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Collective spin modes in chains of dipolarly interacting rectangular magnetic dots
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We present a combined experimental and micromagnetic study of spin excitations in chains of dense magnetic
dots. The samples consist of long chains of rectangular dots with rounded corners having lateral dimensions of
715 × 450 nm2 and 1025 × 450 nm2, respectively. Chains are composed of magnetic elements put side by side
along either their major or minor axis with edge-to-edge separation below 100 nm. The frequency dispersion of
the spin-wave excitations was measured by Brillouin light-scattering technique as a function of the transferred
wave vector directed along the chains of dots and for an external magnetic field applied perpendicularly to
the transferred wave vector in the dots plane. Evidence is given of collective excitations in the form of Bloch
waves propagating through the chains characterized by magnonic energy bands. Micromagnetic calculations,
performed by using the dynamical matrix method, enable us to satisfactorily reproduce the frequency dispersion
of collective spin modes as well as to visualize the spatial profile of the dynamic magnetization inside the dots.
We also propose a general rule to understand the frequency dispersion of collective modes starting from the
relative phase of dynamic magnetization in the facing sides of adjacent dots.
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I. INTRODUCTION

In this last decade the study of magnetization dynamics in
magnetic nanostructures has received great attention both from
theoreticians and experimentalists. Very interesting properties
associated to the laterally confined nanostructures were found
in the spin-wave spectrum, such as the “nondispersive”
behavior of spin-wave modes in magnetic elements of different
shapes and of different materials.1,2 When elements form
a closely packed array, the standing waves of individual
elements can interact via dynamic dipolar magnetic coupling
and form collective spin excitations which do show dispersive
behavior and can be assumed to be Bloch-type modes.3 This
is due to the dynamic dipolar magnetic field which removes
the degeneracy between discrete energy levels of different
magnetic elements. In analogy to the well established field of
photonic crystals in optics, these magnetic systems constitute
a new class of artificial crystals, now known as magnonic
crystals, in which collective spin excitations rather than light
are used to transmit and process information.4–9 A deep
comprehension of the role played by dynamic coupling is
highly desirable and may be very useful to understand the
speed limits of new magnetic logic gates in the GHz frequency
range and new microwave devices. New schemes for building
logic gates by combining chains of finite length or clusters
in a quasi-two-dimensional structure where magnetic dots
are designed to behave as compasses have been proposed
in the literature.10 Because of the small lateral dimensions,
dots were in a single domain state and their magnetization
orientation was changed in a dominolike cascade whereby
the orientation of the magnetization propagates along a line
or inside a cluster of dots coupled by magnetic stray field

between elements. In such logical schemes, exploiting dipole
coupling of the dots, excitation of collective spin-wave modes
is inevitable. Spurious dynamic dipole coupling of adjacent
elements will limit the minimum distances between them and
thus determine the maximum density of elements per unit
area. In addition to this, any magnetic logic competition with
traditional semiconductor-based logic must be able to operate
at GHz rates or better in the THz range.

In previous works it was shown that chains of closely
packed one-dimensional (1D) magnetic nanostripes support
propagation of collective magnetic eigenexcitations whose
frequencies lie in the GHz range7,11–13 with Brillouin-zone
boundaries determined by the artificial periodicity of the
arrays. The aim of the present work is to determine the
collective dynamic properties of chains of dots and to see
how the two-dimensional (2D) lateral confinement of magnetic
elements modifies the dispersion law and the mode’s nature
with respect to the 1D case of stripes. Calculations have been
performed by using the dynamical matrix method (DMM),14

which has proven to give insight into the spin dynamics in
arrays of noninteracting dots, mode localization and splitting,
and magnetization reversal.15 In this work we used the
modified version of the DMM which has been extended to
the case of interacting dots with spin-wave modes in the Bloch
form.16

Such chains of rectangular magnetic elements can be
considered as an example of a 1D waveguide, in analogy to
the nanostripe with periodic width modulation proposed by
Lee et al.17 In Ref. 17 the allowed and forbidden bands were
predicted for propagating dipole-exchange spin waves that
appeared as the result of a relatively weak Bragg backscat-
tering at the edge steps of the width-modulated nanostripe.
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FIG. 1. SEM images of the four studied systems. (a) Sample 1, rectangular dots with lateral dimensions 715 × 450 nm2 put side by side
along the major axis. (b) Sample 2, rectangular dots with lateral dimensions 715 × 450 nm2 put side by side along the minor axis. (c) Sample 3,
as in panel (a), but with dots of lateral dimensions 1025 × 450 nm2. (d) Sample 4, as in (b), but with dots of lateral dimensions 1025 × 450 nm2.
The in-plane axes of the reference frame and the directions of the exchanged wave vector q and external magnetic field H are shown. A field
of magnitude H = 1 kOe was applied along the y axis for dispersion shown in (a) and (c). A field of magnitude H = 1.5 kOe was applied along
the x axis for dispersion shown in (b) and (d). The wave vector q was along the chains (either along the x axis or y axis). The white scale bars
represent 1 μm in the micrographs and 200 nm in the insets.

