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Current-induced torques in continuous antiferromagnetic textures
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We study the influence of an electric current on a continuous noncollinear antiferromagnetic texture. Despite
the lack of a net magnetic moment, we find that the exchange interaction between conduction electrons and
local magnetization generally results in current-induced torques that are nonzero and similar in phenomenology
to spin-transfer torques in ferromagnets. We present the generalization of the nonlinear sigma model equation
of motion for the Néel vector that includes these current-induced torques, and briefly discuss the resulting
current-induced antiferromagnetic domain wall motion and spin-wave Doppler shift. We give an interpretation
of our results using a unifying picture of current-induced torques in ferromagnets and antiferromagnets, in which
they are viewed as being due to the current-induced spin polarization resulting from an effective spin-orbit
coupling.
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I. INTRODUCTION

Magnetoresistive phenomena in conducting ferromagnets,
resulting from the interplay between spins of conduction
electrons and the magnetization, are well known. They play
a major role in new technologies and are key to the recently
awarded Nobel prize for giant magnetoresistance.1,2 Recently,
the effect of a spin current on magnetization dynamics (called
spin transfer) has been investigated in detail.3–6 Although
applications, mainly to memory storage technology, are an
important driving factor behind this research, spin transfer is
also physically interesting in its own right. It can be understood
as follows.

Consider a conducting ferromagnet far below its critical
temperature such that it is described by a unit vector �(x,t)
in the direction of magnetization. Its dynamics in the presence
of an effective field Heff (in units of s−1) is determined by

∂�

∂t
= � × Heff + J

h̄
� × ∇2�, (1)

where we have ignored magnetization relaxation, and the
effective field contains (in the first instance) contributions
from the anisotropy of the system and the external field.
Furthermore, J is the exchange constant favoring alignment of
neighboring spins. In the presence of conduction electrons, the
effective field contains an additional contribution due to the s-d
exchange coupling of the magnetization with the spin density s
of the conduction electrons given by −�

∫
dxs · �/a3, with �

the exchange splitting and a the lattice constant. (Although the
s-d model is convenient to illustrate the physics involved, the
conclusions drawn are qualitatively valid for the Stoner model
as well.) In equilibrium, i.e., without a current, this spin density
will be in the plane of the magnetization. However, when
a current is applied, the spin density acquires a component
〈s⊥〉 perpendicular to the plane of magnetization. It is this
component of the spin density that leads to current-driven
dynamics of the magnetization7 by contributing to the effective
field as

Heff|current = �a3

h̄
〈s⊥〉. (2)

To lowest order in the current and the gradient of the
magnetization, and using an adiabatic assumption based
on the fact that the electron dynamics is fast compared to
the time variation of the magnetization, the out-of-plane spin
density is

〈s⊥〉 = h̄

�a3
� × (vs · ∇) �, (3)

where the velocity vs , defined via the above equation, is propor-
tional to the electric current. Inserting the above contribution
to Heff in Eq. (1), we find that, in the steady-state transport
situation, the contribution of the current-induced torques to the
equation of motion for the magnetization direction is given by

∂�(x,t)

∂t

∣∣∣
current

= − (vs · ∇) �(x,t). (4)

The current-dependent velocity is, in the absence of spin-orbit
coupling and spin-flip scattering, fixed by spin conservation as
follows. Integrating Eq. (4) over the length of the ferromagnet
in the direction r̂ of the current leads to the total change in angu-
lar momentum

∫
dr∂�(x,t)/∂t |current = vs · r̂[�|in − �|out],

where the current flows from in to out. By spin conservation,
this change in angular momentum is proportional to the
change in the spin current Jα

s after it has passed through
the ferromagnet, i.e.,

∫
dr∂�α(x,t)/∂t |current ∝ Jα

s,in − Jα
s,out.

Using that Jα
s = P Jc�

α , with P the polarization of the charge
current J c in the ferromagnet, we find that vs ∝ P J c. This
argument shows that the current-induced torque in Eq. (4)
results from transfer of angular momentum from conduction
electrons to magnetization and is hence called a spin-transfer
torque.

