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Instabilities of a spin-valve system with perpendicular polarizer and in-plane bias field
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Under a perpendicular spin-transfer-torque (STT) polarizer and in-plane (IP) bias magnetic field, three-
dimensional instability thresholds of the critical strength of STT and the field are derived from an effective
one-dimensional free energy. The modified astroids derived from the STT and IP fields are quite different from
the classical Stoner-Wohlfarth astroid. We find that the STT breaks the symmetry of the astroid seriously when the
orientation of bias field is along the easy and hard axes. In particular, the modified astroid not only separates
the region with two stable states from the region with only one stable state, but also delimits the region with a
dynamical stable state (no stable equilibrium state) when the amplitude of the STT is larger than a critical value
required to switch the magnetization at zero-bias field. Finally, the nucleation field, coercivity, and precessional
critical field for uniaxial anisotropy are rigorously determined including the effect of the STT, and the hysteresis
loops for various orientations of a bias field are computed and discussed.
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I. INTRODUCTION

Recently most research has been performed for a spin-valve
system1–18 or a magnetic tunnel junction structure.19–22 In a
spin-valve system, it is known that a “perpendicular-to-plane
(PERP) polarizer” used in spin valves has attracted consider-
able interest because of great potential applications for new
types of spintronic devices, such as magnetic random access
memory and rf devices.12–18 The PERP polarizer is usually
composed of a Pt/(Co/Pt)5 multilayer structure with strong out-
of-plane anisotropy and a Co/Cu/Co layer with a strong spin
polarization.15 In a PERP device (see Fig. 1), when a current
flows perpendicularly through two magnetic layers separated
by a thin nonmagnetic spacer layer (metallic junction), the
current becomes spin polarized by transmission through or
upon reflection from the first magnetic layer (polarizer layer),
therefore, it carries angular momentum along the orientation of
the first magnetization, which is perpendicular to the film plane
of the second magnetic layer (free layer). The nonmagnetic
layer is thin enough, and thus the polarized current retains
its polarization so that the angular momentum carried by the
current can interact with the free-layer magnetization. This is a
spin-transfer-torque (STT) effect23,24 and can be used to induce
either a steady-state precession at large angle or a irreversible
reversal to a new stable equilibrium state.

Theoretically, it has been reported that the PERP-polarizer-
based spin valve can realize fast and low-power-consuming
magnetization switching. However, there are also some dis-
advantages, such as the necessity for precise controllability
of the current pulse and read-before-write in the data storage
procedure.13,14 Recently, a different process of magnetization
switching is proposed by Morise and Nakamura.17 Both the
PERP polarizer and the magnetic field are simultaneously em-
ploying and is usually called relaxing-precessional switching.
It offers an easier, faster, and lower-power consuming way to
manipulate the magnetization state.

Even though the magnetization reversal is a complicated
physical problem, some ideal cases have been well studied.
Several reversal modes were found under different conditions,
such as curling and buckling, which are nonuniform modes
in bulk materials.25 Aharoni has indicated that for large

magnetic particles, the preferred mechanism is curling, while
for small ones coherent rotation is preferred.26 Below a
critical dimension of the magnetic particles, the most favorable
energy state of a nanosized object is a single domain, i.e.,
Stoner-Wolhfarth (SW) particles.27 Recent advances in the
technological environment make the fabrication and probing
of nanosized particles realizable. In the SW model, the
magnetization switching constraints of the coherent rotation
of a single-domain particle constructs an astroid curve called
the SW limit, which indicates the angular dependence of the
minimal switching field. The SW astroid was derived from
an instability analysis,28,29 and its easy geometric criteria
have provided guidelines for material fabrication engineers
and guidelines for writing schemes for head designers in the
past decades. Another relaxational reversal of magnetization
had been reported to have a lower coercivity than the Stoner-
Wohlfarth limit.30

Similarly, the magnetization switching induced by the
STT, together with an applied magnetic field, is expected
to have similar parametric constraints. The modified astroid
was examined by previous researchers in the case of an
in-plane (IP) polarized current and an IP magnetic field
acting with a magnetization.31,32 Because the STT generated
from an IP polarizer is a nonconservative torque, such as
the damping torque, it usually changes the stability of the
magnetization equilibria, but does not change the position
of the equilibria.33,34 For the PERP polarizer, spin torque
transferring into the free layer is not only expected to be
more efficient than for the IP polarizer, but also can change
the positions of the magnetization equilibria in the low-energy
region (easy plane).18 Up to now only the relaxing-precessional
switching assisted by a PERP polarizer and a magnetic field
along easy and hard axes have been analyzed.16,18 However, the
instability thresholds under a PERP polarizer and an IP field
with an arbitrary orientation were not studied completely.