These predictions have been recently confirmed by a micro-
focused Brillouin light-scattering study on a microstructured
waveguide where the thickness of the stripe was increased
with respect to the original theoretical work to improve the
spin-wave group velocity. As a consequence of the spin-wave
reflection caused by the periodical waveguide width and the
modulation of the internal magnetic field, rejection frequency
band was observed and its frequency position was tuned by the
dc bias field.18 In our case, the physical mechanisms giving
rise to collective-mode formation is different in the sense that
one starts from a set of discrete frequencies (corresponding to
individual resonances inside each rectangular element) whose
degeneracy is removed by dynamic dipolar magnetic coupling
acting as a relatively weak perturbation of the individual
resonances.

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

Periodic arrays of Ni80Fe20 chains of rectangular elements
40 nm thick were fabricated on commercially available
silicon substrate using deep ultraviolet lithography at 248 nm
exposing wavelength followed by the lift-off process. To
create patterns in the resist, the substrate was coated with a
60-nm-thick antireflective layer followed by a 480-nm positive
deep ultraviolet photoresist. A Nikon lithographic scanner
with KrF excimer laser radiation was used to expose the
resist. To convert the resist patterns into dots 40 nm thick,
Ni80Fe20 was deposited using e-beam evaporation at a rate

of 0.2 Å/s. The pressure was maintained at 2 × 10−6 Torr
during deposition. Lift-off of the deposited film was carried
out in isopropyl alcohol. Completion of the lift-off process
was determined by the color contrast of the patterned Ni80Fe20

area. The rectangular elements have lateral dimensions of
715 × 450 nm2 and 1025 × 450 nm2 and are arranged in
two different configurations. In Fig. 1 the scanning electron
microscopy (SEM) images of the four samples studied are
shown.

Sample 1: chains of dots having lateral dimensions
of 715 × 450 nm2 placed side by side along the ma-
jor axis with an edge-to-edge distance �= 55 nm [peri-
odicity a = 505 nm, first Brillouin-zone (1BZ) boundary
qBZ = π/a = 0.62 × 105 rad/cm].

Sample 2: chains of dots having lateral dimensions
of 715 × 450 nm2 placed side by side along the mi-
nor axis with an edge-to-edge distance � = 90 nm (pe-
riodicity a = 805 nm, 1BZ boundary qBZ = π/a = 0.39 ×
105 rad/cm).

Sample 3: chains of dots having lateral dimensions of
1025 × 450 nm2 placed side by side along the major axis with
an edge-to-edge distance �= 50 nm (periodicity a = 500 nm,
1BZ boundary qBZ = π/a = 0.63 × 105 rad/cm).

Sample 4: chains of dots having lateral dimensions
of 1025 × 450 nm2 placed side by side along the mi-
nor axis with an edge-to-edge distance � = 85 nm (pe-
riodicity a = 1110 nm, 1BZ boundary qBZ = π/a = 0.28 ×
105 rad/cm).
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In all samples the interchain distance is 0.5 μm so that
the dipolar magnetic interaction between adjacent chains is
negligible.

Brillouin light scattering (BLS) spectra were measured at
room temperature by using a 220-mW p-polarized monochro-
matic light from a solid-state laser of wavelength λ = 532 nm.
Incident light was focused onto the sample surface by means
of a camera objective of focal length 50 mm and f number
2. The spot size is about 30 μm in diameter so that several
hundreds of nanodots were illuminated at the same time and
the information was averaged over such a large number of ele-
ments. After a cross-polarization analysis of the backscattered
light, a (3 + 3) tandem Fabry-Pérot interferometer was used.19

In all the experiments the dc magnetic field was parallel to
the sample plane and was always directed perpendicularly to
the chain’s length. For the two series of samples studied here,
this direction corresponds either to the easy or to the hard axis
of the rectangular elements. The in-plane transferred wave
vector q (Bloch wave vector) was perpendicular to H (Voigt
geometry) and parallel to the chain’s length. In particular,
for samples 1 and 3 [Figs. 1(a) and 1(c), respectively] an
external field H of magnitude H = 1 kOe, directed along
the y axis (easy axis), was applied. Instead, for samples 2
and 4 [Figs. 1(b) and 1(d), respectively] an external field
H of magnitude H = 1.5 kOe was applied along the x axis
(hard axis). Measurements were performed in the backscat-
tering geometry, where the magnitude of q is expressed
in terms of the light incidence angle (θ ) by the relation
q = (4π/λ) sin θ .