Well-known examples of dynamics resulting from these
spin-transfer torques involve spin waves and domain walls.8–19

For spin waves, a Doppler shift in the dispersion rela-
tion is found once a current is applied.8,9 This shift is
linearly proportional to k, where the proportionality con-
stant is given by vs and the dispersion that follows from
Eqs. (1)–(4) is then given by h̄ωk = J k2 + h̄vs · k, where
we have ignored anisotropy and external fields. Recent
experiments have successfully measured such current-induced
spin-wave Doppler shifts.19 Current-induced domain wall
motion10–18 is understood as follows: In the absence of any
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pinning and damping, �0(x − vs t) is a solution to Eq. (4),
where �0(x) is a time-independent solution of Eq. (1), i.e.,
the equation without the effects of the applied current. For the
case in which �0(x) corresponds to a domain wall texture,
this means that the velocity of the domain wall is just vs , an
estimate which turns out to be reasonable even when pinning
and damping are present.10,11 These results are also understood
by realizing that Eq. (4) shows that it is possible to get the
equation of motion of � with an applied current by substituting
∂
∂t

→ ∂
∂t

+ vs · ∇ into the equation of motion without current.
In antiferromagnets, adjacent lattice sites have opposing

magnetic moments and thus form two sublattices with opposite
magnetization leaving no net magnetization. They are char-
acterized by a Néel vector n j = (−1)jx+jy+jz� j , where the
vector j is a vector with components (jx,jy,jz) and labels the
lattice sites x j = ja. In this paper, we show that, in the pres-
ence of an electric current in an antiferromagnetic conductor,
there is in the continuum limit and to lowest order in the Néel-
vector gradient and the current an out-of-plane spin density
given by

〈s⊥〉 = h̄

�a3
n × (v · ∇) n. (5)

Here, the velocity v, defined via the above equation, is propor-
tional to the current and the antiferromagnetic equivalent of the
velocity vs that was introduced in describing current-induced
torques in ferromagnets. Although the form of the spin density
is the same as for a ferromagnet (albeit that magnetization
direction � is replaced by Néel vector n), the velocity v

can not be determined from macroscopic spin-conservation
arguments, as in the case of the ferromagnet, but instead
needs to be determined by a microscopic calculation. An
example of such a calculation is presented in Sec. III. We
show that v is generally not zero and can, in principle, be of
the same order of magnitude as vs , which is of the order of
1–100 m/s for a typical ferromagnetic alloy such as permalloy,
by calculating vs and v for a toy-model ferromagnetic and an-
tiferromagnetic metal. In Sec. IV, we explain our results using
a unifying picture of current-induced torques in ferromagnetic
and antiferromagnetic textures that is built on the notion of
effective spin-orbit coupling induced by a noncollinear mag-
netic texture, and we end with a discussion and conclusion in
Sec. V.

Previous work on current-induced torques in antiferro-
magnetic metals, considered mainly single-domain layered
structures,20–25 and the situation of an antiferromagnetic
domain wall was considered from an ab initio point of view.26

Here, the general phenomenology of current-induced torques
in spatially smooth and slowly varying antiferromagnetic
textures is presented. To make the paper more self-contained,
we start by deriving the equation of motion for the Néel vector
in a position- and time-dependent external field, generalizing
the results from Ref. 27. From this equation of motion, the gen-
eralization of the nonlinear sigma model equation of motion to
the current-carrying situation follows via Eqs. (2) and (5). The
consequences of this equation of motion for current-induced
domain wall motion and the spin-wave spectrum are briefly
discussed.

