asymptotic behavior of the
magnetization on the critical isotherm (h �= 0,τ = 0),

|M| ≈ Bc|h|1/δ, (7)

and Bc is the corresponding critical amplitude. For the expo-
nents α and β, we have assumed the values α = 0.110(1) and
β = 0.3263(4), obtained using the scaling and hyperscaling
relations, from the HT estimates15 of the susceptibility ex-
ponent γ = 1.2373(2) and of the correlation-length exponent
ν = 0.6301(2).

The functions Y±(w) are defined for 0 � w � ∞ and
have a power-law asymptotic behavior as w → ∞. The +
and − subscripts indicate that different functional forms are
expected to occur for τ < 0 and τ > 0. The usual scaling
laws follow from Eq. (5). The simplest consequence of
Eq. (5), which will be tested using our HT expansions, is that
the critical exponents of the successive derivatives of Fs(τ,h)
with respect to h at zero field are evenly spaced by the quantity
	 = βδ, usually called the “gap exponent.” More precisely, let
us define the zero-field n-spin connected correlation functions
at zero wave number (also called higher susceptibilities when
n > 2) by the equation

χn(K) = [∂nF(h,K)/∂hn]h=0 =
∑

s2,s3,...,sn

〈s1s2 · · · sn〉c. (8)

For odd values of n, these quantities vanish in the symmetric
HT phase, while they are nontrivial for all n in the broken-
symmetry LT phase. For even values of n in the symmetric
phase, and for all n in the broken phase, scaling implies that,
as T → T +

c along the critical isochore (h = 0,τ > 0) or, as
T → T −

c along the phase boundary, we have

χn(τ ) ≈ C±
n |τ |−γn(1 + b±

n |τ |θ + · · ·), (9)

where γn = γ + (n − 2)	, and b±
n and θ are, respectively,

the amplitude and the exponent that characterize the leading
nonanalytic correction to asymptotic scaling. The value45 θ =
0.52(2) has been estimated for the universality class of the 3D
Ising model. Assuming also the validity of hyperscaling, we
can conclude that 2	 = 3ν + γ .

An important bonus of our bivariate calculations is the
significant extension the HT expansions of the higher sus-
ceptibilities. As mentioned above, we have added one more
term to the existing16 HT expansion of χ4(K), five terms to
that39 of χ6(K), seven to that14 of χ8(K) and nine to that of
χ10(K). In the case of the susceptibilities of order 2n > 10,
no data were available so far, except those for the s = 1/2
Ising model, which can be derived from the expansions listed
in Table III. We have now extended, uniformly in the order,
the HT expansions of all higher susceptibilities χ2n(K) with
2n � 4, for several models in the 3D Ising universality class.
In this paper, we shall present only a preliminary analysis of
these quantities, while a more detailed discussion of our
bivariate expansions will be postponed to a forthcoming
article.

The scaling form of the ES, M = M(h,T ), relating the
external reduced magnetic field h, the reduced temperature τ ,
and the magnetization M , when h and τ approach zero, is
simply obtained by differentiating Eq. (5) for fs(τ,h) with
respect to h,

M ≈ −|τ |βY
(1)
± (h/|τ |βδ). (10)

Here we have used the relation γ = β(δ − 1). By further
differentiation of Eq. (10) with respect to the field, also the
higher susceptibilities are recognized to have a scaling form

χn(h,τ ) = (∂n−1M/∂hn−1) ≈ −|τ |−γnY
(n)
± (h/|τ |βδ). (11)

The hypothesis of universality states that, in addition to the
critical exponents, the function Y±(w), [and therefore also
its nth derivative Y

(n)
± (w)] is universal46 up to multiplicative

constants (metric factors47) that fix the scales of h and τ in
each particular model within a universality class. Accordingly,
one can conclude that a variety of dimensionless combinations
of critical amplitudes are universal.

The ES can also be written in the equivalent form40,41,48

h(M,τ ) ≈ M|M|δ−1f (τ/|M|1/β), (12)

in which a single scaling function f (x), universal up to
metric factors, describes both the regions τ < 0 and τ > 0.
The function h(M,τ ) is known48 to be regular analytic in
a neighborhood of the critical isotherm and of the critical
isochore. From general thermodynamic arguments48 one can
infer that f (x) is a positive monotonically increasing regular
function of its argument, in some interval −x0 � x � ∞, with
x0 > 0. Moreover, f (−x0) = 0. The local behavior of the
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function f (x) can be further determined, by the requirement
of consistency with the scaling laws, in terms of critical
amplitudes of quantities computable from our HT and LT
series. By differentiating this form of the ES with respect
to M , we get the asymptotic behavior f (x) ∝ xγ for large
positive x. Setting τ = 0, the ES reduces to Eq. (7) and
f (0) = B−δ

c . If h → 0 at fixed τ < 0, we expect to find
a nonvanishing spontaneous magnetization M , therefore the
ES implies that f (x) must vanish. Because f (−x0) = 0, we
have −τ/M1/β = x0 and, from Eq. (6), we conclude that
x0 = B−1/β . We can then fix the metric factors by normalizing
the field to B−δ

c and the reduced temperature to B−1/β . The
expansion of f (x) for large positive x is expressed in terms of
the critical parameters characterizing the HT side of the critical
point. The small x expansion, which uses the parameters of
the critical isotherm, and the negative x region related to
the parameters of the LT side of Tc, will be discussed in a
forthcoming paper presenting our analysis of the extended LT
expansions.

Summarizing the more detailed discussion of Ref. 19,
we can also observe that, in the large positive x (small
magnetization) region, where the magnetic field h(M,τ ) has
a convergent expansion in odd powers of M , the ES is more
conveniently expressed in terms of the variable z = Mτ−βx

β

0 .
The ES takes then the form

h(M,τ ) = h̄|τ |βδF (z), (13)

where h̄ is a constant and F (z) is normalized by the equation
F ′(0) = 1. The small z expansion of F (z) can be written as

F (z) = z + 1
6z3 + F5z

5 + F7z
7 + · · · . (14)

The coefficients F5,F7,... are defined by the equation
F2n−1 = r+

2n/(2n − 1)!, in terms of the ratios r+
2n that will be in-

troduced in the next section. They have been computed within
the RG approach,20,22 by the ε expansion (ε = 4 − d) up to
five loops, by the perturbative g expansion at fixed dimension
d = 3 up to the same order, by other RG approximations,23–25

by HT expansions,14,49 and by Monte Carlo methods.50,51 Our
estimates of the first few r+

2n by extended HT expansions are
listed in Table X.

