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Parity-odd multipoles, magnetic charges, and chirality in hematite «-Fe, O3
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Collinear and canted magnetic motifs in hematite were investigated by J. Kokubun er al. [Phys. Rev. B 78,
115112 (2008)] using x-ray Bragg diffraction magnified at the iron K -edge, and analyses of observations led to
various potentially interesting conclusions. We demonstrate that the reported analyses for both nonresonant
and resonant magnetic diffraction at low energies near the absorption K-edge are not appropriate. In its
place, we apply a radically different formulation, thoroughly tried and tested, that incorporates all magnetic
contributions to resonant x-ray diffraction allowed by the established chemical and magnetic structures.
Essential to a correct formulation of diffraction by a magnetic crystal with resonant ions at sites that
are not centers of inversion symmetry are parity-odd atomic multipoles, time-even (polar) and time-odd
(magneto-electric), that arise from enhancement by the electric-dipole (E 1)—electric-quadrupole (E2) event.
Analyses of azimuthal-angle scans on two space-group forbidden reflections, hexagonal (0,0,3), and (0,0,9),
collected by Kokubun eral. [Phys. Rev. B 78, 115112 (2008)] above and below the Morin temperature
(T) = 250 K), allow us to obtain good estimates of contributing polar and magnetoelectric multipoles, including
the iron anapole. We show, beyond reasonable doubt, that available data are inconsistent with parity-even
events only (E1-E1 and E2-E?2). For future experiments, we show that chiral states of hematite couple to
circular polarization and differentiate £1-E2 and E2-E2 events, while the collinear motif supports magnetic

charges.
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I. INTRODUCTION

Enigmas about ichor-like hematite («-Fe,O3) and famed
lodestone, both true and some embroidered, have been worried
and written about from the time of Greek texts in 315 BC
to William Gilbert of Colchester, the father of magnetism,
in the 16th century, to Dzyaloshinsky in 1958 who gave a
phenomenological theory of weak ferromagnetism. Hematite
is the iron sesquioxide that crystallizes into the corundum
structure (centrosymmetric space group 167, R3c) in which
ferric (Fe**, 3d°) ions occupy sites 4(c) on the trigonal ¢ axis
that are not centers of inversion symmetry. For an extensive
review of the history and properties of hematite see, for
example, Morrish! and Catti ef al.?

At room temperature, the motif of magnetic moments
is canted antiferromagnetism with moments in a (basal)
plane normal to the ¢ axis. Weak ferromagnetism parallel
to a diad axis of rotation symmetry, normal to a mirror
plane of symmetry that contains the c¢ axis, is created by
a Dzyaloshinsky’~Moriya* antisymetric interaction D - (S; x
S») between spins S; and S, and the vector D is parallel to the
¢ axis. The Morin temperature 250 K, at which moments rotate
out of the the basal plane to the ¢ axis, may be determined
from the temperature dependence of magnetic Bragg peaks
observed by neutron diffraction. Rotation of the moments
takes place in a range of 10 K in pure crystals but the interval
can be much larger, 150 K, in mixed materials.’ Ultimately,
moments align with the ¢ axis and create a fully compensating,
collinear antiferromagnet with an iron magnetic moment of
4.9 jup at 77 K. We follow Dzyaloshinsky? and label collinear
(low-temperature phase) and canted (room-temperature phase)
antiferromagnetism as phases [ and II, respectively (see Fig. 1).
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PACS number(s): 75.50.Ee, 78.70.Ck, 78.20.Ek, 75.47.Lx

In phase I hematite is not magnetoelectric unlike eskolaite
(Cr,03), which also possesses the corundum structure and
collinear antiferromagnetism.