II. NONLINEAR SIGMA MODEL EQUATION OF MOTION
WITH CURRENT-INDUCED TORQUES

We consider a system of classical spins on lattice sites
xj = ja, with a the lattice constant. The direction of each
spin is indicated by the unit vector �j . Its equation of motion,
ignoring damping and anisotropy, is given by

∂�j

∂t
= −J

h̄
�j × (�j−1 + �j+1) + �j × Heff, (6)

with J the antiferromagnetic exchange coupling and Heff a
position- and time-dependent effective field in which we have
absorbed dimensionful prefactors. Note that we consider a one-
dimensional lattice. The three-dimensional generalization will
be presented elsewhere. To incorporate the antiferromagnetic
alignment of the spins and to enable a gradient expansion, we
introduce

Am = �j ,
(7)

Bm = �j+1,

which obey the equation of motion

∂ Am

∂t
= −J

h̄
Am × (Bm−1 + Bm) + Am × Heff,

(8)
∂ Bm

∂t
= −J

h̄
Bm × (Am + Am+1) + Bm × Heff,

and where the index m labels pairs of adjacent sites xj of the
lattice. The next step is to introduce the magnetization

Mm = Am + Bm

2
(9)

and the Néel vector

nm = Am − Bm

2
, (10)

which are orthogonal to each other and obey M2
m + n2

m = 1.
We now proceed as follows: First, we derive equations of

motion for nm and Mm by eliminating Am and Bm from Eq. (8)
in favor of the magnetization and the Néel vector. Second, we
take the continuum limit and introduce derivatives via fm±1 �
fm ± 2a∂f/∂x + 2a2∂2f/∂x2. We expand up to second order
in derivatives and work to first order in the effective field Heff .
With respect to this, it is important to note that, as we will
show [Eq. (12)], M is first order in ∂n/∂x, ∂n/∂t , and Heff .
Furthermore, Heff is also first order in ∂n/∂x via Eq. (5). The
final result for the coupled equations of motion for the Néel
vector and the magnetization is27

∂n
∂t

= −2J

h̄

(
2n × M + an × ∂n

∂x

)
+ n × Heff,

(11)
∂ M
∂t

= −2Ja

h̄

[
∂

∂x
(M × n) − n × ∂2n

∂x2

]
+ M × Heff .

The first of these two equations is rewritten by taking the cross
product with n to yield

M = h̄

4J
n × ∂n

∂t
− a

2

∂n
∂x

+ h̄

4J
Heff . (12)

Here we assume that the effective field is perpendicular to the
Neel vector.
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This is inserted in the second equation in Eq. (11) and gives

n ×
(

∂2n
∂t2

− c2 ∂2n
∂x2

)
+ ∂ Heff

∂t

=
(

n × ∂n
∂t

)
× Heff − 2Ja

h̄

(
∂ Heff

∂x

)
× n, (13)

where we have introduced the spin-wave velocity c = 2Ja/h̄.
Inserting the result for the current-induced effective field from
Eq. (5), to be proven in the next section, we arrive at the gener-
alization of the nonlinear sigma model equation of motion that
includes current-induced torques in antiferromagnetic metals:

n ×
(

∂2n
∂t2

− c2 ∂2n
∂x2

)
+ ∂

∂t

[
n × v

∂n
∂x

]

= −
{

n ·
[
∂n
∂t

× v
∂n
∂x

]}
n − cv

∂2n
∂x2

, (14)

where we mention again that the velocity v is proportional to
the transport current.

The antiferromagnetic spin-wave dispersion resulting from
this equation is, again ignoring anisotropy and external fields,
given by

ωk = ck
√

1 ∓ iv/c + (v/2c)2 ± vk

2
� ck ± vk

2
(15)

to linear order in current for v 	 c. This shows that the
dispersion has a similar Doppler shift to the ferromagnetic
case.8,9 The difference with the ferromagnetic case is in the
factor 1/2 in the Doppler shift, resulting from the fact that
the equation for n(x,t) is second order in time derivatives.
With the definition in Eq. (5), the velocity v is equal to the
velocity of current-driven domain walls in the absence of
damping, anisotropy, and pinning, as we discuss now. The
corrections of O(v/c) under the square root in Eq. (15),
which are unimportant for v 	 c (which we assume is the
typical situation), come from the last term in Eq. (14). Upon
ignoring this term, the equation of motion in Eq. (14) allows
for comoving solutions n0(x − vt) (to first order in v), from
which we conclude that antiferromagnetic domain walls28

move with velocity v proportional to the current in the absence
of pinning and damping. Further justification of this estimate of
the current-induced domain wall velocity is that the term that is
neglected in this estimate is quadratic in spatial derivatives and,
by itself, therefore, does not lead to domain wall motion, but
only to modification of the spin-wave dispersion if v becomes
comparable to c.