A. A parametric form of the ES

A parametric form52–54 has been introduced to formulate
an approximate representation of the ES in the whole critical
region and as an aid in the comparison with the experimental
data. The parametrization is chosen to embody the analyticity
properties of h(M,τ ) and the scaling laws. These properties
make the parametric form convenient to approximate the ES
in the whole critical region by using only HT inputs, such as
the small z expansion equation (14) of F (z). In this approach,
the scaled field and the reduced temperature are expressed
as the following functions:

M = m0R
βθ, (15)

τ = R(1 − θ2), (16)

h = h0R
βδl(θ ), (17)

of generalized radial and angular coordinates R � 0 and
−θ0 � θ � θ0, with θ0 > 1 the smallest positive zero of the

function l(θ ). The radial coordinate R measures the distance
in the h,T plane from the critical point, and the angular
coordinate θ specifies a direction in this plane. Therefore, θ =
0 corresponds to the critical isochore, θ = ±1 is associated
to the critical isotherm, and θ = ±θ0 is associated to the
coexistence curve. The function l(θ ), normalized by l′(0) = 1,
is odd and regular for |θ | < θ0, as implied by the regularity of
f (x) and the invertibility of the above variable transformation
in this interval.

The variable z is then expressed as

z = ρθ

(1 − θ2)β
(18)

and the function F (z) of Eq. (14) is related to l(θ ) by

l(θ ) = 1

ρ
[(1 − θ2)β+γ F (z(θ ))]. (19)

Here ρ = m0x
β

0 is a positive constant related to the arbitrary
normalization constant m0 appearing in Eq. (15). If F (z) were
exactly known, the corresponding l(θ ) given by Eq. (19) should
not depend on ρ. However, the polynomial truncations of l(θ )
that can be formed from the first few available terms of the
expansion equation (14) of F (z) will have coefficients l2n+1(ρ)
depending not only on the coefficients F5,F7, . . . and on the
exponents β and γ , but also on ρ.

In particular,19 expanding both sides of Eq. (19), one obtains

l3(ρ) = 1
6ρ2 − γ, (20)

l5(ρ) = 1
2γ (γ − 1) + 1

6 (2β − γ )ρ2 + F5ρ
4, (21)

l7(ρ) = − 1
6γ (γ − 1) (γ − 2) + 1

12 (2β − γ ) (2β − γ + 1)ρ2

+ (4β − γ )F5ρ
4 + F7ρ

6, (22)

l9(ρ) = 1
24γ (γ − 1) (γ − 2) (γ − 3)

+ 1
36 (2β − γ )(2β − γ + 1)(2β − γ + 2)ρ2

+ 1
2 (4β − γ )(4β − γ + 1)F5ρ

4

+ (6β − γ )F7ρ
6 + F9ρ

8, (23)

etc.
The dependence on ρ of the coefficients l2n+1 has been

exploited to improve the approximation of l(θ ). A first
approach consists in fixing ρ to the value ρm that minimizes19

the modulus of the highest-order expansion coefficient l2n+1(ρ)
of l(θ ) that can be determined reliably from the available
coefficients F2n−1. A second method14 is based on computing
some universal combinations of critical amplitudes in terms
of l(θ ) and then in choosing for ρ the unique value that
makes all such quantities stationary. We may follow this
route and consider, for example, the dependence on ρ of
the universal ratio of the susceptibility amplitudes above and
beneath Tc, namely, C+

2 /C−
2 , and of the ratios C+

4 B2/(C+
2 )3

and C+
2 Bδ−1/Bδ

c . If we plot these quantities versus ρ2, we
obtain Fig. 1, which indicates that the choice ρ2 = 2.615
should be optimal. Then, using the central values both of the
coefficients F2n−1 up to n = 7, as obtained from our Table X,
and of the exponents β and γ as indicated above and fixing
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FIG. 1. A plot vs the parameter ρ2, of the universal combinations
of critical amplitudes C+

2 /C−
2 (upper curve), C+

2 Bδ−1/Bδ
c (middle

curve), and C+
4 B2/(C+

2 )3 (lower curve) obtained from the truncated
polynomial approximation of l(θ ), Eq. (24). The computation is based
on the coefficients F2n−1 with n = 1, . . . ,7, estimated in this work.
For convenience, the curves are normalized to their minimum values.

ρ to its optimal value, the following form of l(θ ) can be
determined:

l(θ ) ≈ θ − 0.8014(50)θ3 + 0.009 46(30)θ5 + 0.001 41(40)θ7

+ 0.000 29(10)θ9 − 0.000 11(5)θ13. (24)

Here we have neglected the term in θ11, whose coefficient is
O(10−6), and have indicated the last three terms only to show
that their contribution in the interval of interest |θ | < θ0 is very
small. The function l(θ ) vanishes at θ = θ0 ≈ ±1.1273.

The analogous result for this auxiliary function obtained in
Ref. 20, fixing ρ by the first method and choosing the values
β = 0.3258(14) and γ = 1.2396(13) of the critical exponents,
is

l(θ ) ≈ θ − 0.762(3)θ3 + 0.0082(10)θ5, (25)

which vanishes at θ ≈ ±1.1537. In this case, the coefficients
F2n−1 were obtained by a RG five-loop perturbation expansion
in d = 3. On the other hand, computing the F2n−1 by the RG
ε expansion to fifth order and choosing β = 0.3257(25) and
γ = 1.2355(50) leads20 to

l(θ ) ≈ θ − 0.72(6)θ3 + 0.0136(20)θ5. (26)

More recently, in Ref. 14, using values of the exponents
very near to those used in our paper, and deriving the F2n−1

from a HT expansion of sc-lattice scalar-field models with
self-couplings appropriately chosen to suppress the leading
correction to scaling, the following expression was obtained,

l(θ ) ≈ θ − 0.736 743θ3 + 0.008 904θ5 − 0.000 472θ7, (27)

which vanishes at θ ≈ ±1.1741. As stressed in Refs. 19
and 20, the alternative forms, Eqs. (24)–(27), cannot be
directly compared, because they are associated to different

TABLE IV. Some universal amplitude combinations obtained
in this work from the parametric form Eq. (24) of the ES. For
comparison, we have reported also the results obtained from the
parametric form Eq. (27) of the ES in Ref. 14, based on shorter HT
expansions, and from the parametric forms, Eqs. (25) and (26) in
Ref. 20. The latter representations were obtained, either from the RG
ε expansion or from the g expansion, choosing values of the exponents
slightly different from those used to get the estimates listed in the first
two rows.