III. THEORETICAL APPROACH FOR NORMAL MODES
AND CROSS SECTION

In this section we briefly describe the framework used
to obtain the magnonic bands. The method is based on the
micromagnetic model, developed by Giovannini et al.16 for
periodic magnetic systems. It is an extension of the DMM,
originally introduced for calculating the normal modes of
single magnetic elements.14

We assumed that the dynamic magnetization δm(r), solu-
tion of the linearized equation of motion in a periodic system,
has the form of a Bloch wave, viz.

δm(r) = δm̃(r)eiq·r , (1)

where the function δm̃(r) has the artificial periodicity of the
magnonic crystal, i.e., δm̃(r + R) = δm̃(r), and eiq·r is a
plane wave with q the Bloch vector and r the in-plane vector.
R is the Bravais lattice vector that gives the periodicity of
the magnonic crystal. Magnonic modes can thus be seen as
propagating waves modulated by the arrays. In particular,
for the 2D case the Bravais lattice vector takes the generic
form R = n1 a1 + n2 a2 with a1 and a2 primitive vectors,
0 � ni < Ni with i = 1,2, Ni the number of cells along the
ai direction and N = N1 N2.

In our calculations, each dot was di-
vided into cells (parallelepipeds) having size
�x ×�y ×�z = 5 nm × 5 nm × 40 nm and the ground
state was obtained by using a micromagnetic code. The
magnetization was assumed to be uniform in each cell and
to precess around its equilibrium direction described by the
direction of the effective field Heff . Contributions arising from
external (Zeeman), demagnetizing and exchange fields were
included in Heff . The following magnetic parameters obtained
from the fit to the BLS frequencies of the Damon-Eshbach
mode in the 40-nm-thick continuous Permalloy film
were used: saturation magnetization 4πMs = 9 kG,
γ /2π = 2.94 GHz/kOe, and A = 1.1 × 10−6 erg/cm
with A the exchange stiffness constant. The large applied
magnetic field allowed us to assume that the magnetic ground
state was the same for all the dots of a chain.

We have found that, for samples 1 and 2 [Figs. 1(a) and
1(b)], the ground state was a S state, with small deviations
from the direction of H close to the borders. Instead, the
calculated ground state for samples 3 and 4 depends on the
applied field direction configuration. For the case of dots put
side by side along their major axis [Fig. 1(c)] and H placed
along the y axis (major axis), the calculated ground state was a
symmetric quasiuniform state where the static magnetization
deviates from the collinear configuration because of the dot
rounded corners (a sort of onion state). When dots are placed
side by side along their minor axis [Fig. 1(d)] and H is placed
along the x axis (minor axis), the calculated ground state was
a S state.

Since the interdot dipolar magnetic interaction is relatively
weak, the collective modes propagating in magnetic chains can
be classified by using the same nomenclature introduced for
a single dot of arbitrary shape with in-plane magnetization.20

The collective mode mainly localized in the center of each
element and without nodes is the fundamental (F) mode of the
spectrum. Damon-Eshbach-like (nDE) modes are excitations
with nodal planes n = 1, 2, . . . parallel to the local direction of
the static magnetization M, while nodal planes perpendicular
to the local direction of M are typical of backwardlike (nBA)
modes with n = 1, 2, . . . . Finally, the end modes (nEM) are
localized at the edges of each element in the direction of
the magnetization (either along the x or y direction) with
possible nodal planes of the DE type, viz. parallel to the
local direction of M (n = 0, 1, 2, . . .). Mixed modes, with
both parallel and perpendicular nodal planes, are also present
but not experimentally detected.

It is useful to give the expression of the differential
scattering cross section used to interpret our micromagnetic
results (see Sec. IV). Indeed, the evaluation of the differential
cross section allows us to assign unambiguously to a given
spin-wave mode a given BLS peak. As shown in the Appendix,
the differential scattering cross section associated to each
magnonic mode of the spectrum turns out to be proportional
to the square modulus of the amplitude of the scattered field,
viz. Ẽscatt, and takes thus the form

(
d2σ

d�dω

)
p→s

= CN (|ω′ − ω|)
∣∣(∑RN

R=R1
ei(� k+q)·R) ∫

cell e
i� k·rA(r) d r

∣∣2

|Ẽ0|2
δ(� − |ω′ − ω|), (2)
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where σ is the scattering cross section, d� is the differential
solid angle, and the subscripts p and s refer to the p and s
polarization of the incident and scattered light, respectively. C
is a constant depending on geometric and optical parameters,
N (|ω′ − ω|) is the Bose-Einstein thermal factor with ω′ and
ω the angular frequency of the scattered and incident light,
respectively, the sum

∑RN

R=R1
ei(�k+q)·R is performed over

N illuminated cells, Ẽ0 is the amplitude of the incident
electric field, �kα = kα − k′

α , δ(� − |ω′ − ω|) is the Dirac
delta, and � is the angular frequency of the given collective
mode. Here k′

α (kα) is the α component (α = x,y) of the
scattered (incident) wave vector projected on the surface and
A(r) is a quantity depending on the dynamic magnetiza-
tion and optical properties of the media. In the numerical
calculations we have determined the differential scattering
cross section associated to each collective mode at a given
frequency and for a given Bloch wave vector, because we
have adopted in Eq. (2) the selection rule �k = −q, which
holds rigorously only when the area illuminated by light is
infinite.