Finkelstein et al.® and Kokubun et al.” studied hematite
by x-ray Bragg diffraction, with Bragg intensities enhanced
by tuning the energy of the primary X-rays to the iron
K-absorption edge. In these experiments, attention is given
to Bragg reflections that are forbidden by extinction rules
for the space group. Often called Templeton and Templeton
reflections,? the reflections in question are relatively weak and
arise from angular anisotropy of valence states that accept the
photoejected electron. Following rotation of the crystal about
a Bragg wave-vector aligned with the ¢ axis, Finkelstein et al.®
observed a near sixfold periodicity of the intensity that is traced
to a triad axis of rotation symmetry that passes through sites
occupied by resonant, ferric ions. In general by measuring
intensities, collected at space-forbidden reflections, we can
obtain information of high-order multipoles existing in the
materials such as magnetic charge (or magnetic monopole),’
electric dipole,'® anapole,'"!? quadropole,'® octupole,'+!>
and hexadecapole.'®!7 Therefore, these weak reflections are
extremely sensitive to charge, orbital, and spin electron degrees
of freedom and hematite is no exception.'®

We apply an atomic theory of resonant Bragg diffraction
formulated for the corundum structure'® to data gathered
by Kokubun et al.” at forbidden reflections (0,0,/), with
[ =32n + 1) and infer from available data relative values
of atomic multipoles of the resonant ion. A successful
story emerges with scattering represented by a mixture of
parity-even and parity-odd (even or odd with respect to
the inversion of space) multipoles at sites in the structure
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FIG. 1. (Color online) Magnetic and chemical structure of
hematite, space group R3c. The red (large) and the yellow (small)
dots represent oxygen and iron sites, respectively. The left line
denotes the magnetic motif along the ¢ axis below the Morin
temperature (phase I). The right line denotes the motif above the
Morin temperature, where iron moments are contained in the a-b
plane (phase II).

occupied by resonant iron ions, which are not centers of
inversion symmetry. Parity-odd multipoles arise in a resonant
event using the electric dipole (E'1) and electric quadrupole
(E2)—corresponding multipoles are labeled polar (time-even)
or magnetoelectric (time-odd)—while parity-even multipoles
arise from E'1-E'1 and E2-E?2 events. A chiral state of hematite
is demonstrated by a predicted coupling of resonant intensity
to circular polarization (helicity) in the primary beam, and
the effect also differentiates between E1-E2 and E2-E2
events. The two parity-odd multipoles of rank zero correspond
to chirality and magnetic charge®®?' and both pseudoscalar
monopoles are present in the electric dipole-magnetic dipole
(E1-M1) amplitude for resonant scattering by hematite in
phase L.

Our article is arranged as follows. Section II contains
essential information and definitions. Unit-cell structure fac-
tors for Bragg diffraction enhanced by E1-E1, E1-E2, and
E2-FE?2 listed in the Appendix are exploited in Secs. III and
IV, which report the successful analysis of Bragg diffraction
data gathered on hematite at room temperature and at 150 K,
well below the Morin transition. Thereafter, in Sec. V, there
are simulations of resonant intensity induced by circular
polarization in the primary x-ray beam which signals the
existence of a chiral state. Section VI addresses the magnetic
charge found in the E'1-M 1 structure factor and not visible in a
dichroic signal. A discussion of findings in Sec. VII concludes
the article.

II. BASICS

There are four contributions to the amplitude of photons
scattered by electrons calculated in the first level of approxima-
tion in the small quantity (E /mc?), where E is the energy of the
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primary photon, namely, Thomson scattering, spin scattering,
and two contributions with virtual intermediate states, one of
which may become large when E coincides with an atomic
resonance. Of particular interest with magnetic samples is a
celebrated reduction of the amplitude, derived by De Bergevin
and Brunel,”” which occurs at large E. In this limit, all
three contributions excluding Thomson scattering add to give
so-called magnetic, nonresonant scattering made up simply of
spin and orbital magnetic moments. De Bergevin and Brunel’s
result is not valid at low energies, and certainly not below an
atomic resonance, as is at once obvious from the steps in its
derivation.??

In an analysis of x-ray Bragg diffraction data for hematite
collected at space-group forbidden reflections we use the spin
and resonant contributions to the scattering amplitude. The
spin contribution G* = i(E/mc?)(e x €) - Fy(k) with k =
q — q', where e and q (¢’ and q') are, respectively, the polar-
ization vector and the wave vector of the primary (secondary)
photon, and the Bragg angle 6 that appears in structure factors
for resonant scattering is defined by q - q' = ¢ cos(26). F;(k)
is the unit-cell structure factor for spin magnetic moments. The
measured energy profiles of reflections (0,0,3); and (0,0,9),
show a single resonance in the pre-edge region, devoid of
secondary structure, which is modeled by a single oscillator
centered at an energy A = 7.105 keV with a width T, to
an excellent approximation.” In this instance, the resonant
contribution to scattering is represented by d(E)F),,, where
d(E)=A/[E—A+il'l and F,, is a unit-cell structure
factor for states of polarization p’ (secondary) and v (primary).
We follow the standard convention for orthogonal polarization
labels o and m: o normal to the plane of scattering and,
consequently, 7 in the plane. Unit-cell structure factors listed
in the Appendix are derived following steps for the corundum
structure found in Lovesey et al.'® The generic form of our
Bragg scattering amplitude for hematite at a space-group
forbidden reflection (no Thomson scattering) is