Universal ratios A+/A− C+
2 /C−

2 αA+C+
2 /B2 C+

2 Bδ−1/Bδ
c

This work 0.530(3) 4.78(3) 0.0563(5) 1.66(2)
Ref. 14 0.529(6) 4.78(5) 0.0562(1) 1.665(10)
ε expans. (Ref. 20) 0.527(37) 4.73(16) 0.0569(35) 1.648(36)
g expans. (Ref. 20) 0.537(19) 4.79(10) 0.0574(20) 1.669(18)
MC (Ref. 27) 4.756(28) 1.723(13)
MC (Ref. 57) 0.536(2) 4.713(7)
MC (Ref. 58) 4.75(3)
MC (Ref. 56) 0.540(10) 4.67(3)
MC (Ref. 55) 0.532(7)

parametrizations (different values of ρ). One should rather
compare the universal predictions obtained from them, for
example, for the universal amplitude combinations, which we
have reported in Tables IV and V.

In the Table IV, A+ and A− denote the amplitudes of the
specific heat above and beneath Tc. Our estimates are compared
with the corresponding ones obtained20 from the polynomials
l(θ ) in Eqs. (25) and (26) and with those obtained14 from
Eq. (27). The results from the various approaches show a good
overall consistency. In Table IV, we have reported also a few
recent27,55–57 Monte Carlo estimates, for the ratios A+/A−,
C+

2 Bδ−1/Bδ
c , and C+

2 /C−
2 . It is worth to remark that the

computation of the first quantity is difficult, because the weak
singularity of the specific heat forces to extend the simulation
very close to the critical point. The recent estimates55–57 of this
ratio, in the range 0.532(7)–0.540(4), based on simulations
of large lattices, might now supersede older results, which
were ≈6% larger, thus improving the agreement with the ES
estimates of Table IV. Also the second ratio, involving the
amplitude Bc of Eq. (7) is difficult to measure by simulations,
for similar reasons. The result of Ref. 27 is somewhat larger
than the estimates from the ES. In the case of the third ratio,

TABLE V. More universal amplitude combinations obtained in
this work from the parametric form Eq. (24) of the ES. For
comparison, we have reported also the results obtained from the
parametric form Eq. (27) of the ES in Ref. 14, based on shorter HT
expansions, and from the parametric forms Eqs. (25) and (26) in
Ref. 20. They were obtained, either from the RG ε expansion or from
the g expansion, choosing values of the exponents slightly different
from those used to get the estimates listed in the first two rows.

Universal ratios −C+
4 B2/(C+

2 )3 C+
4 /C−

4 −C−
3 B/(C−

2 )2

This work 7.8(1) −9.2(3) 6.015(15)
Ref. 14 7.83(4) −9.3(5) 6.018(20)
ε expans. (Ref. 20) 8.24(34) −8.6(1.5) 6.07(19)
g expans. (Ref. 20) −9.1(6) 6.08(6)
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the recent simulations27,56,57 have changed the previous larger
estimates to values in a range closer to the ES results. It should
be noted that the simulations of Refs. 27 and 57 are performed
on models on the sc lattice with reduced corrections to scaling
such as the φ4 model27 and the Blume-Capel model.57 On the
other hand, the simulations of Refs. 55, 56, and 58 are based
on the conventional sc lattice s = 1/2 Ising model. In these
tables, we have not reported the few available experimental
measures of some of these combinations, nor the estimates
based on a direct evaluation of the amplitudes by LT and HT
expansions. These data, tabulated in Refs. 14, 19, 20, and 47,
are completely compatible with the ES results of Tables IV and
V, but sometimes the comparison is not stringent, owing to the
still large uncertainties. Therefore, it will be useful to improve
the series determinations of the amplitudes on the critical
isotherm and on the coexistence curve, exploiting our extended
bivariate LT expansions of the free energy for the spin-s Ising
models. A more detailed analysis of our results, along with
estimates of other universal amplitude combinations, and a

wider comparison among the results in the literature is deferred
to a forthcoming paper.

B. The HT zero-momentum renormalized couplings

The HT expansions of the higher susceptibilities41 will be
used to evaluate their critical amplitudes C+

n , defined in Eq. (9),
and correspondingly the critical limits of the zero-momentum
n-spin dimensionless HT renormalized couplings (RCCs).
These quantities enter into the approximate representations
of the scaling ESs, Eqs. (10) and (12).

In the HT phase the first few 2n spin RCCs are defined as
the critical limits as K → K−

c of the following expressions:

g+
4 (K) = − V

ξ 3(K)

χ4(K)

χ2
2 (K)

, (28)

g+
6 (K) = V 2

ξ 6(K)

[
− χ6(K)

χ3
2 (K)

+ 10

(
χ4(K)

χ2
2 (K)

)2
]

, (29)

g+
8 (K) = V 3

ξ 9(K)

[
− χ8(K)

χ4
2 (K)

+ 56
χ6(K)χ4(K)

χ5
2 (K)

− 280

(
χ4(K)

χ2
2 (K)

)3]
, (30)

g+
10(K) = V 4

ξ 12(K)

[
−χ10(K)

χ5
2 (K)

+ 120
χ8(K)χ4(K)

χ6
2 (K)

+ 126
χ2

6 (K)

χ6
2 (K)

− 4620
χ6(K)χ2

4 (K)

χ7
2 (K)

+ 15 400

(
χ4(K)

χ2
2 (K)

)4]
, (31)

g+
12(K) = V 5

ξ 15(K)

[
−χ12(K)

χ6
2 (K)

+ 220
χ10(K)χ4(K)

χ7
2 (K)

+ 792
χ8(K)χ6(K)

χ7
2 (K)

− 171 60
χ8(K)χ2

4 (K)

χ8
2 (K)

− 36 036
χ2

6 (K)χ4(K)

χ8
2 (K)

+ 56 0560
χ6(K)χ3

4 (K)

χ9
2 (K)

− 140 1400

(
χ4(K)

χ2
2 (K)

)5]
, (32)

g+
14(K) = V 6

ξ 18(K)

[
−χ14(K)

χ7
2 (K)

+ 364
χ12(K)χ4(K)

χ8
2 (K)

− 50 050
χ10(K)χ2

4 (K)

χ9
2 (K)

+ 2002
χ10(K)χ6(K)

χ8
2 (K)

+ 1716
χ2

8 (K)

χ8
2 (K)

+32 032 00
χ8(K)χ3

4 (K)

χ10
2 (K)

− 360 360
χ8(K)χ6(K)χ4(k)

χ9
2 (K)

− 126 126
χ3

6 (K)

χ9
2 (K)

+ 10 090 080
χ2

6 (K)χ2
4 (K)

χ10
2 (K)

−95 295 200
χ6(K)χ4

4 (K)

χ11
2 (K)

+ 190 590 400

(
χ4

χ2
2 (K)

)6]
. (33)

Here ξ (K) is the second moment correlation length, defined
by

ξ 2 = μ2

6χ2
, (34)

with μ2 the second moment of the correlation function
expressed as

μ2 =
∑
sx

x2〈s0sx〉c. (35)

Both the HT expansions of χ (K) and μ2(K) are tabulated,15,16

through order K25, for the spin-s Ising models and for the
lattice scalar field.