Calculations of the BLS intensities of collective spin-
wave modes in interacting stripes were recently performed.21

However, these calculations were based on a formalism
different from that reported here, consisting of a modification
of the fluctuation-dissipation theorem applied to periodic
systems and focusing on the stochastic aspect of the scattering
problem.

IV. RESULTS AND DISCUSSION

A. Comparison between experimental results and
DMM calculations

Representative BLS spectra recorded at the center (q = 0)
and at the border (q = π/a) of the 1BZ are shown in Fig. 2 for
samples 2 and 3.

The spectra of all samples show several peaks in the
frequency range between 3 and 15 GHz. The measured spectra
of samples 2 and 4, with H applied along the hard axis
of the rectangular dots, have a larger number of peaks with
respect to those relative to samples 1 and 3. From comparison
between the experimental spectra and the calculated mode
frequencies and profiles, we could label the detected modes.
An appreciable experimental frequency dispersion for the F
mode has been found for all the specimens with the exception
of that relative to sample 4.

Concerning the BLS intensities of the modes, all the
samples exhibit the same trend. In particular, at the center
of the 1BZ (q = 0) the F mode is the dominant peak. The 1DE
mode is also detected, because of the nonvanishing collection
angle (about 30◦) of the camera objective due to the finite
aperture. On increasing the magnitude of q, the intensity of
the F mode decreases, while the 1DE mode becomes more
and more intense. Eventually, in the second Brillouin zone
(2BZ) the 1DE mode has the largest intensity (not shown in
Fig. 2).

It is well known that in the isolated dot the calculated
BLS differential cross section is proportional to the average
value of the dynamic magnetization associated to the given
spin-wave mode. Hence the F mode (with no nodal planes)
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FIG. 2. (Color online) BLS spectra measured at the center and at
the border of the 1BZ for samples 2 (top panel) and 3 (bottom panel).
The value of q is in units of 105 rad/cm. For sample 2 a magnetic
field of magnitude H = 1.5 kOe was applied along the hard axis of
the dots, while for sample 3 a magnetic field of magnitude H = 1 kOe
was applied along the easy axis of the dots.

exhibits often the largest cross section, but also nBA and nDE
modes with an even and low number of nodal planes have a
non-negligible scattering cross section (e.g., 2BA, 4BA, and
2DE modes). Moreover, due to the symmetry rules related to
coupling with light, the BLS differential cross section can be
appreciable also for nDE modes with an odd number of nodal
planes like, e.g., for the 1DE mode. Similar conclusions can
be drawn also in periodic systems like chains even though
also the dependence of the scattering cross section on the
Bloch wave vector must be taken into account. The above
arguments are in agreement with the experimental observation
of the most important BLS active collective modes shown in
Fig. 2.

In Fig. 3 the measured and the calculated frequencies are
reported for both the 1BZ and the 2BZ for all samples. The
overall agreement between the experimental and simulated
frequencies for all samples is very good. The only exception
is represented by the 1DE mode whose calculated frequencies
are in general larger with respect to the experimental ones with
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FIG. 3. (Color online) Spin-wave frequency dispersion in the
1BZ and 2BZ. (a) Sample 1; (b) sample 2; (c) sample 3;
(d) sample 4, where circles represent BLS data, full lines represent
calculated frequencies. The vertical dashed lines indicate the edge of
the 1BZ corresponding to qBZ where (a) qBZ = 0.62 × 105 rad/cm,
(b) qBZ = 0.39 × 105 rad/cm, (c) qBZ = 0.63 × 105 rad/cm, and
(d) qBZ = 0.28 × 105 rad/cm. The bold lines mark the calculated
collective mode with the largest spectral line in the 1BZ and 2BZ,
respectively.

a difference that is at most of about 1 GHz. This could be due
to enhanced pinning effects in turn related to an overestimation
of the dynamic dipolar magnetic interaction in border regions
where the reproduction of the dot curvature by squared cells is

inaccurate. Some discrepancies are also present for the 0EM.
In fact, as it has been pointed out also by other groups22

groups, the frequency of the 0EM depends critically on the
detailed shape of the dot ends where the modes are localized,
so their frequencies are intrinsically difficult to be satisfactorily
reproduced with any finite-difference micromagnetic method.