Gu(E) =G, + pd(E) Fun, ey

where p is a collection of factors, which include radial integrals
for particular resonance events, which are provided in the
Appendix.

Atomic multipoles (Té( ) in parity-even structure factors,
for E1-E1 and E2-E?2 events, have the property that even
rank K are time-even (charge) and odd rank K are time-odd
(magnetic). For enhancement at the K-absorption edge, all
parity-even atomic multipoles relate to orbital degrees of
freedom in the valence shell - spin degrees of freedom are
absent.* Thus, for enhancement at the K-absorption edge,

multipoles (TQK )y with odd K are zero if the ferric, 3d° (electron
configuration °S) of the iron ion is fully preserved in hematite.
The measured iron magnetic moment of 4.9 ug at 77 K
indicates that the orbital magnetic moment is small and likely
no more than ~2% of the measured moment.>

It is worth noting that we have used a single-domain
approach for calculating the intensities, as is mentioned in
the penultimate paragraph in Sec. IVD of Kokubun et al.’
The justification is that the x-ray beam was sufficiently small
to illuminate only one crystal domain of hematite.
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III. PHASE 1

We report first our analyses of data gathered by Kokubun
etal.” on hematite at 150 K. With 100% incident o polarization
and no analysis of polarization in the secondary beam, the
measured intensity of a Bragg reflection is proportional to

[ =[Goo(E)* +|Gro(E)*. 2)

For a collinear antiferromagnet, in expression (1) for
G, (E) one has G}, =0 and in the channel with rotated
polarization

G2, = 4sin(0) sin(pl)(E/mc?) f, (k) (S%), A3)

where ¢ = —37.91°, the Bragg angle 6 = 10.96° (34.77°) for
a Miller index / =3 (9), (S%) < 5/2 is the spin moment,
and f;(k) is the spin form factor with f;(0) = 1. Note that
|GjT,U|2  sin(@) above is not the expression in Eq. (20) in
Ref. 7, which is derived by the use of an abridged scattering
amplitude that is not valid in the experiment.??

At resonance, the spin contribution G;, is suppressed
compared to the resonant contribution by a factor I'/A &~ 107*
and it may safely be neglected.

Confrontations between our theoretical expressions for
the azimuthal-angle dependence of Bragg intensity with the
corresponding experimental data reported in Ref. 7 reveal a
30° mismatch of origins in the azimuthal angle. Our origin
¥ =0 has the a axis normal to the plane of scattering,'”
whereas Kokubun et al.” specify an origin such that the a axis
is parallel to q + ¢/, giving a nominal mismatch in the origin
of v, between theory and experiment, of 90°. The actual

T T T T T T T T
0-Fe,0 (0,0,3), Eg=7.105 keV T=150K |

Intensity (arb. units)

Intensity (arb. units)
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mismatch, 30°, revealed by our analysis of data is likely to
arise in the experiments by mistakenly using for reference
a basal plane Bragg reflection offset by 60°. In this and the
following section we reproduce data as a function of v offset
by 30° compared to data reported in Figs. 5 and 10 in Ref. 7.