The volume V per lattice site takes the value 1 for the
sc lattice and 4/3

√
3 for the bcc lattice. The definitions of the

quantities g+
2n(K) given here differ by a factor (2n)! from those

of Ref. 49.
Also the quantities,

I+
2n+4(K) = χn

2 (K)χ2n+4(K)

χn+1
4 (K)

, (36)

with n � 1, whose critical values are the universal amplitude
combinations first described46 in the literature, and the closely
related quantities

r+
2n(K) = g+

2n(K)

g+
4 (K)n−1

, (37)
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which share the computational advantage of being independent
of the correlation length, will be of relevance in what follows.
The finite critical limits g+

n , r+
2n, and I+

2n+4 of the RCCs, of
the ratios r+

2n(K) and of the quantities I+
2n+4(K), represent

universal combinations of HT amplitudes that should be
considered together with those listed in Tables IV and V.
We have not included the expressions of higher-order RCCs,
because, in spite of our extensions, the available series might
not yet be long enough to determine safely their critical limits.
One should notice that, from the point of view of numerical
approximation, the g+

2n, and also the quantities derived from
them such as r+

2n, are difficult to compute, unless 2n is small,
because they result from relatively small differences between
large numbers. These estimates can be reliable provided that
the uncertainties of the large numbers are much smaller
than their difference. For the same reason, these quantities
are notoriously even more difficult to compute by stochastic
methods.

IV. METHODS AND RESULTS OF THE SERIES ANALYSIS

A. Extrapolation methods

In the numerical analysis of the series expansions of
physical quantities, we shall follow two procedures aimed to
determine the critical parameters, namely, the values of these
quantities at the critical point, whenever they are finite, or if
they are singular, the locations, amplitudes, and exponents of
the critical singularities on (or nearby) the convergence disk
in the complex K plane.

A first procedure used in our series analysis is the dif-
ferential approximant (DA) method,59 a generalization of the
well-known Padé approximant method59 having a wider range
of application. In this approach, the values of the quantities or
the parameters of the singularities can be estimated from the
solution, called a differential approximant, of an initial value
problem for an appropriate ordinary linear (first- or higher-
order) inhomogeneous differential equation. This equation
has polynomial coefficients defined in such a way that the
series-expansion coefficients of its solution equal, up to a
certain order, those of the series under study. Various possible
equations and therefore various DAs can be formed by this
prescription. They are usually identified by the sequence of
the degrees of the polynomial coefficients of the equation.
The approximants are called first-order, second-order DAs,
etc., according to the order of the defining equation. The
convergence of the procedure, in the case of the Ising models,
can be improved by first performing in the series expansions
the variable transformation60

z = 1 − (1 − K/Kc)θ , (38)

aimed at reducing the influence of the leading corrections
to scaling. Here θ is the exponent that characterizes these
corrections. A sample of estimates of the parameters of
the critical singularity is obtained from the computation of
many high-order “quasidiagonal” DAs, namely, approximants
with small differences among the degrees of the polynomial
coefficients of the defining differential equation, which use all
or most of the given series coefficients. A first estimate of a
parameter, along with its uncertainty, results from computing

the sample average and standard deviation. The result can then
be improved by discarding from the sample single estimates
that appear to be obvious outliers, and recomputing the average
of the reduced sample. A conventional guess of the uncertainty
of the parameter estimate is finally obtained simply, and rather
roughly, as a small multiple of the spread of the reduced
sample around its mean value. This subjective prescription
might, to some extent, allow for the difficulty to infer possible
systematic errors, and to extrapolate reliably a possible residual
dependence of the estimate on the maximum order of the
available series.

A second approach is based on a faster converging modifi-
cation of the standard analysis of ratio sequence of the series
coefficients and will be denoted here as the modified ratio
approximant (MRA)28,59 technique. Let us assume that the
singularity of a physical quantity, which is nearest to the origin
of the complex K plane, is the critical singularity, located
at Kc, and characterized by the critical exponent λ and the
exponent θ of the leading correction to scaling (this hypothesis
is generally not satisfied for the LT series). Then Eq. (9)
implies the following large r behavior of the series-expansion
coefficients cr :

cr = C
rλ−1

�(λ)
K−r

c

[
1 + �(λ)

�(λ − θ )

b

rθ
+ O(1/r)

]
. (39)

In this case, the MRA method evaluates Kc by estimating the
large r limit of the approximant sequence

(Kc)r =
(

cr−2cr−3

crcr−1

)1/4

exp

[
sr + sr−2

2sr (sr − sr−2)

]
(40)

with

sr =
[

ln

(
c2
r−2

crcr−4

)−1

+ ln

(
c2
r−3

cr−1cr−5

)−1]/
2. (41)

By using the asymptotic form Eq. (39), we can obtain16

the large r asymptotic behavior of the sequence of MRA
approximants of the critical inverse temperature,

(Kc)r = Kc

[
1 − �(λ)

2�(λ − θ )

θ2(1 − θ )b

r1+θ
+ O(1/r2)

]
. (42)

The method estimates also the critical exponent λ from the
sequence

(λ)r = 1 + 2
(sr + sr−2)

(sr − sr−2)2
, (43)

with sr defined by Eq. (41). In this case, the large r asymptotic
behavior of the sequence (λ)r is

(λ)r = λ − �(λ)

�(λ − θ )

θ (1 − θ2)b

rθ
+ O(1/r). (44)

If the available series expansions are sufficiently long (how
long cannot unfortunately be decided a priori), the estimates of
the critical points and exponents obtained from extrapolations
based on Eqs. (42) and (44) can be competitive in precision
with those from DAs. If, on the other hand, the series are
only moderately long or the exponent λ � 1, then corrections
of order higher than 1/r1+θ in Eq. (42) [or higher than 1/rθ

in Eq. (44)] might still be non-negligible. The same remark
applies if the O(1/r) terms in Eq. (39) are not sufficiently
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small. Therefore, in some cases, Eqs. (42) and (44) might be
inadequate to extrapolate the behavior of the few highest-order
terms of the MRA sequences.