The bold portion of the calculated curves denotes the most
intense peak obtained in the calculations by using Eq. (2).
It can be seen that the spectral line associated to the F
mode is prevalent in the 1BZ, while in the 2BZ the prevalent
spectral line belongs to the 1DE mode, confirming the BLS
experimental observation according to which the intensity
of the F (1DE) peak is larger in the 1BZ (2BZ). These are
special cases of the general rule according to which the BLS
selects the mode whose effective wavelength matches 2π /�k.
Therefore the calculated intensity of the F mode in the 1BZ
decreases with q and at the 1BZ boundary it is nearly equal
to that of the 1DE. Indeed, due to the light dephasing effect
of the exponential ei�k·r , the 1DE mode has an appreciable
differential scattering cross section for q �= 0.

We notice that the BLS experimental frequency dispersion
(amplitude of the magnonic band) is more pronounced for the
F mode (about 1 GHz in samples 1 and 3, and about 0.5 GHz
in sample 2). This is due to the fact that the F mode is the only
one which creates a significant stray magnetic field outside
of the magnetic element itself. The BLS bandwidths are well
predicted by the theoretical calculations and indicate that the
dynamic dipolar magnetic interaction is larger in the samples
with smaller periodicity, and in particular is more effective in
samples 1 and 3, which are put side by side along the major
axis.

Our results (both theoretical and experimental) show that
the band of the F mode has a minimum at q = 0. This can
be qualitatively understood taking into account that, for this
mode and for q = 0, the spin precession along the chain in
neighboring dots is in phase, therefore implying a minimum
frequency. Instead, the behavior of the dispersion of the 1DE
mode is reversed, namely the minimum occurs at the border
of the 1BZ (qBZ =π/a). This behavior deserves a deeper
investigation, which will be faced later in more general terms.

On the other side, bandwidths of spin-wave modes belong-
ing to the lowest part of the spectra are very narrow with
slight differences depending on the mode considered and on
the geometry. The narrow bands of the nBA modes (n = 2,4)
are due to the fact that the BLS measurements have been
performed in the Voigt geometry, i.e., with q perpendicular
to H. Furthermore, the bands associated to the 0EM are
almost flat essentially because the regions of localization of
these modes are small, so that the dynamic dipolar magnetic
coupling is weak.

Information about the group velocity of collective modes
can be drawn from the analysis of their dispersion. The F
mode has the largest group velocity close to the center of
the 1BZ (q = 0), which we estimated from the calculated
dispersion to be nearly 2.17 × 103 m/s and 2.26 × 103 m/s for
samples 1 and 3 [panels (a) and (c)], respectively. These group
velocities are considerably smaller than the group velocity of
the DE mode calculated in the unpatterned continuous film
(vg = 3.15 × 103 m/s) whose group velocity represents the
upper limit for the dispersion slope of collective excitations in
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a 2D periodic structure. On the contrary, the group velocities
of spin modes belonging to the low-frequency part of BLS
spectra are very small.

If one looks in more detail at the calculated magnonic
bands in the 1BZ, a different behavior characterizes the
bands belonging to nBA and nDE modes, respectively with
n = 1, 2, . . .. Indeed, while the frequencies of nBA modes at
qBZ = π/a are always higher than the corresponding ones at
q = 0 independently of the number of nodes, for nDE modes
the situation is more complex. In particular, for an odd number
of nodes, frequencies at qBZ = π/a are lower than the ones
at q = 0, while the frequency behavior is reversed when the
number of nodes is even. For both families of modes, the
bandwidth decreases with increasing the number of nodes.

Interestingly, additional magnonic bands in the lowest part
of the spectrum were observed for samples 2 and 4, where the
rectangular elements are put side by side along their minor
axis. We have found, by inspection of the mode profiles and
from scattering cross-section calculations, that these bands
can be assigned to nBA EM with n = 1,2,3 . . . , i.e., to a sort of
hybrid between conventional EM and nBA modes. The modes
are assigned by counting the number of nodal planes that are
found in only one half of the element. As a matter of fact, in
large dots, the lateral wells of the internal field are rather deep
allowing also the presence of these laterally localized modes
of BA type.

The nature of these modes is illustrated in Fig. 4. They
have nodal planes of BA type perpendicular to the local static
magnetization close to the dot edges and are symmetric under
inversion with respect to the center of the dot. As for the
0EM band, the flatness of the corresponding bands is due to
the weak dynamic dipolar magnetic coupling. In general, the

(b)  (c) (d)

H

(a)

FIG. 4. (Color online) (a) Calculated static magnetization distri-
bution for the dot under an external field H = 1.5 kOe. The direction
of the applied magnetic field H is also shown. Calculated real part
of δmz(r) for the nBA EM corresponding to configuration shown in
Fig. 1(d) and at q = 0: (b) 1BA EM, (c) 2BA EM, (d) 3BA EM.

calculated scattering intensity from these modes is weak (with
the exception of the 1BA EM which has a high intensity) and
is mainly due to the S state. Moreover, it is not easy to identify
them in the spectra.