In this paper, we construct a one-dimensional effective
free energy in the presence of a STT generated from a
PERP polarizer and an IP field. In Sec. II, we use the
Landau-Lifshitz-Gilbert-Slonczewski equation to analyze the
influence of the spin torque on the switching mechanism of
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the magnetization. A parametric form of the locus of the
minimal switching field was derived under the influence of the
injected spin-polarized current. A three-dimensional critical
surface of the instability conditions for the IP magnetic field
and the injected polarized current have been constructed. We
also compute the angular dependence of the critical field,
i.e., nucleation field and coercive force and precessional
critical field in Sec. III, and hysteresis loops in Sec. IV.
Interesting reversal behaviors of the magnetization are found
when the STT is considered. Finally, the summary is given in
Sec. V.

II. THEORY

The magnetization dynamics of the free layer driven
by the spin-polarized current and applied magnetic field is
modeled by the Landau-Lifshitz-Gilbert equation, including
the Slonczewski’s spin-torque term:

dM
dt

= −γ (M × Heff) + α

MS

(
M × dM

dt

)

+ γ aj

MS

M × (M × p),

with

Heff = HK (Mx/MS)x − 4πMzz + Ha. (1)

Here M is the magnetization vector of the free layer, MS

is the saturation magnetization, γ is the gyromagnetic ratio,
α is Gilbert damping constant, aj = h̄g(π/2)j/2eMSd is the
strength of the STT with polarization vector p = z, j is the
current density, and d is the film thickness of the free layer.
The current is defined to be positive when it flows from the
polarizer to the free layer (see Fig. 1). Because the vector M
is always perpendicular to the vector p while considering the
static case,27 the aj is proportional to the spin-torque efficient
factor g(π/2). The first term of the effective magnetic field Heff

is the uniaxial anisotropy field with an anisotropy constant HK ,
the second term is the demagnetization field, and the third term
is the IP bias field [Eq. (2)]:

Ha = Ha(cos βx + sin βy), (2)

which makes an angle β with the easy axis. By parametriz-
ing the magnetization vector M in terms of the spherical

FIG. 1. Schematics of a spin valve with a perpendicular polarizer
p and an in-plane (x-y plane) bias magnetic field Ha . The easy axis
of the free-layer magnetization M is along the +x direction. The
positive current j flows from the polarizer to the free layer.

coordinates (θ,φ), i.e., M = MS(sin θ cos φ, sin θ sin φ,

cos θ ), Eq. (1) can be rewritten in the following autonomous
form:

θ̇ = f1(θ,φ) + αf2(θ,φ),

φ̇ sin θ = f2(θ,φ) + αf1(θ,φ),

with

f1(θ,φ) = −HK sin θ sin φ cos φ − Ha sin(φ − β) + aj sin θ,

f2(θ,φ) = HK sin θ cos θ cos2 φ + Ha cos θ cos(φ − β)

+ 4πMS sin θ cos θ. (3)

By inspection of Eq. (3), the IP equilibrium states are at the
equator of the unit sphere,18 i.e., θe = π/2, for small injection
current and applied field. Therefore, substitution of θ = π/2
in Eq. (3) and integration of f1(φ) (Ref. 35) lead to the one-
dimensional effective energy density function Eeff(φ) for the
IP equilibrium points:

Eeff(φ) = − 1
2HK cos2 φ − Ha cos(φ − β) − ajφ

= − 1
2HK cos2 φ − Hx cos φ − Hy sin φ − ajφ, (4)

where φ ∈ [0,2π ]. The locus of the critical points in the field
plane (i.e., x-y plane) is obtain from the critical equilibrium
conditions ∂Eeff/∂φ = 0 and ∂2Eeff/∂φ2 = 0, where

∂Eeff

∂φ
= 1

2
HK sin 2φ + Hx sin φ − Hy cos φ − aj = 0 (5)

and

∂2Eeff

∂φ2
= HK cos 2φ + Hx cos φ + Hy sin φ = 0. (6)

The stable condition is then ∂2Eeff/∂φ2 > 0. Therefore, the
parametric forms of the locus of the critical fields are

Hx = −HK cos3 φ + aj sin φ,
(7)

Hy = HK sin3 φ − aj cos φ.