B. Critical parameters of the higher susceptibilities

For both methods sketched above, the main difficulties of
the numerical analysis of the HT expansions are related to
the presence of the leading nonanalytic corrections to scaling
that appear in the near-critical asymptotic forms of all physical
quantities. It was, however, observed28,29 that the amplitudes of
these corrections are nonuniversal and therefore, by studying
families of models expected to belong to the same universality
class, one might be able to single out special models for which
these amplitudes have a very small or vanishing size. These
models would then be good candidates for a high-accuracy
determination of the critical parameters of interest. In the
literature, various models that share this property to a good
approximation have been subjected to analysis: among them,
the lattice φ4 model on the sc lattice with the value g = 1.1 of
the quartic self-coupling,14,61 or the same model on the bcc lat-
tice with the self-coupling15 g = 1.85. Also the spin-s = 1 and

FIG. 2. The sequences of MRAs of the critical point for the
scalar-field model with self-coupling g = 1.1 on the sc lattice, plotted
vs 1/r1+θ . Here r is the order of the approximant and θ is the exponent
of the leading correction to scaling. We have normalized the MRAs
to the estimated value of Kc. The MRAs are obtained from the HT
expansions of χ2(K) (stars), χ4(K) (circles), χ6(K) (triangles), χ8(K)
(rhombs), χ10(K) (rotated squares), χ12(K) (squares), χ14(K) (double
triangles), χ16(K) (rotated triangles), χ18(K) (crossed circles), χ20(K)
(crossed squares), and χ22(K) (crossed triangles). The symbols
representing the MRAs are connected by straight lines as an aid to
the eye. Small vertical segments on the third, fourth, and fifth curve
from above indicate the order at which our extension of the χ6(K),
χ8(K), and χ10(K) series begins to contribute to the MRAs. The six
lowest curves refer to higher susceptibilities for which no data exist
in the literature.

s = 3/2 Ising systems on the bcc lattice16 show very small cor-
rections to scaling. All these models will be considered here.

An accurate estimate 2	 = 3.1276(8) of the gap exponent
that improves the four-decade-old4 estimate 2	 = 3.126(6),
based on 12th-order series, had been already obtained from the
known 23rd-order HT expansions of χ4(K) for the spin-s Ising
models16 and for the lattice scalar field,15 on the sc and bcc
lattices. The addition of a single coefficient to the expansion of
χ4(K) does not urge resuming a full discussion of the estimates
of this exponent and of the validity of hyperscaling on the HT
side of the critical point, already tested with good precision in
Refs. 15, 16, and 62.

To get some feeling of the reliability of the estimates
that can be obtained from a study of our HT expansions
of the higher susceptibilities χ2n(K), it is convenient to test
how accurately the critical inverse temperature Kc and the
critical exponents γ2n can be determined from them by using
MRAs. Let us, for example, consider the above-mentioned
self-interacting lattice scalar-field model of Eq. (2) on the
sc lattice with quartic self-coupling g = 1.1. In Fig. 2, we
have plotted versus r1+θ the sequences of the MRA estimates
(Kc)r for Kc, as obtained from the HT expansions of χ2n(K)
with 2n = 2,4, . . . ,22. The MRA sequences are normalized
by the appropriate limiting value of the sequence (Kc)r ,
estimated in Ref. 16 and reported in Table VI, to make

FIG. 3. As a simple consequence of the scaling hypothesis, the
exponent differences Dn = γ2n − γ2n−2 should not depend on n and
equal 2	. Here they are obtained by forming second-order DAs of
the ratios χ2n(K)/χ2n−2(K) for n = 2,3,4, . . . ,11, obtained from the
expansions of the bcc lattice Ising model with spin s = 1/2 (circles),
s = 1 (triangles), s = 3/2 (rhombs), s = 2 (stars), s = 5/2 (squares),
and s = 3 (crossed circles). For each value of n, the symbols referring
to the various values of the spin s have been slightly shifted apart to
avoid cluttering and keep the uncertainty of each estimate visible. The
dashed horizontal line represents the estimated (Ref. 16) value 2	 =
3.1276(8) of twice the gap exponent. The continuous horizontal lines
indicate a relative deviation of 0.5% from the expected central value.
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TABLE VI. Estimates (Refs. 15 and 16) of the critical inverse-temperatures Kc used in our study of the Ising systems with spin s

and of the lattice scalar-field systems, on the sc and the bcc lattices.

s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3 φ4

K sc
c 0.221 655(2) 0.312 867(2) 0.368 657(2) 0.406 352(3) 0.433 532(3) 0.454 060(3) 0.375 097(1)

Kbcc
c 0.157 3725(10) 0.224 656(1) 0.265 641(1) 0.293 255(2) 0.313 130(2) 0.328 119(2) 0.244 1357(5)

them easily comparable with the corresponding sequences
obtained from other models in the same universality class.
The choice of the plotting variable is suggested by Eq. (42).
For the susceptibilities of order 2n � 6, the curves indicate
the presence of strong corrections O(r−σ ), with σ between
3 and 5, and show that simply using Eq. (42), at the present
orders of expansion, would be inadequate for extrapolating
to r → ∞ the MRA sequences. No significant quantitative
difference in behavior is observed in the analogous plots
for the other models examined in this study, even for those
with non-negligible amplitudes of the leading corrections to
scaling. On the contrary, in other cases, for example, for the
Ising model with spin-s = 1/2 or s = 1 on the bcc lattice, the
convergence looks even slightly faster. From these plots one
may conclude that, as the order 2n of the susceptibility χ2n(K)
grows, increasingly long expansions are needed49 in order that
the MRA sequences reach the asymptotic form Eq. (42) and
therefore a given precision can be achieved in the estimate of

FIG. 4. Same as Fig. 3. In this case, the differences Dn = γ2n −
γ2n−2 have been computed from the HT expansions of the higher
susceptibilities for the lattice scalar-field theory with values of the
quartic self-coupling, g = 1.1 on the sc lattice (black squares) and
g = 1.85 on the bcc lattice (black circles). These values of g are
chosen to minimize the leading corrections to scaling. As in Fig. 3,
for each value of n, the symbols referring to the sc and the bcc
estimates have been slightly shifted apart. The dashed horizontal line
represents the estimated (Ref. 16) value 2	 = 3.1276(8) of twice
the gap exponent. The continuous horizontal lines indicate a relative
deviation of 0.5% from the central value.