As a general comment on the obtained results, we remark
that samples 1 and 3, where dots are put side by side along
the major axis, are characterized by the largest frequency
oscillation amplitude of the mode frequencies (magnonic
bands), especially for the F mode. In fact, even if the dots of
the four samples were arranged in two different configurations,
in samples 1 and 3 modes are much more efficiently dipolarly
coupled with respect to those of samples 2 and 4, because of
the smaller periodicity and the larger facing regions between
adjacent dots. Note that the presence of magnonic bands with
significant amplitude corresponds to propagation of collective
modes with nonvanishing group velocity: This is an important
requirement to overcome the large spin-wave damping in spin-
logic devices based on metallic ferromagnets and spin-wave
waveguides.23

B. Discussion about the interdot magnetic coupling and its
dependence on separation

In this subsection we investigate, by means of micromag-
netic calculations, the effect of interdot dipolar magnetic
coupling on mode dispersions as a function of interdot
separation. In order to estimate the dependence of frequency
gaps on the interdot coupling, in Fig. 5 we plot the mode
frequency as a function of interdot separation.

The analysis was carried out for all the four series of
samples, obtaining similar results. We therefore illustrate
here in detail the results corresponding to the configuration
represented by sample 1, but for different interdot separations.
Full lines (black) denote frequencies of magnonic modes for
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FIG. 5. (Color online) Calculated frequency behavior vs interdot
separation for sample 1. Full lines (black): frequencies at q = 0.
Dashed lines (red): frequencies at qBZ = π/a. In the insets, the sign
of the dynamic magnetization of the magnonic modes is represented
by means of the symbols “ + ” and “−” for a given mode in two
neighboring dots. Each dot is pictorially schematized as a rectangle.
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q = 0, while the frequency curves corresponding to qBZ = π/a
are indicated by dashed lines (red). These lines mark the upper
and lower limits of each allowed magnonic band.16 We remind
that the frequency gaps between the shown spin-wave modes
can be occupied by calculated mixed modes which are not
observed in the experimental spectra.

As expected, for large interdot separation where coupling
is negligible, each mode is characterized by a single frequency
value corresponding to the spectrum of stationary modes of a
single magnetic element and whose value is independent of q.
On decreasing the separation, interdot coupling gives rise to
the appearance of bands. Within each band the frequency of
the collective modes depends on q. This is in turn related to the
effect of dynamic dipolar (stray) magnetic field associated with
each collective mode which is enhanced at small �. A similar
behavior characterizes also the experimental frequencies as
a function of separation (not shown). We do not show the
low-frequency modes, because the corresponding bands are
flat even at small separation. For all the studied configurations,
independent of the direction of the applied field (either along
the x or y axis), the largest bandwidth is that of the F mode. This
behavior is not surprising, because the F mode has the largest
stray field at any separation, as found in interacting magnetic
nanostripes.7 Moreover, the bandwidth at small separation is
more pronounced for collective modes corresponding to the
configurations where rectangular elements were put side by
side along their major axis. The larger bandwidth is related
to the smaller periodicity a which in turn leads to larger stray
fields at a fixed separation with respect to lines of dots placed
side by side along their minor axis. On the other hand, one
sees that the frequency curves of a given collective mode at
q = 0 and at qBZ = π/a tend to merge asymptotically when the
separation exceeds a few hundreds of nm, corresponding to the
spectrum of stationary modes of a single magnetic element.

Interestingly, in Fig. 5 one notes a superposition of the
F mode frequency curves with those of 1BA mode at small
separation. Such a band superposition is related to the large
bandwidth of the F mode occurring when dots are put side
by side along the major axis of the rectangular element. For
samples 2 and 4, where the dots are put side by side along the
minor axis, this superposition does not occur anymore.

Another significant feature, common to all the configu-
rations, is the narrowing of the frequency gaps, as �→ 0,
either at q = 0 or at qBZ = π/a. In particular, the frequency
gap between the F mode and the 1DE mode is smaller for
qBZ = π/a, while that between the 1DE and 2DE modes is
smaller for q = 0. As a matter of fact, for small separation
the energetic cost required to excite the F mode at qBZ = π/a,
namely in the antiphase configuration, is almost the same as
that of the 1DE mode. The difference is represented by the
frequency gap between the two modes at the 1BZ boundary.
Similar considerations can be carried out to understand the
narrowing of the frequency gap at q = 0 between the 1DE and
2DE modes as �→ 0.