The above parametric forms will construct a modified SW
astroid within the plane of the IP bias field from the influences
of the STT. The astroid curve separates the regions where
the free energy has two minima from the region where the
energy has only one or no minimum. If aj = 0, Eq. (7) leads
to the original SW astroid of the uniaxial anisotropy case. For
a uniaxial anisotropy with a saturation magnetization MS =
1000 emu/cm3, examples of various strengths of STT are
plotted in Fig. 2. If the strength of the STT is smaller than
the critical value, ac = HK/2, which is required to switch the
magnetization at zero-bias field, the astroid stretches along
the diagonal direction and compresses along the antidiagonal
direction [see Figs. 2(a) and 2(b)]. Figure 2(a) is a SW astorid
without the effect of the STT. Within this range of injected spin-
polarized current, the switching mechanism of magnetization
gradually changes for the distortion of the astroid as increasing
the injecting current.

By introducing the method of the orientation of the critical
curve proposed by Slonczewski28 and Thiaville,29 the tangent
line of the locus in the parametric point φ is described by
Eq. (5), and its direction is along the same direction of equi-
librium magnetization m. One can recognize the equation (6)
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FIG. 2. The modified astroids for varying strengths of STT:
(a) aj = 0, (b) aj = HK/4, (c) aj = HK/2, (d) aj = 3HK/4,
(e) aj = HK , (f) aj = 3HK/2, (g) aj = −HK/4, and (h) aj =
−3HK/4.

of a straight line perpendicular to the tangent line, and this
line divides the plane into two half planes. In one half plane
the magnetization is in a stable condition and in the other

half plane the magnetization is unstable. Therefore, it has two
stable equilibrium states when the applied field is inside the
modified astroid [see H1 in Fig. 3(a) and H in Figs. 3(b)
and 3(c)], while only one stable equilibrium state when the
applied field is outside the astroid [see H2 in Fig. 3(a) and
H in Fig. 3(d)]. For aj < ac, the IP stable equilibrium will
rotate around the z axis by varying the strengths of the STT.18

This is even more clearly seen in Figs. 3(a) and 3(b), which
also plot the directions of the equilibrium states (see the blue
and red lines). For example, if aj = 0 and (Hx,Hy) = (0,0)
[see Fig. 3(a)], there are two tangent lines (blue solid lines)
along the easy axis, which correspond to the two stable states
(φ+

0 = 0◦,φ−
0 = 180◦) at the easy axis, and two tangent lines

(red dashed lines) along the hard axis, which correspond to the
two unstable states at the hard axis. But if aj > 0 (j > 0) and
(Hx,Hy) = (0,0) [see Fig. 3(b)], we can inspect that the two
stable states (φ+,φ−), which are the extensions of (φ+

0 ,φ−
0 )

for a finite STT, rotate counterclockwise away from the easy
axis, and the two unstable states rotate clockwise away from

FIG. 3. (Color online) The oriented two-dimensional critical curve for uniaxial anisotropy HK = 20 Oe and different strengths of STT:
(a) aj = 0, (b) aj = 6 Oe, (c) aj = 10 Oe, and (d) aj = 14 Oe. The stable and unstable magnetiza-
tion directions are shown by solid and dashed lines separately under a fixed IP field H. Lower inset in
(b): The first discontinuous jump of the state of the magnetization. Upper inset in (b): The second and third discontinuous jumps of
the state of the magnetization. The dashed line is the orientation of the IP field, which makes an angle β = 72◦ with the easy axis. Lower inset
in (d): The first discontinuous jump of the state of the magnetization. Upper inset in (d): The second discontinuous jump of the state of the
magnetization. The dashed line is the orientation of the IP field, which makes an angle β = 50◦ with the easy axis.
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the hard axis. According to the injected current direction,
the IP rotation of (φ+,φ−) can be either clockwise as j < 0
or counterclockwise as j > 0. The IP rotation by the four
equilibrium states means that the STT is driving the original
magnetization out of the local energy minima [(φ+

0 ,φ−
0 )].