Kc. The general features of this behavior can be tentatively
explained, arguing49 that the dominant contributions to the
HT expansion of χ2n(K), at a given, sufficiently large,
order Kr , come from those spin correlation functions in the
sum of Eq. (8), for which the average distance among the
spins is ≈ r/2n. Accordingly, it seems that the presently
available expansions of the quantities χ2n(K), in spite of
having the same number of coefficients, might not have the
same “effective length,” because they describe systems that
are, in some sense, rather “small,” the more so the larger is 2n.
One might conclude that the estimates of the critical quantities,
derived from the χ2n(K), should probably be taken with some
caution for large n, even in the case of models with very small
leading corrections to scaling. However, in what follows, we
shall observe that, in some cases, in spite of these difficulties,
the DAs seem to yield smooth and reasonable extrapolations
of these series to the critical point.

FIG. 5. The renormalized coupling constant g+
4 for the Ising

model with spin s on the bcc lattice (circles) and on the sc lattice
(squares) vs the value s of the spin. The HT expansions of the Ising
systems have been subjected to the variable transformation Eq. (38).
For comparison, we have also computed g+

4 for the scalar model
with the value g = 1.1 of the quartic self-coupling on the sc lattice
(black square) and with g = 1.85 on the bcc lattice (black circle). The
latter estimates are plotted with conventional abscissas near zero. In
all cases, the symbols of the sc and bcc estimates for each value
of s, have been slightly shifted apart to avoid superpositions and to
keep the uncertainty of each estimate visible. The dashed horizontal
line represents the value g+

4 = 23.56(3) estimated in Ref. 15. The
continuous horizontal lines indicate a relative deviation of 0.2% from
the central value.
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C. Scaling and the gap exponent

For Ising models on the bcc lattice with spin s =
1/2,1, . . . ,3, we have computed the sequences of estimates
of the exponent differences Dn = γ2n − γ2n−2, with n =
2,3, . . . ,11. These estimates are obtained from second-order
DAs of the ratios χ2n(K)/χ2n−2(K), which use at least 19
series coefficients. We have imposed that the critical inverse
temperatures, for the various spin systems, take the appropriate
values,16 listed in Table VI. In Fig. 3, the exponent differences
Dn are plotted versus n. We have observed above that, as
a simple consequence of the scaling hypothesis, when the
maximum order of the available HT series grows large, the Dn

should all converge to the same value, equal to twice the gap
exponent 	, thus being independent of the order 2n of the
higher susceptibilities entering into the calculation. For some
particular values of the spin, e.g., s = 1 and s = 3/2, our
central estimates depart by less than 0.1% from the expected
result, for all values of n considered here. For other values of
the spin, e.g., s = 1/2, a residual spread of the data remains,
which, however, is quite compatible with the errors owing to
the finite length of the series and to the likely presence of
sizable corrections to scaling, particularly when n is large.
This computation can be repeated, with similar results, but
somewhat larger error bars, for the spin-s Ising system on the
sc lattice. We have shown in Fig. 4 the results of the same
computation for the two scalar-field systems with suppressed
leading corrections to scaling studied here. In view of the above
remarks concerning the effective length of the expansions of
the χ2n(K), our results confirm the expectation that, in general,
the uncertainties of the results should grow with n. It should be
noted that, both in the case of the spin-s Ising system and of the

scalar-field system, the bcc lattice expansions have a distinctly
smoother and more convergent behavior than for the sc lattice,
on a wider range of values of the order 2n of the susceptibilities,
probably because the coordination number of the bcc lattice
is larger. In conclusion, our results support the validity of the
scaling property, while the rather accurate independence of the
estimates of the gap exponent on the lattice structure and, in
the case of the Ising models, on the value s of the spin, is a
valuable indication of universality. Finally, it is worth to stress
that the results of Figs. 3 and 4 for n � 4 would be difficult to
obtain by numerical approaches other than series expansions.

D. The ratios r+
2n and the critical amplitudes

of the higher susceptibilities

In Ref. 4 the critical amplitudes C+
2n of the higher sus-

ceptibilities were estimated from 12th-order series, for the
simple s = 1/2 Ising model, assuming the now outdated values
γ = 5/4 and 	 = 25/16 for the exponents. These series were
not long enough that any estimate of the uncertainties could
be tried. It is then worthwhile to update the estimates of these
amplitudes by using our twice as long expansions and biasing
the extrapolations by the more precise modern estimates of the
exponents and the critical temperatures cited above. We can,
moreover, obtain the corresponding information also for the
other models under scrutiny. The critical amplitudes C+

2n with
n > 2 can also be evaluated, with results consistent within their
errors, in terms of C+

2 , C+
4 and of the universal critical values

I+
2n+4 of the quantities defined by Eq. (36). In this approach

only the estimates of C+
2 and C+

4 need to be biased with both
the critical temperatures and the exponents, while, of course,

TABLE VII. Our final estimates, by first-order DAs, of the critical amplitudes, f +
ξ of the second-moment correlation length, Eq. (34), and

C+
2n of the susceptibilities χ2n(K), Eq. (9), on the HT side of the critical point, for Ising models with various values s of the spin on the sc and

the bcc lattices and for the lattice scalar field with φ4 self-interaction. The quartic self-coupling has the value g = 1.1 for the sc lattice, while
g = 1.85 for the bcc lattice. For convenience, following Ref. 4, we have reported the value of C2n/(2n)!.

s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3 φ4

bcc
f +

ξ 0.4681(3) 0.4249(1) 0.4107(2) 0.4043(1) 0.4010(1) 0.3989(2) 0.4146(1)

C+
2 /2! 0.5202(9) 0.3105(6) 0.2481(5) 0.2186(5) 0.2019(5) 0.1910(4) 0.2741(7)

C+
4 /4! −0.1416(9) −0.0377(1) −0.02175(7) −0.0161(1) −0.0134(1) −0.01180(8) −0.02728(8)

C+
6 /6! 0.1224(9) 0.014 55(8) 0.006 05(4) 0.003 77(6) 0.002 82(4) 0.002 31(3) 0.008 62(8)