In light of the established negligible orbital magnetism
in hematite, parity-even, time-odd atomic multipoles (K = 1
and 3) are set equal to zero. Looking in the Appendix
one finds F,,(E1-E1) = 0. Additionally, F,s(E2-E2) =0
and F;,(E2-E2) produce Templeton—-Templeton scattering
proportional to [(Tjr‘3)/cos(31//)], where v is the azimuthal
angle. Inspection of data for phase I reproduced in Fig. 2
shows that an E2-E2 event on its own is not an adequate
representation. The missing modulation is produced by the
E1-E2 event that introduces a polar quadrupole (UgZ) in
phase with the parity-even hexadecapole.? Figure 2 displays
satisfactory fits of {|F, |> + | Fyo|*}, using equal measures
of E1-E2 and E2-E?2 events, to data from azimuthal-angle
scans performed at reflections (0,0,7), with [ = 3 and 9. The
influence of the polar quadrupole is very notable for / =9
because for this Miller index the hexadecapole is suppressed,
with theratioat/ = 9tol = 3 of tan(¢!) equal to 0.15. Relative
values of multipoles inferred from fits to the low-temperature
data are gathered in Table 1. Values of (T7;)" and (U3) in
phase I are found to be of one sign and in the ratio 20 : 1, with
near equal magnitudes of the polar quadrupole and magne-
toelectric octupole, (Gi3>/. If |p(E2-E2)/p(E1-E2)| =~ 1.0,
as suggested by our estimate, magnetoelectric multipoles are
~5% of the dominant parity-even hexadecapole, (Tf3)’.

Without polarization analysis, it does not seem possible
from azimuthal-angle scans to distinguish between E 1-E2 and
E2-E?2 events.However, as shown in Sec. V, the two events
can be distinguished with circularly polarized x rays.

TABLE 1. Relative values of atomic multipoles for collinear
antiferromagnetism in phase I (at 100 K below the Morin transition)
and canted antiferromagnetism in phase II (room temperature). Apart
from a scale factor, the magnitude of the dominant hexadecapole,
(Tjr‘3>’, is set to +10.00. The estimate (U(f) = +0.50 inferred by
fits to data for phase I is also used in the analysis of data for
phase II. Values for other multipoles are inferred by fitting to data
equal measures of E1-E2 and E2-E?2 structure factors listed in the
Appendix, with time-odd figures (magnetic) multipoles in E2-E?2 set
to zero. Fits are displayed in Figs. 2 and 4. With our definition, real
(---) and imaginary (- --)” parts of a multipole are defined through
(G§) =(G§) +i(G§) with (G§)* = (=1)?(GX ), and identical
relations for the other two multipoles, (7') and (U ). All multipoles
with projection Q = 0 are purely real. Using radial integrals from an
atomic code factors in Eq. (1) are in the ratio p(E2-E2)/p(E1-E2) =
—0.98, which is no more than a guide to the actual value in hematite.
This ratio is not eliminated in the listed values of the multipoles.

-150 -100 -50 0 50 100 150 200

Azimutal Angle (degree)

FIG. 2. (Color online) Azimuthal-angle dependence of intensity
of Bragg reflections (0,0,/), with/ = 3 and/ = 9 for phase I (150 K).
Continuous curves are fits to structure factors for £1-E2 and E2-E2
events with magnetic (time-odd) parity-even multipoles set to zero.
Inferred relative atomic multipoles are listed in Table I. Experimental
data are taken from Kokubun et al.”

Multipole Phase I Phase II
(GLyY 0.50(2)
(G3) 0.11(2)

(G2 —0.38(3)
(G2, 1.07(6)
(G35 0.41(2) 2.45(5)
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FIG. 3. (Color online) Azimuthal-angle dependence of intensity
of the Bragg reflection (0,0,9),, for phases I (150 K) and II (room tem-
perature). Continuous curves are fits to parity-even structure factors
E1-E1 and E2-E?2 including all magnetic multipoles. Experimental
data taken from Kokubun et al.” appear also in Figs. 2 and 4.

The failure of pure parity-even structure factors E1-E1
plus E2-E?2 to explain the data is most pronounced for [ = 9.
To illustrate the extent of the failure, Fig. 3 displays a fit to
intensity at/ = 9 with an amplitude made of equal amounts of
E1-E1 and E2-E?2 unit-cell structure factors, and the quality
of the fit is clearly inferior to the one shown in Fig. 2.

IV. PHASE II

In this phase, above the Morin transition, iron magnetic
moments lie in a plane normal to the ¢ axis. We choose
orthonormal principal axes (x, y, z) with the x and z axes
parallel to the crystal a and c axes, respectively. The crystal
a axis is parallel to a diad axis of rotation symmetry, normal
to the mirror plane that contains the trigonal ¢ axis.