However, if Ha �= 0, the perpendicular component Hy (say,
>0) can make φ+ and φ− start to rotate counterclockwise
and clockwise, respectively [see Fig. 3(a)]. The combined
effect of the STT and IP bias field can make φ+ rotate to a
larger angle than the rotation angle of φ− [see H in Fig. 3(b)].
When the applied field is restricted to vary along one arbitrary
chosen orientation, multiple discontinuous jumps possibly
may appear. In particular, when the orientation of the IP field
is specified to be near the cusp of the hard axis for aj < ac,
there are always triple discontinuous jumps between the two
stable equilibrium states, as shown in the upper left-hand inset
and lower right-hand inset of Fig. 3(b) for a deviation angle
β = 72◦ between the IP field and easy axis.

For aj = ac, two branches of the locus would intersect
at (0,0) on the IP field plane, as shown in Fig. 2(c). From
Eqs. (5) and (6), we can easily find that there are two possible
equilibrium states at the field point (0,0), but they are indeed
the inflection points of the effective energy. Therefore, the
two stable states (φ+,φ−) are destroyed by the STT and there
is no stable state at the point (0,0), and the magnetization
would always precess, which is corresponding to the reported
steady-state out-of-plane precessions (OPPs).13–16 However,
this steady-state precessional conclusion only exists for the
zero IP field and cannot appear with a finite IP field. With a
finite strength of the IP field, from analyzing the orientation
of the critical curve, there are still two stable states inside the
triangle region and one stable state outside the triangle region,
as shown in Fig. 3(c). When the spin-torque strength is in the
interval ac < aj < ac2, where ac2 ≈ α(4πMS + HK/2) is the
critical STT of an out-of-plane stable state,16,18 as shown in
Figs. 2(d) and 2(e), the locus becomes a fishlike shape, and
there is no stable equilibrium state in the fish-body region,
which means there are infinite numbers of precessional states
in this region. Actually, when the magnetic field is applied
and its strength is within this region, there is no line going
through the field point and is tangent to the constraint curves,
and no stable equilibrium found. Similarly, by analyzing the
orientation of the critical curve, there are two stable states
inside the triangle region and one stable state outside the
region, as shown in Fig. 3(d). In particular, when the IP field
is orientated from β = 45◦ to the cusp of the hard axis for
aj � ac, there are always double discontinuous jumps between
the two stable equilibrium states, as shown in the upper
left-hand inset and lower right-hand inset of Fig. 3(d) for a
deviation angle β = 50◦ between the IP field and easy axis. It is
worth noting that when aj � 1.5HK , as shown in Fig. 2(f), the
triangle region disappears and there is no bistable-state region,
and only precessional and monostable states exist inside and
outside the elliptical region, respectively.

It should be noted that when aj is negative (j < 0),
the astroid would stretch along the antidiagonal direction
and compress along the diagonal direction [see Figs. 2(g)
and 2(h)], which is contrary to the case for positive aj [see
Figs. 2(a)–2(f)].

FIG. 4. (Color online) The three-dimensional critical surfaces of
the instability conditions for (a) −ac < aj < ac and (b) ac < aj < ac2

with HK = 20 Oe.

A three-dimensional critical surface is shown in Fig. 4 with
different strengths of the STT. In the range of −ac < aj < ac,
as shown in Fig. 4(a), the magnetization becomes unstable on
the surface, while in the other range of ac < aj < ac2, as shown
in Fig. 4(b), the magnetization would be a steady precessional
state within the body of the fishlike region.

III. CRITICAL FIELD

Three different critical fields are calculated: nucleation
field, coercive force, and precessional critical field. In the
following calculation, typical magnetic parameters of MS =
1000 emu/cm3 and HK = 20 Oe, and α = 0.02 are used. The
angular dependence of the nucleation field, coercive force,
and precessional critical field for a given strength of a STT are
shown in Fig. 5.

A. Nucleation field

The nucleation field HN is defined as the magnetic field
at which there is a discontinuous jump of the free-layer
magnetization. From Eq. (4) and the equilibrium condition,
the nucleation field under the effect of a STT satisfies the
simultaneous equations

HN = − HK cos 2φ

cos(φ − β)
,

(8)

HN = aj − 1
2HK sin 2φ

sin(φ − β)
,

where β ∈ [0,π ].