C+
8 /8! −0.150(3) −0.007 98(9) −0.002 40(2) −0.001 25(3) −0.000 845(9) −0.000 646(7) −0.003 87(3)

C+
10/10! 0.22(1) 0.0052(1) 0.00113(1) 0.000497(9) 0.000301(5) 0.000215(3) 0.00207(4)

C+
12/12! −0.35(5) −0.0037(1) −0.00059(2) −0.00022(2) −0.000119(5) −0.000079(3) −0.00123(4)

C+
14/14! 0.57(9) 0.0029(2) 0.00032(3) 0.000101(8) 0.000050(3) 0.000031(2) 0.00077(5)

sc
f +

ξ 0.5070(5) 0.4588(4) 0.4429(4) 0.4356(4) 0.4317(5) 0.4294(5) 0.4151(1)

C+
2 /2! 0.5608(9) 0.338(2) 0.270(2) 0.239(1) 0.220(1) 0.208(1) 0.2384(7)

C+
4 /4! −0.1608(5) −0.0432(2) −0.0249(2) −0.01847(9) −0.0153(1) −0.0135(1) −0.01595(3)

C+
6 /6! 0.146(3) 0.0175(2) 0.007 29(4) 0.004 54(3) 0.003 39(1) 0.002 77(2) 0.003 39(1)

C+
8 /8! −0.187(9) −0.0101(2) −0.003 02(5) −0.001 58(3) −0.001 06(2) −0.000 809(9) −0.001 02(1)

C+
10/10! 0.26(6) 0.0069(3) 0.001 48(6) 0.000 655(9) 0.000 393(9) 0.000 279(9) 0.000 367(6)

C+
12/12! −0.19(9) −0.0049(9) −0.000 79(9) −0.000 30(3) −0.000 162(8) −0.000 107(6) −0.000 146(5)

C+
14/14! 0.026(9) 0.0016(9) 0.000 34(9) 0.000 13(4) 0.000 066(9) 0.000 041(8) 0.000 061(4)
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TABLE VIII. Estimates of the amplitudes C+
2n Eq. (9), tabulated

in Ref. 4 without indication of error and only in the case of the Ising
model with s = 1/2.

C+
2 /2! C+

4 /4! C+
6 /6! C+

8 /8! C+
10/10! C+

12/12!

sc lattice 0.5299 −0.1530 0.1366 −0.1722 0.2601 −0.4526
bcc lattice 0.4952(5) −0.1385 0.1169 −0.1397 0.2023 −0.3297

the estimates of I+
2n+4 have to be biased only with the critical

temperatures. Our final estimates for the amplitudes C+
2n are

collected in the Table VII. The results of Ref. 4 are reproduced
for comparison in Table VIII.

We have estimated the critical values of the HT expansions
of the RCCs either directly, by extrapolation49,62 to K−

c of the
simple auxiliary function

w2n(K) = (K/Kc)
3n−3

2 g+
2n(K), (45)

designed to be regular at K = 0, and therefore more convenient
to study by DAs, or, more conveniently, but with consistent
results, from the computation of the quantities r+

2n using
Eq. (37). In Fig. 5, our estimates for g+

4 are plotted versus
the value s of the spin for Ising systems on the sc and the bcc
lattices and compared to our previous estimate g+

4 = 23.56(3)
(dashed line) in Ref. 15. In the same figure, we have also shown
the values of g+

4 for the scalar-field model on both lattices.
Table IX lists our estimates of the quantities I+

2n+4 and
r+

2n, obtained from first- and second-order DAs, for a few

FIG. 6. The ratio r+
6 for the Ising model with spin s on the bcc

lattice (circles), for the Ising model with spin s on the sc lattice
(squares) vs the spin. The expansions for the Ising systems have
been subjected to the variable transformation Eq. (38). The symbols
of the sc and the bcc estimates, for each value s of the spin, have
been slightly shifted apart to avoid superpositions and to keep the
uncertainties of each estimate visible. For comparison, we have also
computed r+

6 for the scalar model with g = 1.1 on the sc lattice (black
square) and with g = 1.85 on the bcc lattice (black circle). The latter
estimates are plotted with conventional abscissas near zero.

FIG. 7. Same as Fig. 6, but for r+
8 .

spin-s Ising systems and for the lattice scalar field, on the
sc and the bcc lattices. We have imposed that the critical
inverse temperatures take the appropriate values reported in
Table VI and that an antiferromagnetic singularity is present
at −Kc. Only for the spin-s Ising models, we have taken
advantage of the variable transformation Eq. (38) to reduce
the uncertainties of the estimates and the spread among the
central values for different spins. We have always taken care
that the uncertainties of our results allow for the errors of
the critical temperatures listed in Table VI and, whenever the
variable transformation Eq. (38) is performed, also for the error
of the exponent θ .

In Figs. 6–10 we have plotted versus the spin, our estimates
of the quantities r+

6 , r+
8 , r+

10, r+
12, and r+

14 for the Ising models
of spin s = 1/2, . . . ,3 on the sc and the bcc lattices. In

FIG. 8. Same as Fig. 6, but for r+
10.
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TABLE IX. Our final estimates of the universal critical values r+
2n of the quantities r2n(K), with 3 � n � 7, for Ising models with various

values s of the spin and for the scalar field with φ4 self-interaction, on the sc and the bcc lattices. The quartic self-coupling has the value
g = 1.1 for the sc lattice, while g = 1.85 for the bcc lattice. We have also reported the values of the universal amplitude ratios I+

2n+4/(2n + 2)!,
with 1 � n � 5.

bcc lattice s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3 φ4

g+
4 23.56(4) 23.54(3) 23.54(3) 23.54(3) 23.54(2) 23.54(2) 23.56(1)

r+
6 2.064(8) 2.061(9) 2.063(5) 2.062(5) 2.062(5) 2.062(5) 2.061(2)

r+
8 2.54(5) 2.64(5) 2.61(4) 2.60(4) 2.59(4) 2.58(5) 2.54(4)

r+
10 −15.1(9) −15.0(5) −15.4(6) −15.9(7) −16.1(8) −16.3(8) −15.2(2)

r+
12 45(7) 40(5). 44(5) 48(6) 51(7) 53(8) 44(3)

r+
14 1504(240) 1490(115) 1359(82) 1366(100) 1319(100) 1300(100) 1615(120)