The spin contribution G¢, = 0, while the corresponding
7'o scattering amplitude can be different from zero and,
notably, it depends on the azimuthal angle. We find that

G, = 4cos(y) cos(0) sin(el) (E/mc?) f,(k) (S*), (4)

and |Gfm|2 o cos2(0) from Eq. (4) is not the same as the
corresponding result, Eq. (19) in Ref. 7 for reasons spelled out
in Sec. III.

Away from a resonance, the result (4) predicts a twofold
periodicity of intensity as a function of the azimuthal angle,
which is in accord with observations in Ref. 7. The spin mo-
ment in the mirror plane (S”) is close to 5/2 while spontaneous
magnetization, directed along a diad axis, is ~0.02% of the
nominal value. From Egs. (3) and (4) we see that the ratio of
|G, |? for phases I and II depends on tan?(9) which takes the
value 0.04 (0.48) for! =3 (I = 9). For = 3, Kokubun ez al.”
report intensity between 150 K (phase I) and 300 K (phase II).
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Starting from ~210 K a large increase of intensity is observed
over an interval of ~40 K. Rotation of magnetic moments from
the ¢ axis to the basal plane, between phases I and II, takes
place in a range of 10 K in pure crystals but the interval can
be larger in mixed materials as commented above.

Slightly away from the resonance, interference between the
nonresonant, spin contribution (4) and d(E) F;;, may enhance
intensity in a Bragg peak if (E — A)[G. /(Frs)] > 0. We
find [G,., /(Fr)'1is of one sign for/ = 3 and ! = 9 provided
that f;(k), the spin form factor, is of one sign. At face value
this finding is not at one with Kokubun et al.” who discuss
a sighting of slight enhancement of the intensity on the low-
energy side of the resonance for/ = 9 that is apparently absent,
or completely negligible, for [ = 3.

Figure 4 shows fits of E'1-E2 and E2-E?2 structure factors
to data gathered at / =3 and / =9 in phase II (room
temperature). As before, in our analysis of data gathered on
phase I, parity-even multipoles with odd K are set to zero.
Time-even contributions to structure factors, determined by
chemical structure, are taken to be the same in phases I and II.
Consistency with this assumption, about chemical structure,
implies for phases I and II the same values of (Tjr‘3)’ and
(Ug). Inferred relative values of time-odd atomic multipoles
for phase II are listed in Table I, with values of (Tjr‘3 ) and (Ug)
in the ratio 20:1. Relative to the magnitude of (Ug), none of the
magnetoelectric multipoles are negligible in phase II. Figure 3
contains a fit of pure parity-even structure factors, E1-E1 and
E2-E?2, to data for the reflection / = 9, and the quality of the
fit is clearly inferior to that reported in Fig. 4 with E1-E2 and
E2-E?2 structure factors.
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FIG. 4. (Color online) Azimuthal-angle dependence of the inten-
sity of Bragg reflections (0,0,/), with [ = 3 and / = 9 for phase II
(room temperature). Continuous curves are fits to structure factors
for E1-E2 and E2-E?2 events with magnetic (time-odd) parity-even
multipoles set to zero. Inferred relative atomic multipoles are listed
in Table I. Experimental data are taken from Kokubun et al.”
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FIG. 5. (Color online) Simulation of the azimuthal-angle depen-
dence from Eq. (6) for a circular polarized light of Bragg reflections
(0,0,0), with [ =3 and [ =9 for phase I. Continuous curves are
simulations made with the values of the multipoles from the E1-E2
event gathered in Table I. For the E2-E?2 event I, is zero because our
magnetic (time-odd) parity-even multipoles are zero for a ferric ion.
Zero I, does not mean zero intensity because /. is only the circular
polarization contribution to intensity.!’

V. CHIRAL STATE

A chiral, or handed, state of a material is permitted to couple
to a probe with a like property, in our case circular polarization
(helicity) in the primary beam of x rays. In our notation,
the pseudoscalar for helicity, P,, is one of three purely real,

82

I(E1-E2) = P2<T> 2(E1-E2)|d(E)|2cosz(wl)cosz(9)<U§){

1

x [cos(30) — cos()(G%,)" — 7
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time-even Stokes parameters. Intensity induced by helicity in
the primary beam is (Ref. 17)

I, = PIm{G?, Gos + G Grol, %)

where the amplitudes G, are given by Eq. (1) and * denotes
complex conjugation. I, is zero for Thomson scattering since
it is proportional to (e - €’) and diagonal with respect to states
of polarization.