1. Nucleation field when a j < HK /2

For various strengths of a STT, aj < ac, the numerical
solutions of HN (aj ,β) as a function of the applied field angle in
Eq. (8) are shown in Fig. 5(a). The smallest nucleation field for
each aj occurs when the orientation of the applied field is along
135◦ to the +x axis, as shown in Fig. 5(a). It should be noted
that the nucleation field had a local minimum at 0◦ with the
effect of the STT, which is very different from the SW particle,
where it is a local maximum. Also obvious from Fig. 5(a) is
that the HN (aj �= 0,β) has triple solutions around the second
cusp, and it corresponds to the multiple discontinuous jumps
we have mentioned in Sec. II [see the inset in Fig. 3(b)].
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FIG. 5. (Color online) Calculated angular dependence of the critical fields for HK = 20 Oe. (a) HN (aj ,β) vs applied field angle for various
strengths of the STT, aj < ac. (b) HN (aj ,β) vs applied field angle for various strengths of the STT, aj > ac. (c) HC(aj ,β) vs applied field angle
for various strengths of the STT, aj < ac. (d) HP (aj ,β) vs applied field angle for various strengths of the STT, aj > ac.

2. Nucleation field when a j � HK /2

When the strength of the STT is larger than the critical
STT ac and is smaller than the value 1.5HK , the bistable-
state region can appear in the field space, as illustrated in
Figs. 2(c)–2(e). The nucleation field for the discontinuous
jump of the magnetization from one stable state to another
one in this case can be calculated from Eq. (8). Figure 5(b)
illustrates the double solutions for HN (aj ,β) versus field
angle β for various aj . The double values of HN mean
that there are two discontinuous jumps for the magnetization
switching, which we have mentioned in the Sec. II [see
the inset in Fig. 3(d)]. The angle for the double nucleation
ranges from 45◦ to the angle for the hard-axis cusp of the as-
troid. When aj � 1.5HK , the double-nucleation phenomenon
disappears.

B. Coercive force

The coercivity is defined as the magnetic field at which the
projection of the magnetization onto the applied field direction

is zero. From Eq. (8), and HC · m = 0 at the coercive field
HC ,36 we can obtain

HC = ±(aj − HK sin φ cos φ)

= ±(aj + HK sin β cos β). (9)

By considering the stability condition, we find that cos 2βc <

0 and βc equals 45◦ or 135◦. For β � 45◦ or β � 135◦,
there is no stable solution with HC · m = 0. Therefore, the
coercivity is

HC = ±(aj + HK sin β cos β), π/4 < β < 3π/4,

= HN, β � π/4 or β � 3π/4. (10)

The calculated angular dependence of coercivity HC(aj ,β)
for various strengths of the STT, aj < ac, was shown at
Fig. 5(c). From the Eq. (10), it is easy to show that if the
deviation angle satisfies sin 2β0 = −2aj/HK and cos 2β0 =
−√

1 − (2aj/HK )2, the coercivity is always zero. In Fig. 5(c),
we only take the absolute values of the coercivity. Actually,
the coercivity is negative when the deviation angle ranges
from the angle at which the nucleation field is maximum
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to angle β0. This fact can also be observed in the following
hysteresis behaviors, and will be discussed in detail in the next
section.

C. Precessional critical field

For ac � aj < ac2, precessional states will appear in the
field space [see Figs. 2(c)–2(f)]. The maximal critical field
HP (aj � HK/2,β) for the steady-precessional states can be
calculated numerically from Eq. (8). Its functional depen-
dences on the applied field angle for various strengths of the
STT are plotted in Fig. 5(d). The maximum value of HP for a
given aj is always at an angle of 45◦, and the minimum one is
at an angle of 135◦. In particular, HP is always zero as aj = ac,
which is shown as the black dot in Fig. 5(d).

IV. HYSTERESIS BEHAVIOR WITH SPIN TORQUE

The hysteresis loop comprises two branches of the magne-
tization projection along the direction of the bias field. The
descending branch is from the positive saturated magneti-
zation and the ascending branch is from the negative satu-
rated magnetization, and the magnetization switches between
two branches when nucleation occurs. Figure 6 shows the
macrospin-simulated results of hysteresis loops of the free
layer under the effects of the IP magnetic field and the STT. The
switching curves are characterized by the cosine of the angle
between the free-layer magnetization and IP bias field, i.e.,
mH = cos(φ − β). The saturation magnetization, the uniaxial

anisotropy field, and the damping constant are taken as MS =
1000 emu/cm3, HK = 20 Oe, and α = 0.02, respectively.