I+
6 /4! 0.3307(3) 0.3308(5) 0.3307(2) 0.3307(2) 0.3307(2) 0.3308(2) 0.3308(1)

I+
8 /6! 0.2319(6) 0.2319(5) 0.2320(4) 0.2320(4) 0.2320(4) 0.2320(4) 0.2321(2)

I+
10/8! 0.1667(2) 0.1668(3) 0.1666(2) 0.1664(3) 0.1666(4) 0.1669(5) 0.1667(2)

I+
12/10! 0.1216(3) 0.1215(1) 0.1216(2) 0.1214(2) 0.1214(3) 0.1215(2) 0.1213(3)

I+
14/12! 0.0894(2) 0.0892(2) 0.0894(3) 0.0894(3) 0.0893(3) 0.0893(3) 0.0897(6)

sc lattice
g+

4 23.59(4) 23.57(6) 23.56(2) 23.55(4) 23.55(4) 23.55(3) 23.55(3)
r+

6 2.067(11) 2.066(8) 2.064(7) 2.065(7) 2.066(7) 2.065(7) 2.057(3)
r+

8 2.51(7) 2.41(5) 2.45(10) 2.57(10) 2.61(9) 2.61(9) 2.45(5)
r+

10 −17(2) −14(2) −14(2) −14(1) −14(1) −14(1) −15.4(2)
r+

12 45(8) 44(8) 44(6) 52(4) 54(5) 51(6) 62(3)
r+

14 1460(240) 1390(130) 1644(115) 1477(120) 1362(150) 1310(150) 1176(140)
I+

6 /4! 0.3306(5) 0.3306(3) 0.3307(3) 0.3306(3) 0.3306(3) 0.3306(3) 0.3310(1)
I+

8 /6! 0.2320(12) 0.2316(7) 0.2316(8) 0.2317(8) 0.2318(8) 0.2318(7) 0.2324(3)
I+

10/8! 0.1678(8) 0.1670(10) 0.1665(4) 0.1665(3) 0.1665(3) 0.1665(3) 0.1665(5)
I+

12/10! 0.1211(6) 0.1214(5) 0.1213(5) 0.1210(5) 0.1209(6) 0.1208(4) 0.1206(9)
I+

14/12! 0.0908(12) 0.0906(12) 0.0894(10) 0.0892(10) 0.0889(12) 0.0893(8) 0.0884(7)

these figures we have reported, in correspondence with the
conventional value s = 0 of the abscissa, also our results for
the scalar model in the case of the sc lattice with quartic
self-coupling g = 1.1 and, in the case of the bcc lattice,
with self-coupling g = 1.85. The set of estimates shows good

FIG. 9. Same as Fig. 6, but for r+
12.

universality properties and moderate relative uncertainties that
slowly grow with 2n. In the worst case, that of r+

14, the
uncertainties are generally not larger than 15%.

In the first line of Table X, we have listed our final
estimates of the ratios r+

6 , r+
8 , . . . ,r+

14, obtained either by
simply choosing our result for the scalar-field system on the

FIG. 10. Same as Fig. 6, but for r+
14.
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TABLE X. Our final estimates of the quantities g+
4 , r+

6 , r+
8 , r+

10, r+
12, and r+

14, obtained either from the φ4 results on the bcc lattice or from a
weighted average of the results on both the sc and the bcc lattices, are compared to estimates in the recent literature. These have been obtained:
(i) from HT expansions (Ref. 14), shorter than those analyzed here, of the sc lattice scalar field with φ4 or φ6 self-interactions and appropriate
self-couplings; (ii) from the expansion (Ref. 20) in powers of ε = d − 4, within the RG approach; (iii) from the g expansion (Refs. 20 and 22)
in fixed dimension d = 3, within the RG approach; (iv) from various approximations (Refs. 23–25) of the RG equations; v) from Monte Carlo
simulations (Refs. 50 and 51).

g+
4 r+

6 r+
8 r+

10 r+
12 r+

14

This work 23.56(1) 2.061(2) 2.54(4) −15.2(4) 45(5) 1400(200)
HT scalar sc (Ref. 14) 23.56(2) 2.056(5) 2.3(1) −13(4)
ε exp. (Ref. 20) 23.3 2.12(12) 2.42(30) −12(1)
g exp. (Ref. 20) 23.64(7) 2.053(8) 2.47(25) −25(18)
g exp. (Ref. 22) 23.77 2.044 5.04
Approx. RG (Ref. 23) 1.938 2.505 −12.599 10.902
Approx. RG (Ref. 24) 20.72(1) 2.063(5) 2.47(5) −19(1)
Approx. RG (Ref. 25) 28.9 1.92 2.17
MC Ising sc (Ref. 50) 23.3(5) 2.72(31)
MC Ising sc (Ref. 51) 24.5(2) 3.24(24)

bcc lattice, as in the case of the lowest-order ratios, or from a
weighted average of the estimates on the sc and bcc lattices for
the same system, as in the case of the largest-order ratios. Our
values are compared with the estimates already obtained in the
recent literature by various methods, including the analysis of
significantly shorter HT expansions.

V. CONCLUSIONS

For a wide class of models in the 3D Ising universality class,
we have described properties of the higher susceptibilities on
the HT side of the critical point, which are relevant for the
construction of approximate representations of the critical ES.
We have based on high-temperature and low-field bivariate
expansions that we have significantly extended or computed
“ex novo.” The models under scrutiny include the conventional
Ising system with spin s = 1/2, the Ising model with spin
s > 1/2 and the lattice scalar field, defined on the 3D sc and bcc
lattices. In this paper our HT data have been used to improve
the accuracy and confirm the overall consistency of the current
description of these models in critical conditions, by testing
simple predictions of the scaling hypothesis as well as the
validity of the universality property of the gap exponent and
of appropriate combinations of critical amplitudes. Some of

these tests are presently feasible only within a series approach.
Our main result is a set of more accurate estimates of the first
three already known r+

2n parameters and a computation of two
additional ratios, which enable us to formulate an update of
the parametric form of the ES.

At the order of expansion reached in our study, we still
observe a small residual spread of the estimates of the
gap exponent and of the ratios r+

2n, around the predictions
of asymptotic scaling and universality. This fact is readily
explained by the obvious limitations of our numerical analysis:
namely, the still relatively moderate span of our expansions,
in spite of their significant extension, the notoriously slower
convergence of the expansions in the case of the sc lattice,
and the incomplete allowance of the nonanalytic corrections
to scaling by the current tools of series analysis.
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