Let us consider the fully compensating collinear antiferro-
magnet (phase I). For both E1-E1 and E1-M 1 events there are
no contributions diagonal with respect to states of polarization
and /. is zero. Using the structure factors listed in the Appendix
for the E1-E2 and E2-E?2 events, we find

I.(E1-E2) = —P2(85£>,02(E1-E2) | d(E) |* sin(3y)

x cos®(0)[1 + sin*(9)] cos*(pl) (G5} (UZ)

(©)

and

I.(E2-E2) = —Py4p*(E2-E2) | d(E) | sin(6v)
x sin(8) cos®(9) sin*(pl) (T2)(TH), ()

The predicted intensities are significantly different—
notably in dependence on the azimuthal angle—and offer a
method by which to distinguish contributions from the two
events (see Figs. 5 and 6). Intensities (6) and (7) depend
on long-range magnetic order, with I.(E2-E2) =0 if the
ferric ion is pure S. The polar quadrupole in Eq. (6) is a
manifestation of local chirality,!®?> whereas the pseudoscalar
(Ug), discussed in the next section, is a conventional measure
of the chirality of a material. While for phase II, we find that
1. is given

sin(lﬂ)[:/—;[cos(%) + cos(@(GL,)

L
V3

[cos®(8) + 2005(9)](G3+1)/:| — sin(3¥) cos(8)[1 + sinz(e)](Gi3)’}, (8)

I.(E2-E2) = — P, <i> p*(E2-E2)|d(E)|* sin*(p])(T} )/{4 sin(1/f)cos4(9)|:_—1 sin(9)[8 cos*(9) — 51(T")"
V2 2 NE]

+ \/g sin(9) cos®(0)(T73, )”} — 44/255in(9) cos®(9) sin(6y)(T3,)” } ©)

VI. MAGNETIC CHARGE AND CHIRALITY

The pseudoscalar monopoles (Gg) and (Ug) have partic-
ularly simple and interesting physical interpretations. Both
monopoles are allowed in hematite structure factors for the

E1-M1 event, as we see by inspection of relevant expressions
in the Appendix. A conventional measure of the chirality of
electrons in a molecule or extended media is (S - p)/|(p)l,
where S and p are operators for spin and linear momentum
and, not unsurprisingly, (Ug ) is proportional to (S - p)/|p|. It
is well-known that (Ug) contributes to natural circular
dichroism.?® On the other hand, (G{), a magnetic charge,
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FIG. 6. (Color online) Simulation of the azimuthal-angle depen-
dence from Eq. (8) for a circular polarized light of Bragg reflections
(0,0,1), with [ =3 and / =9 for phase II (room temperature).
Continuous curves are simulations made with the values of the
multipoles from the E1-E2 event gathered in Table 1. For the
E2-E?2 event the . is equal to zero because our magnetic (time-odd)
parity-even multipoles are zero. Zero /. does not mean zero intensity
since I. is only the circular polarization contribution.'’

does not contribute to dichroic signals but it can contribute
in scattering. Such is the case for gallium ferrate?’ and phase I
of hematite. The magnetic charge and the magnetoelectric
quadrupole are present in the amplitude for backscattering
withq = —q'.

VII. DISCUSSION

We report successful analyses of resonant Bragg diffraction
data gathered by Kokubun et al.” on hematite in the collinear
(phase I) and canted (phase II) antiferromagnetic phases, with
no analysis of diffraction according to polarization of the
x rays. We infer good estimates of iron atomic multipoles
and find large amounts of parity-odd multipoles. Of particular
importance to a successful analysis is a polar quadrupole, a
measure of local chirality,25 and, in phase II, magnetoelectric
multipoles that include the anapole. Slight departures between
our theory and experiment could be due to a less than ideal
crystal, as witnessed in the extended interval of temperature
for rotation of magnetic moments between phases I and I1.”

Future experiments might employ polarization analysis that
will allow closer scrutiny of the unit-cell structure factors for
hematite that we list in the Appendix, which are derived from
the established chemical and magnetic structures of hematite.
We predict for phase I that scattering enhanced by the E1-M 1
event contains monopoles that represent chirality and magnetic
charge.