In the next section, we will prove the form of the spin
density in Eq. (5) that was assumed so far, and calculate v for
a simple model.

III. TOY-MODEL ANTIFERROMAGNETIC METAL

To confirm the conjecture 〈s⊥〉 ∝ n × (v · ∇)n and deter-
mine the current-dependent velocity v, we consider a toy model
of a conducting antiferromagnet within the Green’s function
formulation of Landauer-Büttiker transport theory.29 We use

FIG. 1. Illustration of a smooth antiferromagnetic magnetization
texture.

a tight-binding Hamiltonian given by H = HS + HL + HI ,
where

HS = −t
∑

〈j,j ′〉;σ
ψ

†
j,σψj ′,σ −

∑
j ;σ,σ ′

ψ
†
j,σ

[
�

2
� j · τ σ,σ ′

]
ψj,σ ′

(16)

is the system Hamiltonian with t the nearest-neighbor hopping
amplitude and � the exchange energy, and ψj,σ and ψ

†
j,σ

are the electron annihilation and creation operators. The
Hamiltonians for the leads HL and for the coupling between the
leads and the system HI , respectively, are similar but with � =
0. To realize a transport current I , these leads have a chemical
potential difference of e|V |. The magnetization texture is set to
� j = [(∓1)j sin( 2πaj

λ
),0,(∓1)j cos( 2πaj

λ
)] ≡ (∓1)j nj , where

λ is the wavelength of the magnetic texture and the upper
(lower) signs describe the antiferromagnetic (ferromagnetic)
case. See Fig. 1 for an illustration of the antiferromagnetic
texture.

In Fig. 2, we show the transmission probability as a function
of εF /t for two different values of �/t and a lattice of
82 sites. The result for the ferromagnetic case is shown for
comparison. The results are understood by noting that, for
the collinear situation, the dispersion of the electrons in the
antiferromagnet is

εk,± = ±
√

�2 + 4t2 cos2(ka), (17)

where the + and − distinguish the two bands. The above
dispersion has a gap between −√

�2 − 4t2 and
√

�2 − 4t2,
which shows up as a suppression in the transmission proba-
bility if the Fermi energy of the leads is put in this gap. For
values outside the gap, the transmission probability approaches
approximately 2, corresponding to perfect transmission of the

1.0 0.5 0.5 1.0 F t

0.5

1.0

1.5

2.0

T

FIG. 2. (Color online) Transmission probability as a function of
Fermi energy εF /t for �/t = 0.1 (solid lines) and �/t = 0.2 (dashed
lines) for both the antiferromagnetic (thin lines) and ferromagnetic
(thick line, only the � = 0.2 is shown and the � = 0.1 is similar)
cases. We considered a lattice with 82 sites.
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FIG. 3. (Color online) Plot of the current-induced out-of-plane
spin density vs the antiferromagnetic texture wavelength λ. The solid
line corresponds to �/t = 0.1 and the dashed line to �/t = 0.2. The
Fermi energy εF /t = 0.79.

two spin states of the electron. The oscillations as a function of
εF are due to finite-size effects. We have checked numerically
that decreasing the size of the lattice decreases the period to
these oscillations proportionally.

Next, we consider the spin density of the electrons. The
magnetization texture is in the x-z plane and in equilibrium,
without current, the system only has nonzero spin densities
〈s〉 = 〈ψ†