Finally, it is interesting to shortly discuss why for some
modes (2DE, F, 1BA) the red curve is at higher frequency
with respect to the black one, while for the 1DE mode the
opposite situation occurs. To this respect, we have found that,
in general, the behavior of the frequency of the F, nDE, and
nBA collective modes versus q in the Voigt geometry can be

described in terms of a simple rule, illustrated by the insets of
Fig. 5. The rule states that when modes in neighboring dots
couple to each other with the same phase on the facing sides
of each pair of dots, the excitation frequency is lower with
respect to the case when modes in neighboring dots couple to
each other with opposite phase. A similar explanation of the
frequency behavior, but restricted to high-frequency modes
only (corresponding to the F and nDE modes of this system),
was recently formulated for a 1D array of dipolarly interacting
stripes9 in terms of coupling of dynamic dipolar magnetic
fields in neighboring elements.

The stated rule can also be derived from the study of the
frequency behavior as a function of the wave vector in a film
and from the conclusions of previous studies on “optical”
and “acoustical” spin waves in antiferromagnetically coupled
multilayers (see, e.g., Ref. 24). Looking at the insets of Fig. 5,
one can easily see that the above-mentioned rule is verified. It
is interesting to note that the behavior of the frequency curves
of the F mode at q = 0 and at qBZ = π/a is very similar to
that found by Kostilev et al.25 for the corresponding collective
mode in a 1D array of stripes as a function of the interstripe
separation by means of an analytical model.

The reason for the rule is that optical-like modes force
the dynamic magnetization of the whole chain of interacting
dots to gain more nodes of DE character with respect to the
corresponding acoustical-like modes. In this case, the optical-
like modes have a larger effective wave vector and therefore a
larger angular frequency, because � is a monotonic increasing
function of the wave vector.

Interestingly, if one considers the ideal case of rectangular
elements, the dispersion of the resonant mode of an in-plane
magnetized stripe can be found as � → 0. In order to obtain it,
one should, however, include in the micromagnetic calculation
the exchange interaction between neighboring dots, which we
have not considered here.

V. CONCLUSIONS

In this paper the behavior of collective spin modes in
1D magnetic arrays of rectangular dots was investigated.
The study was carried out by using a micromagnetic model
based upon the DMM, generalized to dots interacting via
both static and dynamic dipolar magnetic coupling. Magnonic
bands were studied for a series of different geometries to
evaluate the effect of dipolar magnetic coupling on spin-wave
mode frequencies. Results of the micromagnetic calculations
compared well with available BLS measurements for the
whole set of configurations studied. In addition to the usual
spin-wave modes (0EM, nBA, and nDE), we have found
a set of nBA EM (n = 1,2,3) confirming the experimental
observations. The main finding was the presence of magnonic
bands independently of the studied configuration, especially
for the F and the 1DE mode, that can be considered as
spin-wave modes with a strong collective nature. A simple rule
able to explain the band opening passing from the center to the
edge of the 1BZ for the Voigt geometry was proposed. This
band rule was formulated in terms of coupling of collective
mode phases in neighboring dots and is independent of the
configuration investigated in this study. The general validity
of the band rule lies in its applicability to the band behavior of
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each family of collective modes studied here, namely nDE and
nBA, and can explain also the band behavior of mixed modes
and nEM.

Micromagnetic calculations allowed us also to investigate
the behavior of collective spin-wave modes as a function of
separation �. We found a widening of bandwidths for all the
collective modes with decreasing � together with a narrowing
of frequency gaps either at q = 0 or at qBZ = π/a depending on
the collective mode studied. For all the analyzed configurations
the effect of interdot coupling can be considered non-negligible
up to � ≈ 700 nm for the F mode and up to � ≈ 300 nm
for other modes (nBA and nDE). For separations larger than
700 nm the corresponding magnonic bands become flat and
the spin-wave mode frequencies tend to those of an isolated
magnetic element.

Prediction of amplitude of modes frequency oscillation
(magnonic band) for a vanishing separation represents an im-
portant property to identify the behavior of a one-dimensional
magnonic meta-material and it is preliminary to any desired
application of magnonic crystal for realization of spin logic
devices, filters and waveguides operating in the GHz frequency
range. From this point of view our chains can be considered
as an example of quasi-continuous one-dimensional meta-
materials.
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APPENDIX

In this Appendix we present the derivation of the differential
scattering cross-section formula for interacting magnetic ele-
ments. Following the formalism developed for the continuous
film26 and for the single magnetic element, the calculation
of the scattering cross section in two-dimensional arrays of
interacting dots requires first to express the amplitude of the
scattered electric field. The wave propagation equation in a
magnetic medium with perturbed dielectric constant expanded
to the first order reads

∇ × ∇ × Escatt + 1

c2
ε0

∂2

∂t2
Escatt = − 1

c2

↔
δε

∂2

∂t2
E0, (A1)

where ε0 is the dielectric constant of the unperturbed mean or
relative permeability,