Our analyses of data are based on an atomic theory of
x-ray Bragg diffraction! with unit-cell structure factors that
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are fundamentally different from the corresponding structure
factors employed by Kokubun et al.” One difference arises in
the treatment of nonresonant magnetic scattering. We use the
exact expression, due solely to spin moments, while Kokubun
et al.” mistakenly—because it is not valid in the investigated
interval of energy—use an abridged amplitude by de Bergevin
and Brunel®? that is a sum of the exact expression and the
high-energy limit of two contributions to scattering that involve
intermediate states (one of the two is capable of showing a
resonance). Treating the resonance as a single oscillator, in
accord with the reported energy profile, our structure factors
for resonant diffraction are completely determined with no
arbitrary phase factors, unlike the analysis in Ref. 7. This dif-
ference in the analyses is a likely explanation of our evidence
that published data for azimuthal-angle scans are miss-set by
30°. Our treatment of magnetic (time-odd) contributions to
scattering is another major difference in the analyses. Whereas
Kokubun et al.” allow only the dipole in the E1-E1 event we
consider all permitted time-odd contributions in both parity-
even and parity-odd events. Time-odd multipoles from parity-
even events, (Tg ) with odd K, are related to orbital magnetism
when the intermediate state in resonance is an s state, as is the
case in the experiments in question with absorption at the
iron K -edge. The available evidence is that orbital magnetism
of the ferric ion in hematite is negligible, as expected for
an s-state ion, and the same can be said of the parity-even,
time-odd multipoles, including the dipole which at resonance
is the only source of magnetic scattering considered in Ref. 7.
From our analysis, we conclude that magnetic scattering at
resonance is provided by magnetoelectric multipoles in an
E1-E2 event. We demonstrate beyond reasonable doubt that
allowing magnetic (TQK ) different from zero the available
data are not consistent with diffraction enhanced by purely
parity-even events, E1-E1 and E2-E2.

In summary, we have derived information on the relative
magnitude of multipoles for the antiferromagnetic phases of
hematite (above and below the Morin temperature). These
estimates are obtained from analyses of experimental
azimuthal dependence gathered in resonant x-ray Bragg
diffraction at space-group forbidden reflections (0,0,3), and
(0,0,9);,. A chiral electron state is proposed from a predicted
coupling of resonant intensity to circular polarization in the
primary beam. This effect allows differentiating between
contributions of the E1-E2 and E2-E2 events. In addition,
pseudoscalar monopoles (chirality and magnetic charge) are
present in the E1-M1 amplitude for resonant scattering by
hematite below the Morin temperature.
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PARITY-ODD MULTIPOLES, MAGNETIC CHARGES, AND ...

APPENDIX: UNIT-CELL STRUCTURE FACTORS

Some factors in Eq. (1) contain a dimensionless quantity
N = mAag/h2 = 260.93, where ag is the Bohr radius and
A = 7.105 keV. Radial integrals for the E'1 and E2 processes
at the K-absorption edge are denoted by {R},, and {R?}sq.
Estimates from an atomic code are {R},/ap = —0.0035
and {R%}is34 /aé = 0.00095, and it is interesting that the
magnitudes are smaller than hydrogenic values with Z = 26
by a factor of about 3. More appropriate values of the radial
integrals will be influenced by ligand ions. The M1 process
between stationary states of an isolated nonrelativistic ion is
forbidden because the radial overlap of initial and final states
in the process is zero, on account of orthogonality. For an
M1 process in a compound the radial integral, denoted here
by {1},,, is an overlap of two orbitals with common orbital
angular momentum, I', which may be centered on different
ions. The magnitude of {1},, is essentially a measure of
configuration interactions and bonding, or covalancy, of a
cation and ligands. Factors appearing in Eq. (1) are

p(E1-E1) = [{R};/aol’X, (A1)
P(E1-M1) = g{R},p{1},, (A2)
P(E1-E2) = [q{R?}saRsp /a5 ]R, (A3)
p(E2-E2) = [q{R?}sa/a0]’R. (A4)

Hematite structure factors F, for forbidden reflections
(0,0,0), with! = 3(2n 4 1) and enhancements by E'1-E1, E'1-
M1, E1-E2, and E2-E?2 events are listed below. In these ex-
pressions, the angle ¢ = —mu, whereu =2z — 1/2 = 0.2104
for a-Fe, 03, the angle 6 is the Bragg angle, and (Té(), (Gg),
and (U 5) are the mean values of the atomic tensors involved.