σ τ σ,σ ′ψσ ′ 〉 in this plane. For nonzero voltage, we
numerically find a spin density 〈s⊥〉 in the y direction that
is constant in position, in agreement with Eq. (5). If Eq. (5)
holds, then the velocity

v ≡ a3�〈s⊥〉
h̄
[
nj × ∂

∂xj
nj

]
y

= λa3�〈s⊥〉
2πh̄

(18)

should be independent of λ in the long-wavelength limit. The
numerical results shown in Fig. 3 confirm this. In this figure,
the current-induced out-of-plane spin density, normalized to
the current, is shown as a function of the wavelength of the
antiferromagnetic texture. For increasing texture wavelength,
the velocity approaches a constant value. The oscillations
for small λ are again due to finite-size effects, as we have
found that they change period upon changing the system
size. For comparison, we show in Fig. 4 the current-induced
out-of-plane spin density versus magnetic-texture wavelength
for a ferromagnet. Note that the long-wavelength limit is ap-
proached on a similar length scale as in the antiferromagnetic
case. Although these results are obtained within a simple
model, we expect that they are qualitatively valid in general.
For example, we expect that, in the presence of disorder
leading to a mean-free path �, the results are attenuated and the
long-wavelength limit is approached as the magnetic-texture
wavelength becomes much larger than the mean-free path
(provided that the exchange coupling between the conduction
electrons and magnetization is large).

Now that we have established that v approaches a constant
in the long-wavelength limit, we take its long-wavelength
limiting value as its definition and study its dependence on
� and εF . The result is shown in Fig. 5. Here, we show v as a
function of εF for two values of the exchange constant �. It is

200 400 600 800 1000 1200 1400 λ
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0.010

0.015

λa3 s
2

Ia
e

FIG. 4. (Color online) Plot of the current-induced out-of-plane
spin density vs the texture wavelength λ for a ferromagnet. The solid
line corresponds to �/t = 0.1 and the dashed line to �/t = 0.2. The
Fermi energy εF /t = 0.79.

clear from this figure that v depends strongly on the value of
the exchange constant and the Fermi energy, at least within
the model we study here. For values of the Fermi energy
in the gap, the velocity becomes large because the current
becomes small. In this regime, the model does not describe
an antiferromagnetic metal and this regime is therefore not of
interest to us. Note that the velocity is odd as a function of
εF , a result of the particle-hole symmetry of the band structure
around zero energy. As in the results for the transmission
probability in Fig. 2, the oscillations are due to finite-size
effects.

For comparison, we show the results corresponding to
the ferromagnetic case in Fig. 6. Note that there are similar
oscillations as in the antiferromagnetic results, also due
to finite-size effects. As discussed in the Introduction, the
velocity vs is proportional to the charge current and its spin
polarization. The charge current is approximately independent
of εF /t because the transmission does not strongly depend on
this parameter in the ferromagnetic case (compare Fig. 2). The
oscillations in Fig. 6 are, therefore, primarily due to oscillations

1.0 0.5 0.5 1.0
F t

40

20

20

40

V Ia
e

FIG. 5. (Color online) Plot of the velocity v that parametrizes
current-induced torques in bulk antiferromagnets vs εF /t . The solid
line corresponds to �/t = 0.1 and the dashed line to �/t = 0.2. The
number of lattice sites is equal to 82.
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FIG. 6. (Color online) Plot of the velocity vs that parametrizes
current-induced torques in bulk ferromagnets vs εF /t . The solid line
corresponds to �/t = 0.1 and the dashed line to �/t = 0.2. The
number of lattice sites is taken to be 82.

in the spin polarization of the charge current. We have checked
this numerically. The slight asymmetry around zero Fermi
energy is due to the finite bias voltage between the left and
right leads.

Although we consider a specific simple model here, the
fact that our numerical results show that the results for
the ferromagnetic and antiferromagnetic cases are of similar
magnitude indicates that the velocities vs and v, respectively,
parametrizing current-induced torques in ferromagnets and
antiferromagnets, can in principle be of the same order of
magnitude.