Figures 6(a)–6(c) show the hysteresis behaviors for aj =
6 Oe (<ac). When the deviation angle between the IP field and
anisotropy axis is smaller than 45◦ and is larger than 135◦, the
nucleation field and coercivity will be the same, as illustrated
in Figs. 6(a) and 6(c), and it follows the prediction of Eq. (10).
In particular, from Fig. 6(a), the square hysteresis can only
appear at a deviation angle of ∼18◦ instead of 0◦ without
the STT.36 This can be easily understood from the modified
astroid. Because the STT influences the astroid and also the IP
rotation of (φ+,φ−), the hysteresis behavior also follows and
would not shift along the x axis even when the applied field is
along the x axis. When the deviated angle ranges between 45◦
and 135◦, the nucleation field and coercivity are different. In
fact, this can be derived easily from Eq. (10). It suggests that the
magnetization projection along the field direction is negative
even before the instability of the magnetization occurs at a
descending branch of the hysteresis loop. For the ascending
branch, a similar behavior of magnetization appears within
the range of 45◦ and 135◦. In Fig. 6(b), as the angle ranges
from 72◦ to 108◦, the positive nucleation field and the negative
coercive force are owing to the exchange of the ascending and
descending branches at nucleation. This range of angle follows
our prediction in Sec. III [dotted line, Fig. 5(b)]. Interesting
behavior occurs around the deviated angle 72◦. When the
applied field sweeps from a positive value to a negative value,
there are three discontinuous jumps switching back and forth
between the descending and the ascending branches. The first

FIG. 6. (Color online) Hysteresis loops of the projective magnetization mH = cos(φ − β) for various orientations of the IP bias field and
strengths of the STT: (a)–(c) aj = 6 Oe, (d)–(f) aj = 14 Oe. The shaded region denotes the OPP state. The numbers in all the figures denote
the values of the angle β.
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nucleation field is ∼18 Oe and magnetization jumps from the
descending branch to the ascending branch. When the applied
field further reduces to −14 Oe, the magnetization jumps
back to the descending branch and stays at the same branch
until the applied field equals −21 Oe. The magnetization
nucleates to the ascending branch again beyond −21 Oe.
Three transitions between the ascending and descending
branches result from three nucleation fields within angles of
∼71.5◦–73.5◦ [green curve, Fig. 5(a)]. The behavior of the
hysteresis for this range is quite different from the hysteresis
without the effect of the STT. Without the STT, the hysteresis
with multiple discontinuous jumps can never be observed.
The descending and the ascending branches of the hysteresis
will intersect at a field angle of 108◦ at the zero-bias field
[Fig. 6(b)], which corresponds to the zero coercivity predicted
by our analytical result [Fig. 5(b)]. Until the IP bias field angle
shifts further to 120◦, a crossover of the hysteresis branches
is never observed, and the hysteresis become normal again
when β � 120◦.

Figures 6(d)–6(f) illustrate the hysteresis loops for aj = 14
Oe (>ac). When aj > ac, the hysteresis loops show some
OPP states (shaded in gray). The OPP region is almost
square for an arbitrary orientation of the IP bias field because
the magnetization goes into a large-angle precession.18 The
boundaries of the OPP region agree with our predictions for
the maximal critical field HP [see Fig. 5(c)]. In particular,
when the bias field with β = 50◦ sweeps from a positive
value to a negative value, there are two discontinuous jumps
switching back and forth between the descending and the
ascending branches [see Fig. 6(e)]. One jump is at a negative

nucleation field, and another one is at a positive nucleation
field. The absolute values of the two nucleation fields follow
our prediction in Sec. II [orange curve, Fig. 5(d)].

V. SUMMARY

Here we have identified a parametric form of the instability
conditions with the IP magnetic field and also the PERP-STT.
We presented studies on the influences of the STT on the
conventional astroid and their geometrical determination of
the stable magnetization. In addition to the regions with stable
magnetizations, we also found that some steady states of
the precessional state exist at certain values of the STT. We
also calculate the nucleation, coercivity, precessional critical
fields, and their dependence on the deviated angle from the
anisotropy axis with the injected STT. We noted that the square
hysteresis loop can only exist at a small deviated angle for the
modification of the STT. Also the triple- and double-nucleation
hysteresis loops can be observed at certain regions of the
deviated angles for aj < ac and aj > ac, respectively. Our
results provide an easy and useful way to determine graphically
the switching criteria and also the threshold of the precessional
dynamical mode from the modified astroid. The modified
astroid shall be very useful for designing STT spintronics
devices, especially for spin-torque oscillators.15
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