1. Collinear antiferromagnet, phase 1

(E1-E1)
F,,(E1-E1) =0 (AS)
Fro(E1-E1) = —2+/2sin(pD) sin(@)(T,)  (A6)
Frn(E1-E1) =0 (A7)
(E1-M1)
Fyo(E1-M1) =0 (A8)
Foo(E1-M1)

= % cos(cpl){Z\/E[ — sin®(0)(Gp) + i cos*(0)(Ug)]

+[2 + cos*(0)1(Gg) + i cos*(O)(Ug)}
Frz(E1-M1) =0

(A9)
(A10)
(E1-E2)

F,s(E1-E2) = —4“—g sin(3y) cos(¢l) cos(9)(G,)
(Al1)
Fro(E1-E2)
= % cos(pD){ — [3cos*(0) — 21(G§) + i cos*(O)(Ug)

— V2 5in(26) cos3y)(G35) ) (A12)
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Frr(E1-E2)
= _%ﬁ sin(3) cos(pl) cos(0) sin*(0)(G35)  (A13)

(E2-E2)

Foro(E2-E2) = —~/2sin(3y) sin(p])(T3,)”
Fro(E2-E2)

(A14)

= \/g Sin(wl){ sin(30)(Ty) ) — sin(0)[3 cos*(9) — 21(T;)

_ ? cos(3y)[[3 cos(36) + cos()(T ;)"

—i[cos(30) + 3 cos(@)]<T13)/] } (A15)
Frn(E2-E2) = —% sin(3y) sin(g!) sin(46)(T7)"
(A16)

2. Canted antiferromagnet, phase 11

Time-even contributions to structure factors, determined
by chemical structure, are the same in phases I and II
Thus the structure factor with polar multipoles, F,(u),
for phase II is identical to the foregoing expression for
phase 1. For the convenience of the reader, structure factors
for parity-even multipoles, F),,(¢), are given in full, although
only contributions with K = 1 and 3 differ from foregoing
expressions.

(E1-E1)
Fyo(E1-E1) =0 (A17)
Fro(E1-E1) = 4cos(y) sin(pl) cos(®)(T},)"  (A18)
Frr(E1-E1) = 4sin(y) sin(pl) sin20)(T},)"  (A19)
(E1-M1)
Fyo(E1-M1)
= 8sin(y) cos(pl) cos()[—(GL,) +(G%,)'] (A20)
Fro(E1-M1) = 4cos(y) cos(pl) sin(20)[(G )] (A21)
Fpn(E1-M1)
= —8sin(y) cos(pl) cos()[(GL,) +(G%,)'] (A22)
(E1-E2)
Fyo(E1-E2)
= % cos(gl) cos(8) {% Sin(l//)|:;—§<G}~_l>/

" 1 / . /
63+ gl | - smawiety |
Fro(E1-E2)
2 _ 3 /
= 2\/; cos(¢l) s1n(29)i &\/(;ﬁ) [%(GLI)
" 1 / /
—2(G%,)" - ﬁ(GL)} — cos(3y)(G15) } (A24)
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Frn(E1-E2)
44/6 5 ,
- _%_ cos(gol){\/; cos(8) sin*(9) sin3y)(G35)

i 5 "
+ sin(w)[cos(:se)((GlH) - “/T_(Gi,) )

1 ) 3\
+ 3 cos(9)[cos™(6) + 31(Gy) } } (A25)
(E2-E2)
Fy5(E2-E2)
. . . _2 1\ 6 3\
= sin(20) sm(fpl){ sm(w)[ﬁ(TJrJ — g(TH) i|
+v2 sin(31/f)(Tj_3)”} (A26)
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Foo(E2-E2)
= sin(<pl){ cos(w)[i cos(30)(T},)" + \/§ cos(6)
NG 5

x [1+ sin*(0)|(T} )”} + L cosay)
+1 2\/5

x [ cos(6)[3 cos(36) + cos(e)](TﬁS)”]} (A27)
Frr(E2-E2)
I . . 42,
=7 sin(ol) sm(49){ sm(¢)[ — f(T+11)
3 " . "
+\/;(Tf1) } — sin(3y)(T75) } (A28)
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