IV. EFFECTIVE SPIN-ORBIT COUPLING

This numerical analysis confirms that, when a current is ap-
plied to an antiferromagnetic metal, there is a nonzero out-of-
plane spin density that drives current-induced magnetization
dynamics. We now give an interpretation for this spin density
in terms of a current-induced spin polarization resulting from
an effective spin-orbit coupling. We start with a system of
electrons (mass m) moving in an antiferromagnetic texture
n(xj ) and scalar potential V (xj ), described by the Hamiltonian

H = p2

2m
+ V (x j ) − �

2
(−1)j n(x j ) · τ , (19)

with xj = ja the position of the j th lattice site. We align the
spin quantization axis of the conduction electrons to the local
Néel vector by applying a SU(2) transformation |ψ〉 → R|ψ〉
to the wave function with R−1n · τR = τ z, which therefore
diagonalizes the spin part of the Hamiltonian and gives the
effective Hamiltonian

Heff = H0 − 2iJ μ
s,αaμ

α (x) (20)

to first order in the gradient of n, where H0 is the
Hamiltonian in Eq. (19) with n = ẑ. Here, J

μ
s,α = h̄

2τμv0,α

is the spin current with the velocity v0,α = 1
h̄

∂εk
∂kα

with εk

the dispersion corresponding to H0 and the gauge fields
aμ

α (x) ∼= in × ∇αn|μ.30 Substituting the latter into Eq. (20)
leads to the effective Hamiltonian

Heff = H0 +
(

n ×
[

∂εk

∂kα

∇α

]
n
)

· τ

≡ H0 − Beff · τ , (21)

where Beff is a momentum-dependent fictitious magnetic field
that can be viewed as an effective spin-orbit coupling resulting
from the noncollinear antiferromagnetic texture. (Note that
this effective spin-orbit coupling is different from the result
of Ref. 31 for a collinear antiferromagnet.) Since the effective
magnetic field is linearly proportional to the velocity operator,
when an electric field is applied, Beff is nonzero. The resulting
Zeeman splitting of the electron spins due to Beff results in a
current-induced spin polarization that is aligned with the effec-
tive magnetic field and, since Beff ∝ n × ∇n, consequently, is
perpendicular to both the magnetization and its gradient. It is
this current-induced spin polarization that contributes to the ef-
fective field for the magnetization and leads to current-induced
torques. The above argument holds in an analogous form for
ferromagnets and confirms that the magnetization-direction
dependence of 〈s⊥〉 for ferromagnets is the same as its Néel
vector dependence for antiferromagnets. Note that, at the level
of the effective Hamiltonian in Eq. (21), the main difference
between the antiferromagnetic and ferromagnetic cases is the
difference in H0, which in the ferromagnetic case contains
a constant exchange splitting and in the antiferromagnetic
case an alternating one. Current-induced spin polarization
has been studied in paramagnetic semiconductors,32–34 which
show that it does not require a net nonzero exchange splitting,
which, in turn, explains why the current-induced torques in
antiferromagnets are generally nonzero.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated that, in an antiferro-
magnetic metal, a steady-state transport current generates a
current-induced out-of-plane spin density, resulting in torques
on the magnetization. This spin density is parametrized
by a velocity v that is proportional to the current. We
have presented the generalization of the nonlinear sigma
model equation of motion for antiferromagnetic magnetization
dynamics in an antiferromagnetic metal in the presence of
a transport current. From this equation of motion, we have
found a current-induced shift of the spin-wave dispersion and
also that the current-induced torques lead to current-driven
antiferromagnetic domain wall motion.

One of our findings is that the form of the current-induced
spin density, expressed in terms of the Néel vector, is similar
in form to the current-induced spin density in ferromagnets
with the Néel vector replaced by the magnetization direc-
tion. We have ignored conduction-electron spin relaxation,
which, in the ferromagnetic case, is known to result in an
additional contribution −β∇� to the spin density that is
parametrized by the dimensionless constant β.35,36 In future
work, we intend to investigate if similar corrections are
present in the antiferromagnetic situation as well. Moreover,
we intend to explore the consequences of this equation of
motion for the current-driven motion of antiferromagnetic
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domain walls, also taking into account anisotropy and
magnetization relaxation. Further studies will also include
exploring other aspects of the effective spin-orbit coupling
discussed in this paper.

Note added in proof. In a recent preprint (Ref. 37) Hals,
Tserkovnyak, and Brataas, investigate the effects of relaxation
on current-induced dynamics in antiferromagnets.
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