↔
δε is the tensor representing the fluctu-

ation of the polarization, E0(x,y,z,t) = Ẽ0(z)ei(kxx+kyy+ωt) is
the p-polarized incident field (zero order) with Ẽ0 the incident
field amplitude, Escatt(x,y,z,t) = Ẽscatt(z)ei(k′

xx+k′
yy+ω′t) is the

scattered field (first order) with Ẽscatt the scattered field
amplitude, and k‖ (k′

‖) is the incident (scattered) light wave
vector; in particular, k‖ = (2π/λ) sin θ (k′

‖ = (2π/λ) sin θ ′) is
the in-plane incident (scattered) wave vector component with
θ (θ ′) the corresponding incidence (scattered) angle; ω(ω′) is

the angular frequency of the incident (scattered) light, and c
is the speed of light. By introducing the Fourier transform of
Escatt with respect to x, y, z, and t, the Fourier transform of
Eq. (A1) can be written in terms of the electric field (incident
and scattered) amplitudes, namely(

k′2
‖ − ∂2

∂z2

)
Ẽscatt − ω′2

c2
ε0 Ẽscatt

= − ω2

(2π )3/2c2

∫ ↔
δε Ẽ0 ei(�kxx+�kyy)ei(ω−ω′) t dx dy dt,

(A2)

with �kα = kα − k′
α (α = x,y). In particular, the compo-

nents of the light incident wave vector are kx = k‖ cos φ,
ky = k‖ sin φ where φ is the azimuthal angle of light, viz.
the angle between the incidence plane and the x-z plane.
Analogously, the corresponding components of the scattered
wave vector read k′

x = k′
‖ cos φ and k′

y = k′
‖ sin φ, respectively.

Equation (A2) can be solved by introducing the g(z,z′) Green’s
function and by using the Green’s-function method. The
solution Ẽscatt can thus be written in the form

Ẽscatt(z) = − ω2

(2π )3/2c2

∫
g(z,z′)

↔
δε(x,y,z′,t)

× Ẽ0(z′) ei�k·rei �ωtdx dy dz′ dt, (A3)

where the Green’s function g(z,z′) is the same as the one
defined for multilayers, whereas Ẽ0 is the amplitude of
the incident electric field and �ω = ω − ω′. Analogously
to the case of continuous film, expressing

−→
δε in terms of

the dynamic magnetization amplitudes and integrating over
z leads to Ẽscatt ∝ δ(� − |ω′ − ω|) ∫

zone ei�k·rA(r)d r where
r = (x,y), δ(� − |ω′ − ω|) is the Dirac delta, and � is
the angular frequency of the given collective mode. The
integral is extended to the zone illuminated by light. The
quantity A(r) is in turn expressed as the integral over z of
contributions proportional to the polarization. The integral
over z contains four terms associated to scattering so that
the scattered field refers to four scattering channels including
reflection from the back surface of magnetic medium given
by (i) reflection-scattering-reflection, (ii) direct scattering,
(iii) scattering-reflection, and (iv) reflection-scattering. Each
of these terms contains the magneto-optic complex constant K
expressing the first-order magneto-optic or Faraday effect and
is proportional to the first-order contribution of the dynamic
magnetization to the differential scattering cross section. Due
to the surface periodicity the integrand ei� k·rA(r) appearing
in the expression of Ẽscatt can be written in the particle
located in R as ei� k·(r+R)A(r + R) where r is now restricted
to the reference particle (R = 0). In particular, ei�k·(r+R) =
ei�k·rei�k·Rand according to the Bloch theorem A(r + R) =
eiq·RA(r). Taking into account these substitutions and sum-
ming over the illuminated N cells, the integral ∫zone expressing
Ẽscatt can be substituted by

∑RN

R=R1
ei(� k+q)·R ∫cell yielding

Ẽscatt ∝ δ(� − |ω′ − ω|)
(

RN∑
R=R1

ei(� k+q)·R
)

×
∫

cell
ei�k·r A(r) d r ∝ FS, (A4)
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where F = ∑RN

R=R1
ei(� k+q)·R is a factor depending on the

Bloch wave vector. In particular, F = F (θ,θ ′,q) and S =∫
cell e

i�k·rA(r) d r is a term related to the scattered field
obtained for the single dot. The quantity A(r) is a linear
combination of the components of the dynamic magnetization.
According to Eq. (A4), the differential scattering cross section
is thus proportional to a term depending on the single dot
times a factor F whose form depends on the extension of

the illuminated area. By considering the ideal case of an
infinite illuminated area we get an infinite sum over the cells,
namely

∑
R ei(� k+q)·R ∝ δ(�k + q) so that the selection rule

�k = −q is rigorously fulfilled. The S term in Eq. (A4) can
be seen as an efficiency factor depending on the mode profile
and on the Bloch wave vector. The differential scattering cross
section of Eq. (2) is finally obtained by performing the square
modulus of Ẽscatt.
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